1
|
Engelfriet ML, Guo Y, Arnold A, Valen E, Ciosk R. Reprograming gene expression in 'hibernating' C. elegans involves the IRE-1/XBP-1 pathway. eLife 2025; 13:RP101186. [PMID: 40326887 PMCID: PMC12055002 DOI: 10.7554/elife.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
In nature, many animals respond to cold by entering hibernation, while in clinical settings, controlled cooling is used in transplantation and emergency medicine. However, the molecular mechanisms that enable cells to survive severe cold are still not fully understood. One key aspect of cold adaptation is the global downregulation of protein synthesis. Studying it in the nematode Caenorhabditis elegans, we find that the translation of most mRNAs continues in the cold, albeit at a slower rate, and propose that cold-specific gene expression is regulated primarily at the transcription level. Supporting this idea, we found that the transcription of certain cold-induced genes is linked to the activation of unfolded protein response (UPR) through the conserved IRE-1/XBP-1 signaling pathway. Our findings suggest that this pathway is triggered by cold-induced perturbations in proteins and lipids within the endoplasmic reticulum, and that its activation is beneficial for cold survival.
Collapse
Affiliation(s)
- Melanie Lianne Engelfriet
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Yanwu Guo
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Andreas Arnold
- Division of Molecular Neuroscience, Department of Biomedicine, University of BaselBaselSwitzerland
- University Psychiatric Clinics, University of BaselBaselSwitzerland
| | - Eivind Valen
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| | - Rafal Ciosk
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of OsloOsloNorway
| |
Collapse
|
2
|
Wang Y, Wu J, Wang D. 6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125539. [PMID: 39689833 DOI: 10.1016/j.envpol.2024.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
The toxicity of 6-PPD quinone (6-PPDQ) has been frequently detected. However, the possible transgenerational effects of 6-PPDQ remain largely unclear. Due to short life cycle and high sensitivity to environmental exposure, Caenorhabditis elegans is useful for study of transgenerational toxicology. In C. elegans, we observed the transgenerational increase in lipid accumulation after parental generation (P0-G) exposure to 6-PPDQ at 0.1-10 μg/L. Accompanied with this, transgenerational increase in expressions of genes governing fatty acid synthesis and monounsaturated fatty acyl-CoAs synthesis and decrease in genes governing fatty acid β-oxidation were induced by 6-PPDQ exposure. Moreover, 6-PPDQ exposure at P0-G caused transgenerational activation of mdt-15 and sbp-1 encoding lipid metabolic sensors. Meanwhile, exposure to 6-PPDQ induced transgenerational activation of set-2 and inhibition in rbr-2, two genes encoding components of COMPASS complex. The 6-PPDQ induced transgenerational lipid accumulation could be strengthened by RNAi of set-2 and suppressed by RNAi of rbr-2. Additionally, 6-PPDQ induced transgenerational neurotoxicity could be increased by RNAi of mdt-15, sbp-1, and rbr-2, and inhibited by RNAi of set-2. Therefore, our results demonstrated the possibility in resulting in transgenerational lipid accumulation by exposure to 6-PPDQ.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
3
|
Dubey AA, Sarkar A, Milcz K, Szulc NA, Thapa P, Piechota M, Serwa RA, Pokrzywa W. Floxuridine supports UPS independent of germline signaling and proteostasis regulators via involvement of detoxification in C. elegans. PLoS Genet 2024; 20:e1011371. [PMID: 39083540 PMCID: PMC11318861 DOI: 10.1371/journal.pgen.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is critical for maintaining proteostasis, influencing stress resilience, lifespan, and thermal adaptability in organisms. In Caenorhabditis elegans, specific proteasome subunits and activators, such as RPN-6, PBS-6, and PSME-3, are associated with heat resistance, survival at cold (4°C), and enhanced longevity at moderate temperatures (15°C). Previously linked to improving proteostasis, we investigated the impact of sterility-inducing floxuridine (FUdR) on UPS functionality under proteasome dysfunction and its potential to improve cold survival. Our findings reveal that FUdR significantly enhances UPS activity and resilience during proteasome inhibition or subunit deficiency, supporting worms' normal lifespan and adaptation to cold. Importantly, FUdR effect on UPS activity occurs independently of major proteostasis regulators and does not rely on the germ cells proliferation or spermatogenesis. Instead, FUdR activates a distinct detoxification pathway that supports UPS function, with GST-24 appearing to be one of the factors contributing to the enhanced activity of the UPS upon knockdown of the SKN-1-mediated proteasome surveillance pathway. Our study highlights FUdR unique role in the UPS modulation and its crucial contribution to enhancing survival under low-temperature stress, providing new insights into its mechanisms of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Abhishek Anil Dubey
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Anwesha Sarkar
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karolina Milcz
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Pankaj Thapa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Piechota
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
Vérièpe-Salerno J, Podavini S, Long MJ, Kolotuev I, Cuendet M, Thome M. MALT-1 shortens lifespan by inhibiting autophagy in the intestine of C. elegans. AUTOPHAGY REPORTS 2023; 2:2277584. [PMID: 38510643 PMCID: PMC7615756 DOI: 10.1080/27694127.2023.2277584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/21/2023] [Indexed: 03/22/2024]
Abstract
The caspase-like protease MALT1 promotes immune responses and oncogenesis in mammals by activating the transcription factor NF-κB. MALT1 is remarkably conserved from mammals to simple metazoans devoid of NF-κB homologs, like the nematode C. elegans. To discover more ancient, NF-κB -independent MALT1 functions, we analysed the phenotype of C. elegans upon silencing of MALT-1 expression systemically or in a tissue-specific manner. MALT-1 silencing in the intestine caused a significant increase in life span, whereas intestinal overexpression of MALT-1 shortened life expectancy. Interestingly, MALT-1-deficient animals showed higher constitutive levels of autophagy in the intestine, which were particularly evident in aged or starved nematodes. Silencing of the autophagy regulators ATG-13, BEC-1 or LGG-2, but not the TOR homolog LET-363, reversed lifespan extension caused by MALT-1 deficiency. These findings suggest that MALT-1 limits the lifespan of C. elegans by acting as an inhibitor of an early step of autophagy in the intestine.
