1
|
Eldred KC, Edgerton SJ, Ortuño-Lizarán I, Wohlschlegel J, Sherman SM, Petter S, Wyatt-Draher G, Hoffer D, Glass I, La Torre A, Reh TA. Ciliary marginal zone of the developing human retina maintains retinal progenitor cells until late gestational stages. Cell Rep 2025; 44:115460. [PMID: 40178972 DOI: 10.1016/j.celrep.2025.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/15/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Non-mammalian vertebrates maintain a proliferative cell population at the far periphery of their retina called the ciliary marginal zone (CMZ), which contributes to retinal regeneration upon injury. Humans do not maintain a proliferative CMZ into adulthood; however, it is unknown how long in development this region continues to generate neurons. Here, we identify a population of cells in the far-peripheral retina of the human that continues to proliferate after the rest of the retina is quiescent. Single-cell RNA sequencing and 5-ethynyl-2'-deoxyuridine tracing at late developmental time points reveal that this region has the capacity to produce both early- and late-born cell types late in development and a longer cell cycle than more centrally located retinal progenitor cells (RPCs). Moreover, while most RPCs exit the cell cycle with the addition of a transforming growth factor β inhibitor, early RPCs within the CMZ do not. These findings define the late stages of neurogenesis in human retinal development.
Collapse
Affiliation(s)
- Kiara C Eldred
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sierra J Edgerton
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isabel Ortuño-Lizarán
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA; Physiology, Genetics, and Microbiology, University of Alicante, San Vicente del Raspeig, Spain
| | - Juliette Wohlschlegel
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephanie M Sherman
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sidnee Petter
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Gracious Wyatt-Draher
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ian Glass
- Pediatrics/Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Medical Genetics, Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Thomas A Reh
- Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Omori Y, Burgess SM. The Goldfish Genome and Its Utility for Understanding Gene Regulation and Vertebrate Body Morphology. Methods Mol Biol 2024; 2707:335-355. [PMID: 37668923 DOI: 10.1007/978-1-0716-3401-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Goldfish, widely viewed as an ornamental fish, is a member of Cyprinidae family and has a very long history in research for both genetics and physiology studies. Among Cyprinidae, the chromosomal locations of orthologs and the amino acid sequences are usually highly conserved. Adult goldfish are 1000 times larger than adult zebrafish (who are in the same family of fishes), which can make it easier to perform several types of experiments compared to their zebrafish cousins. Comparing mutant phenotypes in orthologous genes between goldfish and zebrafish can often be very informative and provide a deeper insight into the gene function than studying the gene in either species alone. Comparative genomics and phenotypic comparisons between goldfish and zebrafish will provide new opportunities for understanding the development and evolution of body forms in the vertebrate lineage.
Collapse
Affiliation(s)
- Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Japan.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Zheng ZK, Kong L, Dai M, Chen YD, Chen YH. ADSC-Exos outperform BMSC-Exos in alleviating hydrostatic pressure-induced injury to retinal ganglion cells by upregulating nerve growth factors. World J Stem Cells 2023; 15:1077-1092. [PMID: 38179214 PMCID: PMC10762527 DOI: 10.4252/wjsc.v15.i12.1077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have protective effects on the cornea, lacrimal gland, retina, and photoreceptor cell damage, which may be mediated by exosomes (exos) released by MSCs. AIM To investigate the ameliorating effect of exos derived from different MSCs on retinal ganglion cell (RGC) injury induced by hydrostatic pressure. METHODS The RGC injury model was constructed by RGC damage under different hydrostatic pressures (40, 80, 120 mmHg). Then RGCs were cultured with adipose-derived stem cell (ADSC)-Exos and bone marrow-derived stem cell (BMSC)-Exos. Cell Counting Kit-8, transmission electron microscopy, flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction, and western blotting were performed to detect the ameliorating effect of exos on pressure-induced RGC injury. RESULTS ADSC-Exos and BMSC-Exos were successfully isolated and obtained. The gibbosity of RGCs was lower, the cells were irregularly ellipsoidal under pressure, and the addition of ADSC-Exos and BMSC-Exos significantly restored RGC morphology. Furthermore, the proliferative activity of RGCs was increased and the apoptosis of RGCs was inhibited. Moreover, the levels of lactate dehydrogenase and apoptosis-related proteins were increased, and the concentrations of antiapoptotic proteins and neurotrophic factors were decreased in damaged RGCs. However, the above indicators were significantly improved after ADSC-Exos and BMSC-Exos treatment. CONCLUSION These findings indicated that ADSC-Exos and BMSC-Exos could ameliorate RGC injury caused by hydrostatic pressure by inhibiting apoptosis and increasing the secretion of neurotrophic factors.
Collapse
Affiliation(s)
- Zhi-Kun Zheng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| | - Lei Kong
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| | - Min Dai
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China.
| | - Yi-Dan Chen
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| | - Yan-Hua Chen
- Department of Ophthalmology, Affiliated Hospital of Yunnan University/Yunnan Eye Hospital, Kunming 650021, Yunnan Province, China
| |
Collapse
|
4
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
5
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Molecular and Cellular Regulations in the Development of the Choroidal Circulation System. Int J Mol Sci 2023; 24:ijms24065371. [PMID: 36982446 PMCID: PMC10048934 DOI: 10.3390/ijms24065371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders in the development and regulation of blood vessels are involved in various ocular disorders, such as persistent hyperplastic primary vitreous, familial exudative vitreoretinopathy, and choroidal dystrophy. Thus, the appropriate regulation of vascular development is essential for healthy ocular functions. However, regulation of the developing choroidal circulation system has not been well studied compared with vascular regulation in the vitreous and the retina. The choroid is a vascular-rich and uniquely structured tissue supplying oxygen and nutrients to the retina, and hypoplasia and the degeneration of the choroid are involved in many ocular disorders. Therefore, understanding the developing choroidal circulation system expands our knowledge of ocular development and supports our understanding of ocular disorders. In this review, we examine studies on regulating the developing choroidal circulation system at the cellular and molecular levels and discuss the relevance to human diseases.
