1
|
Ciardo D, Haccard O, de Carli F, Hyrien O, Goldar A, Marheineke K. Dual DNA replication modes: varying fork speeds and initiation rates within the spatial replication program in Xenopus. Nucleic Acids Res 2025; 53:gkaf007. [PMID: 39883014 PMCID: PMC11781033 DOI: 10.1093/nar/gkaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping. The analysis revealed two independent spatiotemporal processes that regulate the replication dynamics in the Xenopus model system. These mechanisms are referred to as a fast and a slow replication mode, differing by their opposite replication fork speed and rate of origin firing. We found that Polo-like kinase 1 (Plk1) depletion abolished the spatial separation of these two replication modes. In contrast, neither replication checkpoint inhibition nor Rap1-interacting factor (Rif1) depletion affected the distribution of these replication patterns. These results suggest that Plk1 plays an essential role in the local coordination of the spatial replication program and the initiation-elongation coupling along the chromosomes in Xenopus, ensuring the timely completion of the S phase.
Collapse
Affiliation(s)
- Diletta Ciardo
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Haccard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay(NeuroPsi), F-91400 Saclay, France
| | - Francesco de Carli
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Olivier Hyrien
- Institut de Biologie de l’Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91190 Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
2
|
Garfinkel AM, Ilker E, Miyazawa H, Schmeisser K, Tennessen JM. Historic obstacles and emerging opportunities in the field of developmental metabolism - lessons from Heidelberg. Development 2024; 151:dev202937. [PMID: 38912552 PMCID: PMC11299503 DOI: 10.1242/dev.202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The field of developmental metabolism is experiencing a technological revolution that is opening entirely new fields of inquiry. Advances in metabolomics, small-molecule sensors, single-cell RNA sequencing and computational modeling present new opportunities for exploring cell-specific and tissue-specific metabolic networks, interorgan metabolic communication, and gene-by-metabolite interactions in time and space. Together, these advances not only present a means by which developmental biologists can tackle questions that have challenged the field for centuries, but also present young scientists with opportunities to define new areas of inquiry. These emerging frontiers of developmental metabolism were at the center of a highly interactive 2023 EMBO workshop 'Developmental metabolism: flows of energy, matter, and information'. Here, we summarize key discussions from this forum, emphasizing modern developmental biology's challenges and opportunities.
Collapse
Affiliation(s)
- Alexandra M. Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Hidenobu Miyazawa
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kathrin Schmeisser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | |
Collapse
|
3
|
Tiani KA, Stover PJ. DTYMK is an essential gene in mice and heterozygosity does not cause neural tube defects. Arch Biochem Biophys 2024; 755:109991. [PMID: 38621447 PMCID: PMC11811913 DOI: 10.1016/j.abb.2024.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Regulation of nucleotide biosynthesis is necessary for maintaining cellular processes including DNA replication and repair. A key enzyme in this process is deoxythymidylate kinase (dTYMK), which catalyzes the initial step in the production of dTTP from dTMP. This gene constitutes the first merged step of dTTP synthesis from the de novo and salvage pathways which regulate dTMP biosynthesis. Decreased de novo dTMP biosynthesis causes dysregulated dTTP:dUTP pools, and leads to increased uracil in DNA and neural tube closure defect (NTD) development in mice. The goal of this research was to investigate if dTYMK, the downstream enzyme in dTTP production, is an essential gene in mice and if impairments in dTYMK play a causal role in development including NTD pathology in mice. Dtymk+/- C57BL/6J females were weaned onto either a control, excess folic acid, or folic acid deficient diet and timed breeding was performed after 8 weeks on diet. The offspring were analyzed for NTDs and other reproductive outcomes at embryonic day 12.5 (E12.5). Dtymk-/- mice were confirmed to be embryonic lethal before E12.5, and Dtymk+/- mice on all three experimental diets did not show the presence of open neural tube defects, spina bifida or exencephaly. However, the expression of dTYMK in Dtymk+/- mouse embryos was confirmed to be decreased by approximately 3-fold compared to Dtymk+/+ embryos. Although dTYMK was demonstrated to be an essential gene in mice and is required for the regulation of nucleotide pools in vitro, there was no evidence of increased risk of NTDs because of a reduction in expression of this enzyme during embryonic development. It is possible that a further reduction in expression may be required to see developmental anomalies in C57BL/6J mice.