Collapse
Affiliation(s)
- Julie Vérièpe-Salerno
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Silvia Podavini
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Marcus J.C. Long
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Irina Kolotuev
- Electron Microscopy Facility, University of Lausanne, Quartier Sorge – Biophore, CH-1015 Lausanne, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Margot Thome
- Department of Immunobiology, Faculty of Biology and Medicine, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| |
Collapse
|
6
|
Viscardi MJ, Arribere JA. NMD targets experience deadenylation during their maturation and endonucleolytic cleavage during their decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560204. [PMID: 37808772 PMCID: PMC10557752 DOI: 10.1101/2023.09.29.560204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Premature stop codon-containing mRNAs can produce truncated and dominantly acting proteins that harm cells. Eukaryotic cells protect themselves by degrading such mRNAs via the Nonsense-Mediated mRNA Decay (NMD) pathway. The precise reactions by which cells attack NMD target mRNAs remain obscure, precluding a mechanistic understanding of NMD and hampering therapeutic efforts to control NMD. A key step in NMD is the decay of the mRNA, which is proposed to occur via several competing models including deadenylation, exonucleolytic decay, and/or endonucleolytic decay. We set out to clarify the relative contributions of these decay mechanisms to NMD, and to identify the role of key factors. Here, we modify and deploy single-molecule nanopore mRNA sequencing to capture full-length NMD targets and their degradation intermediates, and we obtain single-molecule measures of splicing isoform, cleavage state, and poly(A) tail length. We observe robust endonucleolytic cleavage of NMD targets in vivo that depends on the nuclease SMG-6 and we use the occurence of cleavages to identify several known NMD targets. We show that NMD target mRNAs experience deadenylation, but similar to the extent that normal mRNAs experience as they enter the translational pool. Furthermore, we show that a factor (SMG-5) that historically was ascribed a function in deadenylation, is in fact required for SMG-6-mediated cleavage. Our results support a model in which NMD factors act in concert to degrade NMD targets in animals via an endonucleolytic cleavage near the stop codon, and suggest that deadenylation is a normal part of mRNA (and NMD target) maturation rather than a facet unique to NMD. Our work clarifies the route by which NMD target mRNAs are attacked in an animal.