Collapse
|
7
|
LRP2 contributes to planar cell polarity-dependent coordination of motile cilia function. Cell Tissue Res 2023; 392:535-551. [PMID: 36764939 PMCID: PMC10172251 DOI: 10.1007/s00441-023-03757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/04/2022] [Indexed: 02/12/2023]
Abstract
Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.
Collapse
|
8
|
Yuan S, Huang X, Zhang S, Yang S, Rui X, Qi X, Wang X, Zheng Y, Rong W, Sheng X. Two novel variations in LRP2 cause Donnai-Barrow syndrome in a Chinese family with severe early-onset high myopia. Front Genet 2023; 14:1107347. [PMID: 36777721 PMCID: PMC9911814 DOI: 10.3389/fgene.2023.1107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 02/14/2023] Open
Abstract
Donnai-Barrow syndrome (DBS) is a rare autosomal recessive disorder caused by mutation in the low density lipoprotein receptor-related protein 2 gene (LRP2). Defects in this protein may lead to clinical multiple organ malformations by affecting the development of organs such as the nervous system, eyes, ears, and kidneys. Although some variations on LRP2 have been found to be associated with DBS, early diagnosis and prevention of patients with atypical DBS remains a challenge for many physicians because of their clinical heterogeneity. The objective of this study is to explore the association between the clinical presentation and the genotype of a DBS patient who was initially diagnosed with early-onset high myopia (eoHM) from a healthy Chinese family. To this end, we tested the patient of this family via whole exome sequencing and further verified the results among other family members by Sanger sequencing. Comprehensive ophthalmic tests as well as other systemic examinations were also performed on participants with various genotypes. Genetic assessment revealed that two novel variations in LRP2, a de novo missense variation (c.9032G>A; p.Arg3011Lys) and a novel splicing variation (c.2909-2A>T) inherited from the father, were both carried by the proband in this family, and they are strongly associated with the typical clinical features of DBS patients. Therefore, in this paper we are the first to report two novel compound heterozygous variations in LPR2 causing DBS. Our study extends the genotypic spectrums for LPR2-DBS and better assists physicians in predicting, diagnosing, and conducting gene therapy for DBS.
Collapse
Affiliation(s)
- Shiqin Yuan
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xiaoyu Huang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China,Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Shuang Zhang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Shangying Yang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China,Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Xue Rui
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China
| | - Xiaolong Qi
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Xuhui Wang
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Yali Zheng
- Department of Kidney Internal Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Weining Rong
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical University, Yinchuan, China,*Correspondence: Xunlun Sheng, ; Weining Rong,
| | - Xunlun Sheng
- Gansu Aier Ophthalmology and Optometry Hospital, Lanzhou, China,*Correspondence: Xunlun Sheng, ; Weining Rong,
| |
Collapse
|
9
|
Li X, Gordon PJ, Gaynes JA, Fuller AW, Ringuette R, Santiago CP, Wallace V, Blackshaw S, Li P, Levine EM. Lhx2 is a progenitor-intrinsic modulator of Sonic Hedgehog signaling during early retinal neurogenesis. eLife 2022; 11:e78342. [PMID: 36459481 PMCID: PMC9718532 DOI: 10.7554/elife.78342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
An important question in organogenesis is how tissue-specific transcription factors interact with signaling pathways. In some cases, transcription factors define the context for how signaling pathways elicit tissue- or cell-specific responses, and in others, they influence signaling through transcriptional regulation of signaling components or accessory factors. We previously showed that during optic vesicle patterning, the Lim-homeodomain transcription factor Lhx2 has a contextual role by linking the Sonic Hedgehog (Shh) pathway to downstream targets without regulating the pathway itself. Here, we show that during early retinal neurogenesis in mice, Lhx2 is a multilevel regulator of Shh signaling. Specifically, Lhx2 acts cell autonomously to control the expression of pathway genes required for efficient activation and maintenance of signaling in retinal progenitor cells. The Shh co-receptors Cdon and Gas1 are candidate direct targets of Lhx2 that mediate pathway activation, whereas Lhx2 directly or indirectly promotes the expression of other pathway components important for activation and sustained signaling. We also provide genetic evidence suggesting that Lhx2 has a contextual role by linking the Shh pathway to downstream targets. Through these interactions, Lhx2 establishes the competence for Shh signaling in retinal progenitors and the context for the pathway to promote early retinal neurogenesis. The temporally distinct interactions between Lhx2 and the Shh pathway in retinal development illustrate how transcription factors and signaling pathways adapt to meet stage-dependent requirements of tissue formation.