Collapse
Affiliation(s)
- Kendra A Tiani
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Patrick J Stover
- College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, 77843-2142, USA.
| |
Collapse
|
4
|
Tippetts TS, Sieber MH, Solmonson A. Beyond energy and growth: the role of metabolism in developmental signaling, cell behavior and diapause. Development 2023; 150:dev201610. [PMID: 37883062 PMCID: PMC10652041 DOI: 10.1242/dev.201610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Metabolism is crucial for development through supporting cell growth, energy production, establishing cell identity, developmental signaling and pattern formation. In many model systems, development occurs alongside metabolic transitions as cells differentiate and specialize in metabolism that supports new functions. Some cells exhibit metabolic flexibility to circumvent mutations or aberrant signaling, whereas other cell types require specific nutrients for developmental progress. Metabolic gradients and protein modifications enable pattern formation and cell communication. On an organism level, inadequate nutrients or stress can limit germ cell maturation, implantation and maturity through diapause, which slows metabolic activities until embryonic activation under improved environmental conditions.
Collapse
Affiliation(s)
- Trevor S. Tippetts
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew H. Sieber
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashley Solmonson
- Laboratory of Developmental Metabolism and Placental Biology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
6
|
Nakatani T, Torres-Padilla ME. Regulation of mammalian totipotency: a molecular perspective from in vivo and in vitro studies. Curr Opin Genet Dev 2023; 81:102083. [PMID: 37421903 DOI: 10.1016/j.gde.2023.102083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 07/10/2023]
Abstract
In mammals, cells acquire totipotency at fertilization. Embryonic genome activation (EGA), which occurs at the 2-cell stage in the mouse and 4- to 8-cell stage in humans, occurs during the time window at which embryonic cells are totipotent and thus it is thought that EGA is mechanistically linked to the foundations of totipotency. The molecular mechanisms that lead to the establishment of totipotency and EGA had been elusive for a long time, however, recent advances have been achieved with the establishment of new cell lines with greater developmental potential and the application of novel low-input high-throughput techniques in embryos. These have unveiled several principles of totipotency related to its epigenetic makeup but also to characteristic features of totipotent cells. In this review, we summarize and discuss current views exploring some of the key drivers of totipotency from both in vitro cell culture models and embryogenesis in vivo.
Collapse
Affiliation(s)
- Tsunetoshi Nakatani
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
7
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
8
|
Frisk JH, Örn S, Pejler G, Eriksson S, Wang L. Differential expression of enzymes in thymidylate biosynthesis in zebrafish at different developmental stages: implications for dtymk mutation-caused neurodegenerative disorders. BMC Neurosci 2022; 23:19. [PMID: 35346037 PMCID: PMC8962455 DOI: 10.1186/s12868-022-00704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. Results Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. Conclusions Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00704-0.
Collapse
|
9
|
Developmental energetics: Energy expenditure, budgets and metabolism during animal embryogenesis. Semin Cell Dev Biol 2022; 138:83-93. [PMID: 35317962 DOI: 10.1016/j.semcdb.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/07/2022] [Accepted: 03/05/2022] [Indexed: 11/22/2022]
Abstract
Developing embryos are metabolically active, open systems that constantly exchange matter and energy with their environment. They function out of thermodynamic equilibrium and continuously use metabolic pathways to obtain energy from maternal nutrients, in order to fulfill the energetic requirements of growth and development. While an increasing number of studies highlight the role of metabolism in different developmental contexts, the physicochemical basis of embryogenesis, or how cellular processes use energy and matter to act together and transform a zygote into an adult organism, remains unknown. As we obtain a better understanding of metabolism, and benefit from current technology development, it is a promising time to revisit the energetic cost of development and how energetic principles may govern embryogenesis. Here, we review recent advances in methodology to measure and infer energetic parameters in developing embryos. We highlight a potential common pattern in embryonic energy expenditure and metabolic strategy across animal embryogenesis, and discuss challenges and open questions in developmental energetics.