Collapse
Affiliation(s)
- Marcus J. Viscardi
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Joshua A. Arribere
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
7
|
Tsai YT, Chang CH, Tsai HY. Rege-1 promotes C. elegans survival by modulating IIS and TOR pathways. PLoS Genet 2023; 19:e1010869. [PMID: 37556491 PMCID: PMC10441803 DOI: 10.1371/journal.pgen.1010869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/21/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
Metabolic pathways are known to sense the environmental stimuli and result in physiological adjustments. The responding processes need to be tightly controlled. Here, we show that upon encountering P. aeruginosa, C. elegans upregulate the transcription factor ets-4, but this upregulation is attenuated by the ribonuclease, rege-1. As such, mutants with defective REGE-1 ribonuclease activity undergo ets-4-dependent early death upon challenge with P. aeruginosa. Furthermore, mRNA-seq analysis revealed associated global changes in two key metabolic pathways, the IIS (insulin/IGF signaling) and TOR (target of rapamycin) kinase signaling pathways. In particular, failure to degrade ets-4 mRNA in activity-defective rege-1 mutants resulted in upregulation of class II longevity genes, which are suppressed during longevity, and activation of TORC1 kinase signaling pathway. Genetic inhibition of either pathway way was sufficient to abolish the poor survival phenotype in rege-1 worms. Further analysis of ETS-4 ChIP data from ENCODE and characterization of one upregulated class II gene, ins-7, support that the Class II genes are activated by ETS-4. Interestingly, deleting an upregulated Class II gene, acox-1.5, a peroxisome β-oxidation enzyme, largely rescues the fat lost phenotype and survival difference between rege-1 mutants and wild-types. Thus, rege-1 appears to be crucial for animal survival due to its tight regulation of physiological responses to environmental stimuli. This function is reminiscent of its mammalian ortholog, Regnase-1, which modulates the intestinal mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Hsi Chang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yue Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Yang S, Xu X, Zhang A, Wang Y, Ji G, Sun C, Li H. The evolution and immunomodulatory role of Zc3h12 proteins in zebrafish (Danio rerio). Int J Biol Macromol 2023; 239:124214. [PMID: 37001786 DOI: 10.1016/j.ijbiomac.2023.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Zc3h12 family is an important RNA-binding protein family regulating mRNA of inflammatory cytokines in mammals. However, there are few studies on their post-transcriptional level regulation of inflammatory cytokines in fish. Here, we investigated the evolution of zebrafish Zc3h12 family and explored their immunomodulatory role. Phylogenetic and syntenic analysis indicated the number of zc3h12 family members had increased ranging from a single member in invertebrates to a single copy of four members in mammals. As the most evolutionarily diverse group of vertebrates, the number of zc3h12 family members was more complex and diverse in the teleost, each member experienced different fates and followed different rules in multiple rounds of whole-genome duplication events. Thereinto, zebrafish contained three zc3h12 genes, among which zc3h12aa and zc3h12ab were duplicated from the same gene. Zebrafish Zc3h12 family could recognize the 3'-UTR regions of inflammatory cytokines through binding to the specific RNA secondary structure and negatively regulate their expression. Deletion of either Zc3h12 domains or mutation of the key amino acid in RNAase domain attenuated their modulatory effect, suggesting both domain and RNAase activity are important to the immunomodulatory role. These results elucidated the evolution of Zc3h12 family and uncovered Zc3h12-mediated post-transcriptional regulation of cytokines in zebrafish.
Collapse
|
9
|
Kim JH, Modena MS, Sehgal E, Courney A, Neudorf C, Arribere J. SMG-6 mRNA cleavage stalls ribosomes near premature stop codons in vivo. Nucleic Acids Res 2022; 50:8852-8866. [PMID: 35950494 PMCID: PMC9410879 DOI: 10.1093/nar/gkac681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) protects cells from the toxic and potentially dominant effects of truncated proteins. Targeting of mRNAs with early stop codons is mediated by the ribosome and spatiotemporally aligned with translation termination. Previously we identified a novel NMD intermediate: ribosomes stalled on cleaved stop codons, raising the possibility that NMD begins even prior to ribosome removal from the stop codon. Here we show that this intermediate is the result of mRNA cleavage by the endonuclease SMG-6. Our work supports a model in which ribosomes stall secondary to SMG-6 mRNA cleavage in Caenorhabditis elegans and humans, i.e. that the novel NMD intermediate occurs after a prior ribosome elicits NMD. Our genetic analysis of C. elegans' SMG-6 supports a central role for SMG-6 in metazoan NMD, and provides a context for evaluating its function in other metazoans.
Collapse
Affiliation(s)
- John H Kim
- Department of MCD Biology, UC Santa Cruz, California, USA
| | | | - Enisha Sehgal
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Annie Courney
- Department of MCD Biology, UC Santa Cruz, California, USA
| | - Celine W Neudorf
- Department of Biomolecular Engineering, UC Santa Cruz, California, USA
| | | |
Collapse
|
10
|
Pekec T, Lewandowski J, Komur AA, Sobańska D, Guo Y, Świtońska-Kurkowska K, Małecki JM, Dubey AA, Pokrzywa W, Frankowski M, Figiel M, Ciosk R. Ferritin-mediated iron detoxification promotes hypothermia survival in Caenorhabditis elegans and murine neurons. Nat Commun 2022; 13:4883. [PMID: 35986016 PMCID: PMC9391379 DOI: 10.1038/s41467-022-32500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
How animals rewire cellular programs to survive cold is a fascinating problem with potential biomedical implications, ranging from emergency medicine to space travel. Studying a hibernation-like response in the free-living nematode Caenorhabditis elegans, we uncovered a regulatory axis that enhances the natural resistance of nematodes to severe cold. This axis involves conserved transcription factors, DAF-16/FoxO and PQM-1, which jointly promote cold survival by upregulating FTN-1, a protein related to mammalian ferritin heavy chain (FTH1). Moreover, we show that inducing expression of FTH1 also promotes cold survival of mammalian neurons, a cell type particularly sensitive to deterioration in hypothermia. Our findings in both animals and cells suggest that FTN-1/FTH1 facilitates cold survival by detoxifying ROS-generating iron species. We finally show that mimicking the effects of FTN-1/FTH1 with drugs protects neurons from cold-induced degeneration, opening a potential avenue to improved treatments of hypothermia. Strategies to improve cold resistance are of potential biomedical interest. Here the authors demonstrate that ferritin-mediated detoxification of iron, preventing the generation of reactive oxygen species, promotes cold survival in both Caenorhabditis elegans and cultured mammalian neurons.