Collapse
Affiliation(s)
- Xiaodong Li
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
| | - Patrick J Gordon
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - John A Gaynes
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
| | - Alexandra W Fuller
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| | - Randy Ringuette
- Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Valerie Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health NetworkTorontoCanada
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Pulin Li
- Whitehead Institute of Biomedical Research, Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Edward M Levine
- Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashvilleUnited States
- John A. Moran Eye Center, University of UtahSalt Lake CityUnited States
- Department of Cell and Developmental Biology, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
10
|
Yu P, Wang Y, Li Z, Jin H, Li LL, Han X, Wang ZW, Yang XL, Li XY, Zhang XJ, Zhou L, Gui JF. Causal gene identification and desirable trait recreation in goldfish. SCIENCE CHINA LIFE SCIENCES 2022; 65:2341-2353. [DOI: 10.1007/s11427-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
|
11
|
Zhang Y, Jeong H, Mori K, Ikeda SI, Shoda C, Miwa Y, Nakai A, Chen J, Ma Z, Jiang X, Torii H, Kubota Y, Negishi K, Kurihara T, Tsubota K. Vascular endothelial growth factor from retinal pigment epithelium is essential in choriocapillaris and axial length maintenance. PNAS NEXUS 2022; 1:pgac166. [PMID: 36714840 PMCID: PMC9802415 DOI: 10.1093/pnasnexus/pgac166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 06/18/2023]
Abstract
Myopia, which prevalence is rapidly increasing, causes visual impairment; however, the onset mechanism of pathological axial length (AL) elongation remains unclear. A highly vascularized choroid between the retinal pigment epithelium (RPE) and sclera not only maintains physiological activities, but also contributes to ocular development and growth regulation. Vascular endothelial growth factor (VEGF) secreted from the RPE to the choroid is essential for retinal function and maintenance of the choriocapillaris. Herein, we demonstrated that the loss of VEGF secreted from the RPE caused abnormal choriocapillaris development and AL elongation, with features similar to those of the lens-induced myopia (LIM) mouse model, whereas VEGF overexpression by knocking-out von Hippel-Lindau (VHL) specific to the RPE expands the choriocapillaris and shortens the AL. Additionally, LDL Receptor Related Protein 2 (LRP2) deletion in the RPE downregulated VEGF expression and leads to pathological AL elongation. Furthermore, high-myopia patients without choriocapillaris demonstrated longer ALs than did those with preserved choriocapillaris. These results suggest that physiological secretion of VEGF from the RPE is required for proper AL development by maintaining the choriocapillaris. The pinpoint application of VEGF to the choriocapillaris may become a potential intervention for the prevention and treatment of axial myopia progression.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi City, Tokyo 173-8610, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Aichi Animal Eye Clinic, 3 Chome-17-3 Honjitori, Minami Ward, Nagoya, Aichi 457-0074, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi City, Tokyo 173-8610, Japan
| | - Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ziyan Ma
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Xiaoyan Jiang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidemasa Torii
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Tsubota Laboratory Inc., 34 Shinanomachi, 304 Toshin Shinanomachi Ekimae Building, Shinjuku-ku, Tokyo 160-0016, Japan
| |
Collapse
|
12
|
Mai S, Zhu X, Wan EYC, Wu S, Yonathan JN, Wang J, Li Y, Ma JYW, Zuo B, Tse DYY, Lo PC, Wang X, Chan KM, Wu DM, Xiong W. Postnatal eye size in mice is controlled by SREBP2-mediated transcriptional repression of Lrp2 and Bmp2. Development 2022; 149:276005. [PMID: 35833708 PMCID: PMC9382895 DOI: 10.1242/dev.200633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.
Collapse
Affiliation(s)
- Shuyi Mai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Xiaoxuan Zhu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Esther Yi Ching Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shengyu Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Jun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Li
- College of Information and Computer, Taiyuan University of Technology, 030024 Taiyuan, China
| | - Jessica Yuen Wuen Ma
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Bing Zuo
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Dennis Yan-Yin Tse
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong, China.,Research Centre for SHARP Vision, Hong Kong Polytechnic University, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| | - David M Wu
- Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Wenjun Xiong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
13
|
Nguyen TD, Truong ME, Reiter JF. The Intimate Connection Between Lipids and Hedgehog Signaling. Front Cell Dev Biol 2022; 10:876815. [PMID: 35757007 PMCID: PMC9222137 DOI: 10.3389/fcell.2022.876815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023] Open
Abstract
Hedgehog (HH) signaling is an intercellular communication pathway involved in directing the development and homeostasis of metazoans. HH signaling depends on lipids that covalently modify HH proteins and participate in signal transduction downstream. In many animals, the HH pathway requires the primary cilium, an organelle with a specialized protein and lipid composition. Here, we review the intimate connection between HH signaling and lipids. We highlight how lipids in the primary cilium can create a specialized microenvironment to facilitate signaling, and how HH and components of the HH signal transduction pathway use lipids to communicate between cells.
Collapse
Affiliation(s)
- Thi D. Nguyen
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa E. Truong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
14
|
Fan Y, Chen W, Wei R, Qiang W, Pearson JD, Yu T, Bremner R, Chen D. Mapping transgene insertion sites reveals the α-Cre transgene expression in both developing retina and olfactory neurons. Commun Biol 2022; 5:411. [PMID: 35505181 PMCID: PMC9065156 DOI: 10.1038/s42003-022-03379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
The Tg(Pax6-cre,GFP)2Pgr (α-Cre) mouse is a commonly used Cre line thought to be retinal-specific. Using targeted locus amplification (TLA), we mapped the insertion site of the transgene, and defined primers useful to deduce zygosity. Further analyses revealed four tandem copies of the transgene. The insertion site mapped to clusters of vomeronasal and olfactory receptor genes. Using R26R and Ai14 Cre reporter mice, we confirmed retinal Cre activity, but also detected expression in Gα0+ olfactory neurons. Most α-Cre+ olfactory neurons do not express Pax6, implicating the influence of neighboring regulatory elements. RT-PCR and buried food pellet test did not detect any effects of the transgene on flanking genes in the nasal mucosa and retina. Together, these data precisely map α-Cre, show that it does not affect surrounding loci, but reveal previously unanticipated transgene expression in olfactory neurons. The α-Cre mouse can be a valuable tool in both retinal and olfactory research. The Pax6-α-Cre mouse line used in retinal studies actually contains four transgene insertion within gene clusters of olfactory and vomeronasal receptors, leading to expression in not just retinal, but also olfactory and vomeronasal sensory neurons.
Collapse
Affiliation(s)
- Yimeng Fan
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China. .,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Departments of Ophthalmology and Visual Science, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Luo S, Xu H, Yang L, Gong X, Shen J, Chen X, Wu Z. Quantitative proteomics analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment by data-independent acquisition mass spectrometry. Mol Cell Biochem 2022; 477:1849-1863. [PMID: 35332395 DOI: 10.1007/s11010-022-04409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The prognosis of rhegmatogenous retinal detachment (RRD) with choroidal detachment (RRDCD) is often poor and complicated. This study focused on the identification of the characteristic proteins and signal pathways associated with the etiology of RRDCD and to provide guidance for diagnosis and treatment of RRDCD. In this study, vitreous humor samples were obtained from 16 RRDCD patients, 14 with RRD, 12 with idiopathic epiretinal macular membrane (IEMM), and 5 healthy controls from donated corpse eyes. Data-independent acquisition mass spectrometry and bioinformatics analysis were employed to identify differentially expressed proteins (DEPs). In the vitreous humor, 14,842 peptides were identified. Patients with RRDCD had 249 DEPs (93 upregulated and 156 downregulated), with 89 in patients with RRD and 61 in patients with IEMM. Enrichment analysis of the GO and Kyoto Encyclopedia of Genes and Genomes DEP databases indicated functional clusters related to inflammation and immunity, protein degradation and absorption, cell adhesion molecules (CAMs), the hedgehog signaling pathway, and lipid metabolism. Weighted gene co-expression network analysis showed that DEPs with positive co-expression of RRDCD participated in immune-related pathways led by the complement and coagulation cascade, whereas DEPs with negative co-expression of RRDCD participated in protein degradation and absorption, CAMs, and the hedgehog signaling pathway. In summary, our study provides important clues and the theoretical basis for exploring the pathogenesis, progression, and prognosis of ocular fundus disease.