Collapse
|
10
|
Ferree PL, Xing M, Zhang JQ, Di Talia S. Structure-function analysis of Cdc25 Twine degradation at the Drosophila maternal-to-zygotic transition. Fly (Austin) 2022; 16:111-117. [PMID: 35227166 PMCID: PMC8890428 DOI: 10.1080/19336934.2022.2043095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Downregulation of protein phosphatase Cdc25Twine activity is linked to remodelling of the cell cycle during the Drosophila maternal-to-zygotic transition (MZT). Here, we present a structure-function analysis of Cdc25Twine. We use chimeras to show that the N-terminus regions of Cdc25Twine and Cdc25String control their differential degradation dynamics. Deletion of different regions of Cdc25Twine reveals a putative domain involved in and required for its rapid degradation during the MZT. Notably, a very similar domain is present in Cdc25String and deletion of the DNA replication checkpoint results in similar dynamics of degradation of both Cdc25String and Cdc25Twine. Finally, we show that Cdc25Twine degradation is delayed in embryos lacking the left arm of chromosome III. Thus, we propose a model for the differential regulation of Cdc25 at the Drosophila MZT.
Collapse
Affiliation(s)
- Patrick L Ferree
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Maggie Xing
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jenny Q Zhang
- Department of Surgery, Alpert Medical School, Brown University, Providence, RI, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
12
|
Gillette CM, Tennessen JM, Reis T. Balancing energy expenditure and storage with growth and biosynthesis during Drosophila development. Dev Biol 2021; 475:234-244. [DOI: 10.1016/j.ydbio.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
|
13
|
Liu B, Zhao H, Wu K, Großhans J. Temporal Gradients Controlling Embryonic Cell Cycle. BIOLOGY 2021; 10:biology10060513. [PMID: 34207742 PMCID: PMC8228447 DOI: 10.3390/biology10060513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Embryonic cells sense temporal gradients of regulatory signals to determine whether and when to proceed or remodel the cell cycle. Such a control mechanism is allowed to accurately link the cell cycle with the developmental program, including cell differentiation, morphogenesis, and gene expression. The mid-blastula transition has been a paradigm for timing in early embryogenesis in frog, fish, and fly, among others. It has been argued for decades now if the events associated with the mid-blastula transition, i.e., the onset of zygotic gene expression, remodeling of the cell cycle, and morphological changes, are determined by a control mechanism or by absolute time. Recent studies indicate that multiple independent signals and mechanisms contribute to the timing of these different processes. Here, we focus on the mechanisms for cell cycle remodeling, specifically in Drosophila, which relies on gradual changes of the signal over time. We discuss pathways for checkpoint activation, decay of Cdc25 protein levels, as well as depletion of deoxyribonucleotide metabolites and histone proteins. The gradual changes of these signals are linked to Cdk1 activity by readout mechanisms involving thresholds. Abstract Cell proliferation in early embryos by rapid cell cycles and its abrupt pause after a stereotypic number of divisions present an attractive system to study the timing mechanism in general and its coordination with developmental progression. In animals with large eggs, such as Xenopus, zebrafish, or Drosophila, 11–13 very fast and synchronous cycles are followed by a pause or slowdown of the cell cycle. The stage when the cell cycle is remodeled falls together with changes in cell behavior and activation of the zygotic genome and is often referred to as mid-blastula transition. The number of fast embryonic cell cycles represents a clear and binary readout of timing. Several factors controlling the cell cycle undergo dynamics and gradual changes in activity or concentration and thus may serve as temporal gradients. Recent studies have revealed that the gradual loss of Cdc25 protein, gradual depletion of free deoxyribonucleotide metabolites, or gradual depletion of free histone proteins impinge on Cdk1 activity in a threshold-like manner. In this review, we will highlight with a focus on Drosophila studies our current understanding and recent findings on the generation and readout of these temporal gradients, as well as their position within the regulatory network of the embryonic cell cycle.