Collapse
|
11
|
Sobańska D, Komur AA, Chabowska-Kita A, Gumna J, Kumari P, Pachulska-Wieczorek K, Ciosk R. The silencing of ets-4 mRNA relies on the functional cooperation between REGE-1/Regnase-1 and RLE-1/Roquin-1. Nucleic Acids Res 2022; 50:8226-8239. [PMID: 35819231 PMCID: PMC9371910 DOI: 10.1093/nar/gkac609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Regnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing. One model postulates that Regnase-1 works together with another RNA-binding protein, Roquin-1, which recruits Regnase-1 to specific mRNAs. The other model proposes that the two proteins function separately. Studying REGE-1, the Caenorhabditis elegans ortholog of Regnase-1, we have uncovered its functional relationship with RLE-1, the nematode counterpart of Roquin-1. While both proteins are essential for mRNA silencing, REGE-1 and RLE-1 appear to associate with target mRNA independently of each other. Thus, although the functional interdependence between REGE-1/Regnase-1 and RLE-1/Roquin-1 is conserved, the underlying mechanisms may display species-specific variation, providing a rare perspective on the evolution of this important post-transcriptional regulatory mechanism.
Collapse
Affiliation(s)
- Daria Sobańska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Alicja A Komur
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | | | - Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland.,Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
12
|
Mino T, Takeuchi O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol Rev 2021; 304:97-110. [PMID: 34514623 DOI: 10.1111/imr.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Li CL, Pu M, Wang W, Chaturbedi A, Emerson FJ, Lee SS. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009432. [PMID: 34506495 PMCID: PMC8457455 DOI: 10.1371/journal.pgen.1009432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/22/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mintie Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
14
|
Cadena Del Castillo CE, Hannich JT, Kaech A, Chiyoda H, Brewer J, Fukuyama M, Færgeman NJ, Riezman H, Spang A. Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nat Commun 2021; 12:4898. [PMID: 34385431 PMCID: PMC8361143 DOI: 10.1038/s41467-021-24995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.
Collapse
Affiliation(s)
| | - J Thomas Hannich
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Hirohisa Chiyoda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Yan B, Guo Y, Gui Y, Jiang ZS, Zheng XL. Multifunctional RNase MCPIP1 and its Role in Cardiovascular Diseases. Curr Med Chem 2021; 28:3385-3405. [PMID: 33191882 DOI: 10.2174/0929867327999201113100918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022]
Abstract
Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), one of the MCPIP family members, is characterized by the presence of both C-x8-C-x5-C-x3-H (CCCH)- type zinc finger and PilT-N-terminal domains. As a potent regulator of innate immunity, MCPIP1 exerts anti-inflammatory effects through its ribonuclease (RNase) and deubiquitinating enzyme activities to degrade cytokine mRNAs and inhibit nuclear factor- kappa B (NF-κB), respectively. MCPIP1 is expressed not only in immune cells but also in many other cell types, including cardiomyocytes, vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Increasing evidence indicates that MCPIP1 plays a role in the regulation of cardiac functions and is involved in the processes of vascular diseases, such as ischemia-reperfusion (I/R) and atherosclerosis. To better understand the emerging roles of MCPIP1 in the cardiovascular system, we reviewed the current literature with respect to MCPIP1 functions and discussed its association with the pathogenesis of cardiovascular diseases and the implication as a therapeutic target.
Collapse
Affiliation(s)
- Binjie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yanan Guo
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, ABT2N 4N1, Canada
| |
Collapse
|
16
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
17
|
Guo Y, Tocchini C, Ciosk R. CLK-2/TEL2 is a conserved component of the nonsense-mediated mRNA decay pathway. PLoS One 2021; 16:e0244505. [PMID: 33444416 PMCID: PMC7808604 DOI: 10.1371/journal.pone.0244505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) controls eukaryotic mRNA quality, inducing the degradation of faulty transcripts. Key players in the NMD pathway were originally identified, through genetics, in Caenorhabditis elegans as smg (suppressor with morphological effect on genitalia) genes. Using forward genetics and fluorescence-based NMD reporters, we reexamined the genetic landscape underlying NMD. Employing a novel strategy for mapping sterile mutations, Het-Map, we identified clk-2, a conserved gene previously implicated in DNA damage signaling, as a player in the nematode NMD. We find that CLK-2 is expressed predominantly in the germline, highlighting the importance of auxiliary factors in tissue-specific mRNA decay. Importantly, the human counterpart of CLK-2/TEL2, TELO2, has been also implicated in the NMD, suggesting a conserved role of CLK-2/TEL2 proteins in mRNA surveillance. Recently, variants of TELO2 have been linked to an intellectual disability disorder, the You-Hoover-Fong syndrome, which could be related to its function in the NMD.