Collapse
Affiliation(s)
- Shasha Luo
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Huiyan Xu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China.,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China
| | - Lufei Yang
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuechun Gong
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Jinyan Shen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Xuan Chen
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, Nanjing Medical University Affiliated Wuxi Second Hospital, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, People's Republic of China. .,Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Wang Y, Chen X, Jiang T, Gu Y, Zhang X, Yuan W, Zhao A, Li R, Wang Z, Hu Z, Liu H. Expanding the phenotypic spectrum of mutations in LRP2: a novel candidate gene of non-syndromic familial comitant strabismus. J Transl Med 2021; 19:495. [PMID: 34872573 PMCID: PMC8647414 DOI: 10.1186/s12967-021-03155-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Background Comitant strabismus (CS) is a heterogeneous disorder that is a major contributing factor to unilateral childhood-onset visual impairment. Studies have confirmed that genetic factors play an important role in the development of CS. The aim of this study was to identify the genetic cause of non-syndromic familial CS. Methods Fourteen unrelated CS families were recruited for the study. Twelve affected and 2 unaffected individuals from a large four-generation family (CS08) were selected to perform whole genome-wide linkage analysis. Parallel whole-exome sequencing (WES) was conducted in the same family (9 patients and 1 unaffected member) and 31 additional CS cases from 13 other unrelated families. Sanger sequencing was used to determine whether any of the remaining variants co-segregated with the disease phenotype in the corresponding family. Results Based on linkage analysis, CS in family CS08 mapped to a novel region of 34.17 centimorgan (cM) on chromosome 2q22.3-2q32.1 between markers D2S151 and D2S364, with a maximum log odds (LOD) score of 3.54 (theta = 0) at D2S142. Parallel WES identified a heterozygous variant, LRP2 c.335 A > G (p.Q112R), located in such a linkage interval that completely co-segregated with the disease in the family. Furthermore, another novel heterozygous variant (c.7274A > G, p.D2425G) in LRP2 that co-segregated was detected in 2 additional affected individuals from another unrelated family by WES. Both variants are predicted to be damaging by PolyPhen-2, SIFT and MutationTaster, and were absent in 100 ethnically matched normal controls. Conclusion LRP2 is a novel candidate genetic cause of non-syndromic familial CS. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03155-z.
Collapse
Affiliation(s)
- Yue Wang
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, NanjingNanjing, 211166, China
| | - Xuejuan Chen
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, NanjingNanjing, 211166, China
| | - Tao Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, NanjingNanjing, 211166, China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, NanjingNanjing, 211166, China
| | - Xiaohan Zhang
- Department of Ophthalmology, Wuxi Children's Hospital, Wuxi, China
| | - Wenwen Yuan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Andi Zhao
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Rui Li
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Zijin Wang
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Rd, NanjingNanjing, 211166, China.
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Rd, Nanjing, 210029, China.
| |
Collapse
|
17
|
Arrigo AB, Lin JHI. Endocytic Protein Defects in the Neural Crest Cell Lineage and Its Pathway Are Associated with Congenital Heart Defects. Int J Mol Sci 2021; 22:8816. [PMID: 34445520 PMCID: PMC8396181 DOI: 10.3390/ijms22168816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
Endocytic trafficking is an under-appreciated pathway in cardiac development. Several genes related to endocytic trafficking have been uncovered in a mutagenic ENU screen, in which mutations led to congenital heart defects (CHDs). In this article, we review the relationship between these genes (including LRP1 and LRP2) and cardiac neural crest cells (CNCCs) during cardiac development. Mice with an ENU-induced Lrp1 mutation exhibit a spectrum of CHDs. Conditional deletion using a floxed Lrp1 allele with different Cre drivers showed that targeting neural crest cells with Wnt1-Cre expression replicated the full cardiac phenotypes of the ENU-induced Lrp1 mutation. In addition, LRP1 function in CNCCs is required for normal OFT lengthening and survival/expansion of the cushion mesenchyme, with other cell lineages along the NCC migratory path playing an additional role. Mice with an ENU-induced and targeted Lrp2 mutation demonstrated the cardiac phenotype of common arterial trunk (CAT). Although there is no impact on CNCCs in Lrp2 mutants, the loss of LRP2 results in the depletion of sonic hedgehog (SHH)-dependent cells in the second heart field. SHH is known to be crucial for CNCC survival and proliferation, which suggests LRP2 has a non-autonomous role in CNCCs. In this article, other endocytic trafficking proteins that are associated with CHDs that may play roles in the NCC pathway during development, such as AP1B1, AP2B1, FUZ, MYH10, and HECTD1, are reviewed.