Collapse
Affiliation(s)
- Yanwu Guo
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Rafal Ciosk
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- * E-mail:
| |
Collapse
|
18
|
Losko M, Dolicka D, Pydyn N, Jankowska U, Kedracka-Krok S, Kulecka M, Paziewska A, Mikula M, Major P, Winiarski M, Budzynski A, Jura J. Integrative genomics reveal a role for MCPIP1 in adipogenesis and adipocyte metabolism. Cell Mol Life Sci 2020; 77:4899-4919. [PMID: 31893310 PMCID: PMC7658075 DOI: 10.1007/s00018-019-03434-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Obesity is considered a serious chronic disease, associated with an increased risk of developing cardiovascular diseases, non-alcoholic fatty liver disease and type 2 diabetes. Monocyte chemoattractant protein-1-induced protein-1 (MCPIP1) is an RNase decreasing stability of transcripts coding for inflammation-related proteins. In addition, MCPIP1 plays an important role in the regulation of adipogenesis in vitro by reducing the expression of key transcription factors, including C/EBPβ. To elucidate the role of MCPIP1 in adipocyte biology, we performed RNA-Seq and proteome analysis in 3T3-L1 adipocytes overexpressing wild-type (WTMCPIP1) and the mutant form of MCPIP1 protein (D141NMCPIP1). Our RNA-Seq analysis followed by confirmatory Q-RT-PCR revealed that elevated MCPIP1 levels in 3T3-L1 adipocytes upregulated transcripts encoding proteins involved in signal transmission and cellular remodeling and downregulated transcripts of factors involved in metabolism. These data are consistent with our proteomic analysis, which showed that MCPIP1 expressing adipocytes exhibit upregulation of proteins involved in cellular organization and movement and decreased levels of proteins involved in lipid and carbohydrate metabolism. Moreover, MCPIP1 adipocytes are characterized by decreased level of insulin receptor, reduced insulin-induced Akt phosphorylation, as well as depleted Glut4 level and impaired glucose uptake. Overexpression of Glut4 in 3T3-L1 cells expressed WTMCPIP1 rescued adipogenesis. Interestingly, we found decreased level of MCPIP1 along with an increase in body mass index in subcutaneous adipose tissue. The presented data show a novel role of MCPIP1 in modulating insulin sensitivity in adipocytes. Overall, our findings demonstrate that MCPIP1 is an important regulator of adipogenesis and adipocyte metabolism.
Collapse
Affiliation(s)
- Magdalena Losko
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Dobrochna Dolicka
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Natalia Pydyn
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Marymoncka 99/103, 01-813, Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Wawelska 15B, 02-034, Warsaw, Poland
| | - Piotr Major
- Second Department of General Surgery, Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Jagiellonian University Medical College, Kopernika 21, 31-501, Kraków, Poland
| | - Marek Winiarski
- Second Department of General Surgery, Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Jagiellonian University Medical College, Kopernika 21, 31-501, Kraków, Poland
| | - Andrzej Budzynski
- Second Department of General Surgery, Centre for Research, Training and Innovation in Surgery (CERTAIN Surgery), Jagiellonian University Medical College, Kopernika 21, 31-501, Kraków, Poland
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
19
|
Combining Auxin-Induced Degradation and RNAi Screening Identifies Novel Genes Involved in Lipid Bilayer Stress Sensing in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:3921-3928. [PMID: 32958476 PMCID: PMC7642917 DOI: 10.1534/g3.120.401635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Alteration of the lipid composition of biological membranes interferes with their function and can cause tissue damage by triggering apoptosis. Upon lipid bilayer stress, the endoplasmic reticulum mounts a stress response similar to the unfolded protein response. However, only a few genes are known to regulate lipid bilayer stress. We performed a suppressor screen that combined the auxin-inducible degradation (AID) system with conventional RNAi in C. elegans to identify members of the lipid bilayer stress response. AID-mediated degradation of the mediator MDT-15, a protein required for the upregulation of fatty acid desaturases, induced the activation of lipid bilayer stress-sensitive reporters. We screened through most C. elegans kinases and transcription factors by feeding RNAi. We discovered nine genes that suppressed the lipid bilayer stress response in C. elegans. These suppressor genes included drl-1/MAP3K3, gsk-3/GSK3, let-607/CREB3, ire-1/IRE1, and skn-1/NRF1,2,3. Our candidate suppressor genes suggest a network of transcription factors and the integration of multiple tissues for a centralized lipotoxicity response in the intestine. Thus, we demonstrated proof-of-concept for combining AID and RNAi as a new screening strategy and identified eight conserved genes that had not previously been implicated in the lipid bilayer stress response.
Collapse
|
20
|
Composition of Caenorhabditis elegans extracellular vesicles suggests roles in metabolism, immunity, and aging. GeroScience 2020; 42:1133-1145. [PMID: 32578074 DOI: 10.1007/s11357-020-00204-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The nematode Caenorhabditis elegans has been instrumental in the identification of evolutionarily conserved mechanisms of aging. C. elegans also has recently been found to have evolutionarily conserved extracellular vesicle (EV) signaling pathways. We have been developing tools that allow for the detailed study of EV biology in C. elegans. Here we apply our recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of nematode EVs. We identify diverse coding and non-coding RNA and protein cargo types commonly found in human EVs. The EV cargo spectrum is distinct from whole worms, suggesting that protein and RNA cargos are actively recruited to EVs. Gene ontology analysis revealed C. elegans EVs are enriched for extracellular-associated and signaling proteins, and network analysis indicates enrichment for metabolic, immune, and basement membrane associated proteins. Tissue enrichment and gene expression analysis suggests the secreted EV proteins are likely to be derived from intestine, muscle, and excretory tissue. An unbiased comparison of the EV proteins with a large database of C. elegans genome-wide microarray data showed significant overlap with gene sets that are associated with aging and immunity. Taken together our data suggest C. elegans could be a promising in vivo model for studying the genetics and physiology of EVs in a variety of contexts including aging, metabolism, and immune response.
Collapse
|
21
|
LSM2-8 and XRN-2 contribute to the silencing of H3K27me3-marked genes through targeted RNA decay. Nat Cell Biol 2020; 22:579-590. [PMID: 32251399 PMCID: PMC7212045 DOI: 10.1038/s41556-020-0504-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Abstract
In fission yeast and plants, RNA-processing and degradation contribute to
heterochromatin silencing, alongside conserved pathways of transcriptional
repression. It was unknown if similar pathways exist in metazoans. Here we
describe a pathway of silencing in C. elegans somatic cells, in
which the highly conserved RNA binding complex LSM2-8 contributes selectively to
the repression of heterochromatic reporters and endogenous genes bearing the
Polycomb mark, histone H3K27me3. It acts by degrading selected transcripts
through the XRN-2 exoribonuclease. Disruption of the LSM2-8 pathway leads to
mRNA stabilization. Unlike previously described pathways of heterochromatic RNA
degradation, LSM2-8-mediated RNA degradation does not require nor deposit H3K9
methylation. Rather, loss of this pathway coincides with a localized reduction
in H3K27me3 at lsm-8-sensitive loci. Thus, we have uncovered a
mechanism of RNA degradation that selectively contributes to the silencing of a
subset of H3K27me3-marked genes, revealing a previously unrecognized layer of
post-transcriptional control in metazoan heterochromatin.
Collapse
|
22
|
Pillman KA, Scheer KG, Hackett-Jones E, Saunders K, Bert AG, Toubia J, Whitfield HJ, Sapkota S, Sourdin L, Pham H, Le TD, Cursons J, Davis MJ, Gregory PA, Goodall GJ, Bracken CP. Extensive transcriptional responses are co-ordinated by microRNAs as revealed by Exon-Intron Split Analysis (EISA). Nucleic Acids Res 2019; 47:8606-8619. [PMID: 31372646 PMCID: PMC6895270 DOI: 10.1093/nar/gkz664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been a subject of intense scrutiny as it facilitates metastasis and alters drug sensitivity. Although EMT-regulatory roles for numerous miRNAs and transcription factors are known, their functions can be difficult to disentangle, in part due to the difficulty in identifying direct miRNA targets from complex datasets and in deciding how to incorporate 'indirect' miRNA effects that may, or may not, represent biologically relevant information. To better understand how miRNAs exert effects throughout the transcriptome during EMT, we employed Exon-Intron Split Analysis (EISA), a bioinformatic technique that separates transcriptional and post-transcriptional effects through the separate analysis of RNA-Seq reads mapping to exons and introns. We find that in response to the manipulation of miRNAs, a major effect on gene expression is transcriptional. We also find extensive co-ordination of transcriptional and post-transcriptional regulatory mechanisms during both EMT and mesenchymal to epithelial transition (MET) in response to TGF-β or miR-200c respectively. The prominent transcriptional influence of miRNAs was also observed in other datasets where miRNA levels were perturbed. This work cautions against a narrow approach that is limited to the analysis of direct targets, and demonstrates the utility of EISA to examine complex regulatory networks involving both transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Katherine A Pillman
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Kaitlin G Scheer
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Emily Hackett-Jones
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Klay Saunders
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - John Toubia
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Holly J Whitfield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sunil Sapkota
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Sourdin
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Hoang Pham
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Thuc D Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia
| | - Joseph Cursons
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa J Davis
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, SA, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA, Australia
| |
Collapse
|
23
|
Marks ND, Winter AD, Gu HY, Maitland K, Gillan V, Ambroz M, Martinelli A, Laing R, MacLellan R, Towne J, Roberts B, Hanks E, Devaney E, Britton C. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development. Sci Rep 2019; 9:17594. [PMID: 31772378 PMCID: PMC6879476 DOI: 10.1038/s41598-019-54154-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.