Collapse
Affiliation(s)
- Angelo B. Arrigo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Jiuann-Huey Ivy Lin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15224, USA;
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
18
|
Völkner M, Kurth T, Schor J, Ebner LJA, Bardtke L, Kavak C, Hackermüller J, Karl MO. Mouse Retinal Organoid Growth and Maintenance in Longer-Term Culture. Front Cell Dev Biol 2021; 9:645704. [PMID: 33996806 PMCID: PMC8114082 DOI: 10.3389/fcell.2021.645704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Using retinal organoid systems, organ-like 3D tissues, relies implicitly on their robustness. However, essential key parameters, particularly retinal growth and longer-term culture, are still insufficiently defined. Here, we hypothesize that a previously optimized protocol for high yield of evenly-sized mouse retinal organoids with low variability facilitates assessment of such parameters. We demonstrate that these organoids reliably complete retinogenesis, and can be maintained at least up to 60 days in culture. During this time, the organoids continue to mature on a molecular and (ultra)structural level: They develop photoreceptor outer segments and synapses, transiently maintain its cell composition for about 5-10 days after completing retinogenesis, and subsequently develop pathologic changes - mainly of the inner but also outer retina and reactive gliosis. To test whether this organoid system provides experimental access to the retina during and upon completion of development, we defined and stimulated organoid growth by activating sonic hedgehog signaling, which in patients and mice in vivo with a congenital defect leads to enlarged eyes. Here, a sonic hedgehog signaling activator increased retinal epithelia length in the organoid system when applied during but not after completion of development. This experimentally supports organoid maturation, stability, and experimental reproducibility in this organoid system, and provides a potential enlarged retina pathology model, as well as a protocol for producing larger organoids. Together, our study advances the understanding of retinal growth, maturation, and maintenance, and further optimizes the organoid system for future utilization.
Collapse
Affiliation(s)
- Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering, Technology Platform, Electron Microscopy and Histology Facility, Technische Universität Dresden, Dresden, Germany
| | - Jana Schor
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lynn J A Ebner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Lara Bardtke
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Cagri Kavak
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Mike O Karl
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.,CRTD - Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Christ A, Marczenke M, Willnow TE. LRP2 controls sonic hedgehog-dependent differentiation of cardiac progenitor cells during outflow tract formation. Hum Mol Genet 2020; 29:3183-3196. [PMID: 32901292 PMCID: PMC7689296 DOI: 10.1093/hmg/ddaa200] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Conotruncal malformations are a major cause of congenital heart defects in newborn infants. Recently, genetic screens in humans and in mouse models have identified mutations in LRP2, a multi-ligand receptor, as a novel cause of a common arterial trunk, a severe form of outflow tract (OFT) defect. Yet, the underlying mechanism why the morphogen receptor LRP2 is essential for OFT development remained unexplained. Studying LRP2-deficient mouse models, we now show that LRP2 is expressed in the cardiac progenitor niche of the anterior second heart field (SHF) that contributes to the elongation of the OFT during separation into aorta and pulmonary trunk. Loss of LRP2 in mutant mice results in the depletion of a pool of sonic hedgehog-dependent progenitor cells in the anterior SHF due to premature differentiation into cardiomyocytes as they migrate into the OFT myocardium. Depletion of this cardiac progenitor cell pool results in aberrant shortening of the OFT, the likely cause of CAT formation in affected mice. Our findings identified the molecular mechanism whereby LRP2 controls the maintenance of progenitor cell fate in the anterior SHF essential for OFT separation, and why receptor dysfunction is a novel cause of conotruncal malformation.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Maike Marczenke
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
20
|
Theis JL, Vogler G, Missinato MA, Li X, Nielsen T, Zeng XXI, Martinez-Fernandez A, Walls SM, Kervadec A, Kezos JN, Birker K, Evans JM, O'Byrne MM, Fogarty ZC, Terzic A, Grossfeld P, Ocorr K, Nelson TJ, Olson TM, Colas AR, Bodmer R. Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. eLife 2020; 9:e59554. [PMID: 33006316 PMCID: PMC7581429 DOI: 10.7554/elife.59554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multidisciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole-genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in healthy human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps toward deciphering oligogenic underpinnings of CHDs, including hypoplastic left hearts.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research LaboratoryRochesterUnited States
| | - Georg Vogler
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Maria A Missinato
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Tanja Nielsen
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
- Doctoral Degrees and Habilitations, Department of Biology, Chemistry, and Pharmacy, Freie Universität BerlinBerlinGermany
| | - Xin-Xin I Zeng
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | | | - Stanley M Walls
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anaïs Kervadec
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - James N Kezos
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Katja Birker
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - André Terzic
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Paul Grossfeld
- University of California San Diego, Rady’s HospitalSan DiegoUnited States
- Division of General Internal Medicine, Mayo ClinicRochesterUnited States
| | - Karen Ocorr
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Timothy J Nelson
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Alexandre R Colas
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Rolf Bodmer
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
21
|
Kon T, Omori Y, Fukuta K, Wada H, Watanabe M, Chen Z, Iwasaki M, Mishina T, Matsuzaki SIS, Yoshihara D, Arakawa J, Kawakami K, Toyoda A, Burgess SM, Noguchi H, Furukawa T. The Genetic Basis of Morphological Diversity in Domesticated Goldfish. Curr Biol 2020; 30:2260-2274.e6. [PMID: 32392470 DOI: 10.1016/j.cub.2020.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Although domesticated goldfish strains exhibit highly diversified phenotypes in morphology, the genetic basis underlying these phenotypes is poorly understood. Here, based on analysis of transposable elements in the allotetraploid goldfish genome, we found that its two subgenomes have evolved asymmetrically since a whole-genome duplication event in the ancestor of goldfish and common carp. We conducted whole-genome sequencing of 27 domesticated goldfish strains and wild goldfish. We identified more than 60 million genetic variations and established a population genetic structure of major goldfish strains. Genome-wide association studies and analysis of strain-specific variants revealed genetic loci associated with several goldfish phenotypes, including dorsal fin loss, long-tail, telescope-eye, albinism, and heart-shaped tail. Our results suggest that accumulated mutations in the asymmetrically evolved subgenomes led to generation of diverse phenotypes in the goldfish domestication history. This study is a key resource for understanding the genetic basis of phenotypic diversity among goldfish strains.