Collapse
Affiliation(s)
- Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- West of Scotland Genetic Services, Level 2B, Laboratory Medicine, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Henry Y Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Martin Ambroz
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Axel Martinelli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10, Kita-ku, Sapporo, Japan
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Rachel MacLellan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Jessica Towne
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Brett Roberts
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University Avenue, Glasgow, G12 8QQ, UK
| | - Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
24
|
Zhu L, Liao SE, Fukunaga R. Drosophila Regnase-1 RNase is required for mRNA and miRNA profile remodelling during larva-to-adult metamorphosis. RNA Biol 2019; 16:1386-1400. [PMID: 31195914 DOI: 10.1080/15476286.2019.1630799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metamorphosis is an intricate developmental process in which large-scale remodelling of mRNA and microRNA (miRNA) profiles leads to orchestrated tissue remodelling and organogenesis. Whether, which, and how, ribonucleases (RNases) are involved in the RNA profile remodelling during metamorphosis remain unknown. Human Regnase-1 (also known as MCPIP1 and Zc3h12a) RNase remodels RNA profile by cleaving specific RNAs and is a crucial modulator of immune-inflammatory and cellular defence. Here, we studied Drosophila CG10889, which we named Drosophila Regnase-1, an ortholog of human Regnase-1. The larva-to-adult metamorphosis in Drosophila includes two major transitions, larva-to-pupa and pupa-to-adult. regnase-1 knockout flies developed until the pupa stage but could not complete pupa-to-adult transition, dying in puparium case. Regnase-1 RNase activity is required for completion of pupa-to-adult transition as transgenic expression of wild-type Drosophila Regnase-1, but not the RNase catalytic-dead mutants, rescued the pupa-to-adult transition in regnase-1 knockout. High-throughput RNA sequencing revealed that regnase-1 knockout flies fail to remodel mRNA and miRNA profiles during the larva-to-pupa transition. Thus, we uncovered the roles of Drosophila Regnase-1 in the larva-to-adult metamorphosis and large-scale remodelling of mRNA and miRNA profiles during this metamorphosis process.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
25
|
Suárez-Vega A, Gutiérrez-Gil B, Toral PG, Hervás G, Arranz JJ, Frutos P. Conjugated linoleic acid (CLA)-induced milk fat depression: application of RNA-Seq technology to elucidate mammary gene regulation in dairy ewes. Sci Rep 2019; 9:4473. [PMID: 30872673 PMCID: PMC6418271 DOI: 10.1038/s41598-019-40881-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
Milk fat depression (MFD) is characterized by a reduction in the content of milk fat, presumably caused by the anti-lipogenic effects of rumen biohydrogenation intermediates, such as trans-10 cis-12 conjugated linoleic acid (CLA). In this study, RNA-Seq technology was used to help elucidate the mammary responses involved in CLA-induced MFD in lactating ewes. To this end, we compared the milk somatic cell transcriptome of ewes suffering from CLA-induced MFD with control ewes (i.e., those without MFD), as well as with ewes fed a diet supplemented with fish oil (FO-MFD) that we previously reported affects the mammary transcriptome. In the differential expression analysis between CLA-MFD and controls, we identified 1,524 differentially expressed genes (DEGs), whereas 653 were detected between CLA- and FO-MFD groups. Although this article focuses on lipid metabolism, CLA affected the expression of many genes related to other biological processes, especially immunity. Among the 55 genes shared by both MFD conditions, some genes linked to fatty acid synthesis, such as ACACA, AACS, ACSS2, or ACSS3, were downregulated. In addition, this study provides a list of candidate genes that are not usually considered in the nutrigenomics of MFD but that may act as key regulators of this syndrome in dairy ewes.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| | - Pablo G Toral
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.,Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros, 24346, León, Spain
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros, 24346, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros, 24346, León, Spain
| |
Collapse
|
26
|
Substrate specificity of human MCPIP1 endoribonuclease. Sci Rep 2018; 8:7381. [PMID: 29743536 PMCID: PMC5943514 DOI: 10.1038/s41598-018-25765-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
MCPIP1, also known as Regnase-1, is a ribonuclease crucial for regulation of stability of transcripts related to inflammatory processes. Here, we report that MCPIP1 acts as an endonuclease by degrading several stem-loop RNA structures and single-stranded RNAs. Our studies revealed cleavage sites present in the stem-loops derived from the 3′ untranslated region of the interleukin-6 transcript. Furthermore, MCPIP1 induced endonuclease cleavage at the loop motif of stem-loop structures. Additionally, we observed that MCPIP1 could cleave single-stranded RNA fragments. However, RNA substrates shorter than 6 nucleotides were not further affected by MCPIP1 nucleolytic activity. In this study, we also determined the dissociation constants of full-length MCPIP1D141N and its ribonuclease domain PIN D141N with twelve oligonucleotides substrates. The equilibrium binding constants (Kd) for MCPIP1D141N and the RNA targets were approximately 10 nM. Interestingly, we observed that the presence of a zinc finger in the PIN domain increases the affinity of this protein fragment to 25-nucleotide-long stem-loop RNA but not to shorter ones. Furthermore, size exclusion chromatography of the MCPIP1 and PIN proteins suggested that MCPIP1 undergoes homooligomerization during interaction with RNA substrates. Our results provide insight into the mechanism of MCPIP1 substrate recognition and its affinity towards various oligonucleotides.