Collapse
Affiliation(s)
- Tetsuo Kon
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kentaro Fukuta
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Masakatsu Watanabe
- Laboratory of Pattern Formation, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka
| | - Zelin Chen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tappei Mishina
- Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | - Daiki Yoshihara
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Jumpei Arakawa
- Yatomi Station, Aichi Fisheries Research Institute, Yatomi, Aichi, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Advanced Genomics Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Induced pluripotent stem cell-based disease modeling identifies ligand-induced decay of megalin as a cause of Donnai-Barrow syndrome. Kidney Int 2020; 98:159-167. [PMID: 32471643 PMCID: PMC7322522 DOI: 10.1016/j.kint.2020.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 01/16/2023]
Abstract
Donnai-Barrow syndrome (DBS) is an autosomal-recessive disorder characterized by multiple pathologies including malformation of forebrain and eyes, as well as resorption defects of the kidney proximal tubule. The underlying cause of DBS are mutations in LRP2, encoding the multifunctional endocytic receptor megalin. Here, we identified a unique missense mutation R3192Q of LRP2 in an affected family that may provide novel insights into the molecular causes of receptor dysfunction in the kidney proximal tubule and other tissues affected in DBS. Using patient-derived induced pluripotent stem cell lines we generated neuroepithelial and kidney cell types as models of the disease. Using these cell models, we documented the inability of megalin R3192Q to properly discharge ligand and ligand-induced receptor decay in lysosomes. Thus, mutant receptors are aberrantly targeted to lysosomes for catabolism, essentially depleting megalin in the presence of ligand in this affected family.
Collapse
|
23
|
Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis. Cell Rep 2019; 25:2457-2469.e8. [PMID: 30485812 DOI: 10.1016/j.celrep.2018.11.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/13/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) contribute to plasticity and repair of the adult brain. Niches harboring NSCs regulate stem cell self-renewal and differentiation. We used comprehensive and untargeted single-cell RNA profiling to generate a molecular cell atlas of the largest germinal region of the adult mouse brain, the subventricular zone (SVZ). We characterized >20 neural and non-neural cell types and gained insights into the dynamics of neurogenesis by predicting future cell states based on computational analysis of RNA kinetics. Furthermore, we applied our single-cell approach to document decreased numbers of NSCs, reduced proliferation activity of progenitors, and perturbations in Wnt and BMP signaling pathways in mice lacking LRP2, an endocytic receptor required for SVZ maintenance. Our data provide a valuable resource to study adult neurogenesis and a proof of principle for the power of single-cell RNA sequencing to elucidate neural cell-type-specific alterations in loss-of-function models.
Collapse
|
24
|
Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist 2019; 26:185-196. [PMID: 31509088 DOI: 10.1177/1073858419874016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
25
|
Collery RF, Link BA. Precise Short Sequence Insertion in Zebrafish Using a CRISPR/Cas9 Approach to Generate a Constitutively Soluble Lrp2 Protein. Front Cell Dev Biol 2019; 7:167. [PMID: 31457013 PMCID: PMC6700241 DOI: 10.3389/fcell.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
LRP2 is a large transmembrane receptor expressed on absorptive epithelia where it binds many extracellular ligands to control several signaling pathways. Mutations in LRP2 are associated with buphthalmic eye enlargement, myopia and other non-ocular symptoms. Though studies have clearly shown that absence of LRP2 causes these phenotypes, and that overexpression of individual LRP2 domains can exacerbate eye enlargement caused by the absence of Lrp2, the relationship between soluble LRP2 fragments and full-length membrane-bound LRP2 is not completely understood. Here we use a CRISPR/Cas9 approach to insert a stop codon cassette into zebrafish lrp2 to prematurely truncate the protein before its transmembrane domain while leaving the entire extracellular domain intact. The resulting mutant line will be a useful tool for examining Lrp2 function in the eye, and testing hypotheses regarding its extracellular processing.
Collapse
Affiliation(s)
- Ross F Collery
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin Eye Institute, Milwaukee, WI, United States
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
26
|
Storm T, Burgoyne T, Dunaief JL, Christensen EI, Futter C, Nielsen R. Selective Ablation of Megalin in the Retinal Pigment Epithelium Results in Megaophthalmos, Macromelanosome Formation and Severe Retina Degeneration. Invest Ophthalmol Vis Sci 2019; 60:322-330. [PMID: 30665232 PMCID: PMC6343679 DOI: 10.1167/iovs.18-25667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the megalin-encoding gene, LRP2, cause high myopia as seen in patients suffering from Donnai-Barrow/facio-oculo-acoustico-renal syndrome. Megalin is present in both the nonpigmented epithelium of the ciliary body and in the RPE. In this study, we set out to establish an animal model to study the mechanisms underlying the ocular phenotype and to establish if high myopia/megaophthalmos is induced by postnatal megalin-deficiency in the RPE. Methods Postnatal RPE-specific deletion of megalin was generated by crossing mice bearing a homozygous loxP-flanked Lrp2 allele with transgenic mice expressing the Cre recombinase driven by the BEST1 promotor. The model was investigated by immunohistologic techniques, and transmission electron microscopy. Results Mice with postnatal RPE-specific loss of megalin developed a megaophthalmos phenotype with dramatic increase in ocular size and severe retinal thinning associated with compromised vision. This phenotype was present at postnatal day 14, indicating rapid development in the period from onset of BEST1 promotor activity at postnatal day 10. Additionally, RPE melanosomes exhibited abnormal size and morphology, suggested by electron tomography to be caused by fusion events between multiple melanosomes. Conclusions Postnatal loss of megalin in the RPE induces dramatic and rapid ocular growth and retinal degeneration compatible with the high myopia observed in Donnai-Barrow patients. The morphologic changes of RPE melanosomes, believed to be largely inert and fully differentiated at birth, suggested a continued plasticity of mature melanosomes and a requirement for megalin to maintain their number and morphology.
Collapse
Affiliation(s)
- Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Erik I Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Clare Futter
- UCL Institute of Ophthalmology, London, United Kingdom
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Nandadasa S, Kraft CM, Wang LW, O'Donnell A, Patel R, Gee HY, Grobe K, Cox TC, Hildebrandt F, Apte SS. Secreted metalloproteases ADAMTS9 and ADAMTS20 have a non-canonical role in ciliary vesicle growth during ciliogenesis. Nat Commun 2019; 10:953. [PMID: 30814516 PMCID: PMC6393521 DOI: 10.1038/s41467-019-08520-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 01/20/2023] Open
Abstract
Although hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy. CRISPR-Cas9 inactivation of ADAMTS9 impaired ciliogenesis in RPE-1 cells, which was restored by catalytically active ADAMTS9 or ADAMTS20 acting in trans, but not by their proteolytically inactive mutants. Their mutagenesis in mice impaired neural and yolk sac ciliogenesis, leading to morphogenetic anomalies resulting from impaired hedgehog signaling, which is transduced by primary cilia. In addition to their cognate extracellular proteolytic activity, ADAMTS9 and ADAMTS20 thus have an additional proteolytic role intracellularly, revealing an unexpected regulatory dimension in ciliogenesis. Ciliogenesis is a complex process requiring hundreds of molecules, although few secreted proteins have been implicated. Here, the authors show that the secreted metalloproteases ADAMTS9 and ADAMTS20 intracellularly regulate ciliogenesis from unique periciliary vesicles with proteolytic activity.
Collapse
Affiliation(s)
- Sumeda Nandadasa
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Caroline M Kraft
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Lauren W Wang
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Anna O'Donnell
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Rushabh Patel
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, South Korea
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, 48149, Münster, Germany
| | - Timothy C Cox
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA.,Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 E 25th St, Kansas City, MO, 64108, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Suneel S Apte
- Department of Biomedical Engineering- ND20, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
28
|
Abstract
Cell-to-cell communication is fundamental for embryo development and subsequent tissue homeostasis. This communication is often mediated by a small number of signaling pathways in which a secreted ligand binds to the surface of a target cell, thereby activating signal transduction. In vertebrate neural development, these signaling mechanisms are repeatedly used to obtain different and context-dependent outcomes. Part of the versatility of these communication mechanisms depends on their finely tuned regulation that controls timing, spatial localization, and duration of the signaling. The existence of secreted antagonists, which prevent ligand–receptor interaction, is an efficient mechanism to regulate some of these pathways. The Hedgehog family of signaling proteins, however, activates a pathway that is controlled largely by the positive or negative activity of membrane-bound proteins such as Cdon, Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the vertebrate retina, from its early specification to neurogenesis, to discuss whether there is an advantage to the use of such regulators, pointing to unresolved or controversial issues.
Collapse
Affiliation(s)
- Viviana Gallardo
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| |
Collapse
|
29
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
30
|
Coveney CR, Collins I, Mc Fie M, Chanalaris A, Yamamoto K, Wann AKT. Cilia protein IFT88 regulates extracellular protease activity by optimizing LRP-1-mediated endocytosis. FASEB J 2018; 32:fj201800334. [PMID: 29920219 PMCID: PMC6219823 DOI: 10.1096/fj.201800334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/04/2018] [Indexed: 01/15/2023]
Abstract
Matrix protease activity is fundamental to developmental tissue patterning and remains influential in adult homeostasis. In cartilage, the principal matrix proteoglycan is aggrecan, the protease-mediated catabolism of which defines arthritis; however, the pathophysiologic mechanisms that drive aberrant aggrecanolytic activity remain unclear. Human ciliopathies exhibit altered matrix, which has been proposed to be the result of dysregulated hedgehog signaling that is tuned within the primary cilium. Here, we report that disruption of intraflagellar transport protein 88 (IFT88), a core ciliary trafficking protein, increases chondrocyte aggrecanase activity in vitro. We find that the receptor for protease endocytosis in chondrocytes, LDL receptor-related protein 1 (LRP-1), is unevenly distributed over the cell membrane, often concentrated at the site of cilia assembly. Hypomorphic mutation of IFT88 disturbs this apparent hot spot for protease uptake, increases receptor shedding, and results in a reduced rate of protease clearance from the extracellular space. We propose that IFT88 and/or the cilium regulates the extracellular remodeling of matrix-independently of Hedgehog regulation-by enabling rapid LRP-1-mediated endocytosis of proteases, potentially by supporting the creation of a ciliary pocket. This result highlights new roles for the cilium's machinery in matrix turnover and LRP-1 function, with potential relevance in a range of diseases.-Coveney, C. R., Collins, I., Mc Fie, M., Chanalaris, A., Yamamoto, K., Wann, A. K. T. Cilia protein IFT88 regulates extracellular protease activity by optimizing LRP-1-mediated endocytosis.
Collapse
Affiliation(s)
- Clarissa R. Coveney
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Isabella Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Megan Mc Fie
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anastasios Chanalaris
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kazuhiro Yamamoto
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Angus K. T. Wann
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute, Nuffield Department for Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Moon KH, Kim JW. Hippo Signaling Circuit and Divergent Tissue Growth in Mammalian Eye. Mol Cells 2018; 41:257-263. [PMID: 29665674 PMCID: PMC5935098 DOI: 10.14348/molcells.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/02/2023] Open
Abstract
Vertebrate organ development is accompanied by demarcation of tissue compartments, which grow coordinately with their neighbors. Hence, perturbing the coordinative growth of neighboring tissue compartments frequently results in organ malformation. The growth of tissue compartments is regulated by multiple intercellular and intracellular signaling pathways, including the Hippo signaling pathway that limits the growth of various organs. In the optic neuroepithelial continuum, which is partitioned into the retina, retinal pigment epithelium (RPE) and ciliary margin (CM) during eye development, the Hippo signaling activity operates differentially, as it does in many tissues. In this review, we summarize recent studies that have explored the relationship between the Hippo signaling pathway and growth of optic neuroepithelial compartments. We will focus particularly on the roles of a tumor suppressor, neurofibromin 2 (NF2), whose expression is not only dependent on compartment-specific transcription factors, but is also subject to regulation by a Hippo-Yap feedback signaling circuit.