Collapse
|
27
|
Heck AM, Wilusz J. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:a032839. [PMID: 29311343 PMCID: PMC5932591 DOI: 10.1101/cshperspect.a032839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology.
Collapse
Affiliation(s)
- Adam M Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80525
- Program in Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
28
|
MINO T, TAKEUCHI O. Post-transcriptional regulation of immune responses by RNA binding proteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:248-258. [PMID: 29887569 PMCID: PMC6085518 DOI: 10.2183/pjab.94.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytokines are critical mediators of inflammation and host immune defense. Cytokine production is regulated at both transcriptional and post-transcriptional levels. Post-transcriptional damping of inflammatory mRNAs is mediated by a set of RNA binding proteins (RBPs) interacting with cis-elements, such as AU-rich elements (ARE) and stem-loop structures. Whereas ARE-binding proteins such as tristetraprolin and a stem-loop recognizing protein, Roquin, downregulate cytokine mRNA abundance by recruiting a CCR4-NOT deadenylase complex, another stem-loop RBP, Regnase-1, acts as an endoribonuclease, directly degrading target cytokine mRNAs. These RBPs control translation-active or -inactive mRNAs in distinct intracellular locations. The presence of various RBPs regulating mRNAs in distinct locations enables elaborate control of cytokines under inflammatory conditions. Dysregulation of cytokine mRNA decay leads to pathologies such as the development of autoimmune diseases or impaired activation of immune responses. Here we review current knowledge about the post-transcriptional regulation of immune responses by RBPs and the importance of their alteration during inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Takashi MINO
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu TAKEUCHI
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: O. Takeuchi, Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|
29
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
30
|
Takeuchi O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28929622 DOI: 10.1002/wrna.1449] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
The activation of inflammatory cells is controlled at transcriptional and posttranscriptional levels. Posttranscriptional regulation modifies mRNA stability and translation, allowing for elaborate control of proteins required for inflammation, such as proinflammatory cytokines, prostaglandin synthases, cell surface co-stimulatory molecules, and even transcriptional modifiers. Such regulation is important for coordinating the initiation and resolution of inflammation, and is mediated by a set of RNA-binding proteins (RBPs), including Regnase-1, Roquin, Tristetraprolin (TTP), and AU-rich elements/poly(U)-binding/degradation factor 1 (AUF1). Among these, Regnase-1, also known as Zc3h12a and Monocyte chemotactic protein-1-induced protein-1 (MCPIP1), acts as an endoribonuclease responsible for the degradation of mRNAs involved in inflammatory responses. Conversely, the RBPs Roquin and TTP trigger exonucleolytic degradation of mRNAs by recruiting the CCR4-NOT deadenylase complex. Regnase-1 specifically recognizes stem-loop structures present in 3'-untranslated regions of cytokine mRNAs, and directly degrades the mRNAs in a translation- and ATP-dependent RNA helicase upframeshift 1 (UPF1)-dependent manner that is reminiscent of nonsense-mediated decay. Regnase-1 regulates the activation of innate and acquired immune cells, and is critical for maintaining immune homeostasis as well as preventing over-activation of the immune system under inflammatory conditions. Furthermore, recent studies have revealed that Regnase-1 and its family members are involved not only in immunity but also in various biological processes. In this article, I review molecular mechanisms of Regnase-1-mediated mRNA decay and its physiological roles. WIREs RNA 2018, 9:e1449. doi: 10.1002/wrna.1449 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, AMED-CREST, AMED, Kyoto, Japan
| |
Collapse
|
31
|
Habacher C, Ciosk R. ZC3H12A/MCPIP1/Regnase-1-related endonucleases: An evolutionary perspective on molecular mechanisms and biological functions. Bioessays 2017; 39. [PMID: 28719000 DOI: 10.1002/bies.201700051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mammalian Zc3h12a/MCPIP1/Regnase-1, an extensively studied regulator of inflammatory response, is the founding member of a ribonuclease family, which includes proteins related by the presence of the so-called Zc3h12a-like NYN domain. Recently, several related proteins have been described in Caenorhabditis elegans, allowing comparative evaluation of molecular functions and biological roles of these ribonucleases. We discuss the structural features of these proteins, which endow some members with ribonuclease (RNase) activity while others with auxiliary or RNA-independent functions. We also consider their RNA specificity and highlight a common role for these proteins in cellular defense, which is remarkable considering the evolutionary distance and fundamental differences in cellular defense mechanisms between mammals and nematodes.
Collapse
Affiliation(s)
- Cornelia Habacher
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|