Collapse
Affiliation(s)
- Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
32
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
33
|
Bélanger MC, Robert B, Cayouette M. Msx1-Positive Progenitors in the Retinal Ciliary Margin Give Rise to Both Neural and Non-neural Progenies in Mammals. Dev Cell 2016; 40:137-150. [PMID: 28011038 DOI: 10.1016/j.devcel.2016.11.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
In lower vertebrates, stem/progenitor cells located in a peripheral domain of the retina, called the ciliary margin zone (CMZ), cooperate with retinal domain progenitors to build the mature neural retina. In mammals, it is believed that the CMZ lacks neurogenic potential and that the retina develops from one pool of multipotent retinal progenitor cells (RPCs). Here we identify a population of Msx1-expressing progenitors in the mouse CMZ that is both molecularly and functionally distinct from RPCs. Using genetic lineage tracing, we report that Msx1 progenitors have unique developmental properties compared with RPCs. Msx1 lineages contain both neural retina and non-neural ciliary epithelial progenies and overall generate fewer photoreceptors than classical RPC lineages. Furthermore, we show that the endocytic adaptor protein Numb regulates the balance between neural and non-neural fates in Msx1 progenitors. These results uncover a population of CMZ progenitors, distinct from classical RPCs, that also contributes to mammalian retinogenesis.
Collapse
Affiliation(s)
- Marie-Claude Bélanger
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada
| | - Benoit Robert
- Department of Molecular Genetics of Morphogenesis, Institut Pasteur, Paris 75015, France
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A3, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
34
|
Storm T, Christensen EI, Christensen JN, Kjaergaard T, Uldbjerg N, Larsen A, Honoré B, Madsen M. Megalin Is Predominantly Observed in Vesicular Structures in First and Third Trimester Cytotrophoblasts of the Human Placenta. J Histochem Cytochem 2016; 64:769-784. [PMID: 27798286 DOI: 10.1369/0022155416672210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
The membrane receptor megalin is crucial for normal fetal development. Besides its expression in the developing fetus, megalin is also expressed in the human placenta. Similar to its established function in the kidney proximal tubules, placental megalin has been proposed to mediate uptake of vital nutrients. However, details of megalin expression, subcellular localization, and function in the human placenta remain to be established. By immunohistochemical analyses of first trimester and term human placenta, we showed that megalin is predominantly expressed in cytotrophoblasts, the highly proliferative cells in placenta. Only limited amounts of megalin could be detected in syncytiotrophoblasts and least in term placenta syncytiotrophoblasts. Immunocytochemical analyses furthermore showed that placental megalin associates with structures of the endolysosomal apparatus. Combined, our results clearly place placental megalin in the context of endocytosis and trafficking of ligands. However, due to the limited expression of megalin in syncytiotrophoblasts, especially in term placenta, it appears that the main role for placental megalin is not to mediate uptake of nutrients from the maternal bloodstream, as previously proposed. In contrast, our results point toward novel and complex functions for megalin in the cytotrophoblasts. Thus, we propose that the perception of placental megalin localization and function should be revised.
Collapse
Affiliation(s)
- Tina Storm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark (TS, EIC, JNC, TK, AL, BH, MM)
| | - Erik I Christensen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark (TS, EIC, JNC, TK, AL, BH, MM)
| | - Julie Nelly Christensen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark (TS, EIC, JNC, TK, AL, BH, MM)
| | - Tine Kjaergaard
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark (TS, EIC, JNC, TK, AL, BH, MM)
| | - Niels Uldbjerg
- Department of Clinical Medicine-Obstetrics and Gynaecology, Aarhus University Hospital, Skejby, Denmark (NU)
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark (TS, EIC, JNC, TK, AL, BH, MM)
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark (TS, EIC, JNC, TK, AL, BH, MM)
| | | |
Collapse
|
35
|
Nasrallah R, Fast EM, Solaimani P, Knezevic K, Eliades A, Patel R, Thambyrajah R, Unnikrishnan A, Thoms J, Beck D, Vink CS, Smith A, Wong J, Shepherd M, Kent D, Roychoudhuri R, Paul F, Klippert J, Hammes A, Willnow T, Göttgens B, Dzierzak E, Zon LI, Lacaud G, Kouskoff V, Pimanda JE. Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes. Blood 2016; 128:1928-1939. [PMID: 27554085 PMCID: PMC5064716 DOI: 10.1182/blood-2016-02-697870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/15/2016] [Indexed: 12/13/2022] Open
Abstract
Enhancers are the primary determinants of cell identity, and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9-kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8-kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the 6 genes that were upregulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene-coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.
Collapse
Affiliation(s)
- Rabab Nasrallah
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Eva M Fast
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA; Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Parham Solaimani
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kathy Knezevic
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Alexia Eliades
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Rahima Patel
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Roshana Thambyrajah
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Ashwin Unnikrishnan
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Julie Thoms
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Chris S Vink
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Aileen Smith
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Jason Wong
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia
| | - Mairi Shepherd
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - David Kent
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Rahul Roychoudhuri
- The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Fabian Paul
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Julia Klippert
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Annette Hammes
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Thomas Willnow
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; and
| | - Bertie Göttgens
- Department of Haematology, Wellcome Trust and Medical Research Council Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Elaine Dzierzak
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA; Howard Hughes Medical Institute, Stem Cell Program and Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - George Lacaud
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, University of New South Wales Australia, Sydney, Australia; Department of Haematology, The Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
36
|
Pedersen LB, Mogensen JB, Christensen ST. Endocytic Control of Cellular Signaling at the Primary Cilium. Trends Biochem Sci 2016; 41:784-797. [DOI: 10.1016/j.tibs.2016.06.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
|
37
|
Christ A, Herzog K, Willnow TE. LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 2016; 245:569-79. [PMID: 26872844 DOI: 10.1002/dvdy.24394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/31/2022] Open
Abstract
To fulfill their multiple roles in organ development and adult tissue homeostasis, hedgehog (HH) morphogens act through their receptor Patched (PTCH) on target cells. However, HH actions also require HH binding proteins, auxiliary cell surface receptors that agonize or antagonize morphogen signaling in a context-dependent manner. Here, we discuss recent findings on the LDL receptor-related protein 2 (LRP2), an exemplary HH binding protein that modulates sonic hedgehog activities in stem and progenitor cell niches in embryonic and adult tissues. LRP2 functions are crucial for developmental processes in a number of tissues, including the brain, the eye, and the heart, and defects in this receptor pathway are the cause of devastating congenital diseases in humans. Developmental Dynamics 245:569-579, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annabel Christ
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Katja Herzog
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, 13125, Berlin, Germany
| |
Collapse
|