Collapse
Affiliation(s)
- Boyang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (B.L.); (H.Z.); (K.W.)
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
14
|
Carvalho-Santos Z, Cardoso-Figueiredo R, Elias AP, Tastekin I, Baltazar C, Ribeiro C. Cellular metabolic reprogramming controls sugar appetite in Drosophila. Nat Metab 2020; 2:958-973. [PMID: 32868922 DOI: 10.1038/s42255-020-0266-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Cellular metabolic reprogramming is an important mechanism by which cells rewire their metabolism to promote proliferation and cell growth. This process has been mostly studied in the context of tumorigenesis, but less is known about its relevance for nonpathological processes and how it affects whole-animal physiology. Here, we show that metabolic reprogramming in Drosophila female germline cells affects nutrient preferences of animals. Egg production depends on the upregulation of the activity of the pentose phosphate pathway in the germline, which also specifically increases the animal's appetite for sugar, the key nutrient fuelling this metabolic pathway. We provide functional evidence that the germline alters sugar appetite by regulating the expression of the fat-body-secreted satiety factor Fit. Our findings demonstrate that the cellular metabolic program of a small set of cells is able to increase the animal's preference for specific nutrients through inter-organ communication to promote specific metabolic and cellular outcomes.
Collapse
Affiliation(s)
- Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Rita Cardoso-Figueiredo
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ibrahim Tastekin
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
15
|
Song Y, Shvartsman SY. Chemical Embryology Redux: Metabolic Control of Development. Trends Genet 2020; 36:577-586. [PMID: 32532533 PMCID: PMC10947471 DOI: 10.1016/j.tig.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
New studies of metabolic reactions and networks in embryos are making important additions to regulatory models of development, so far dominated by genes and signals. Metabolic control of development is not a new idea and can be traced back to Joseph Needham's 'Chemical Embryology', published in the 1930s. Even though Needham's ideas fell by the wayside with the advent of genetic studies of embryogenesis, they demonstrated that embryos provide convenient models for addressing fundamental questions in biochemistry and are now experiencing a comeback, enabled by the powerful merger of detailed mechanistic studies and systems-level techniques. Here we review recent results from studies that quantified the energy budget of embryogenesis in Drosophila and started to untangle the intricate connections between core anabolic processes and developmental transitions. Dynamic coordination of metabolic, genetic, and signaling networks appears to be essential for seamless progression of development.
Collapse
Affiliation(s)
- Yonghyun Song
- Computational Sciences Department, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Stanislav Y Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|
16
|
Dutta S, Djabrayan NJV, Smits CM, Rowley CW, Shvartsman SY. Excess dNTPs Trigger Oscillatory Surface Flow in the Early Drosophila Embryo. Biophys J 2020; 118:2349-2353. [PMID: 32247330 DOI: 10.1016/j.bpj.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
During the first 2 hours of Drosophila development, precisely orchestrated nuclear cleavages, cytoskeletal rearrangements, and directed membrane growth lead to the formation of an epithelial sheet around the yolk. The newly formed epithelium remains relatively quiescent during the next hour as it is patterned by maternal inductive signals and zygotic gene products. We discovered that this mechanically quiet period is disrupted in embryos with high levels of dNTPs, which have been recently shown to cause abnormally fast nuclear cleavages and interfere with zygotic transcription. High levels of dNTPs are associated with robust onset of oscillatory two-dimensional flows during the third hour of development. Tissue cartography, particle image velocimetry, and dimensionality reduction techniques reveal that these oscillatory flows are low dimensional and are characterized by the presence of spiral vortices. We speculate that these aberrant flows emerge through an instability triggered by deregulated mechanical coupling between the nascent epithelium and three-dimensional yolk. These results highlight an unexplored connection between a core metabolic process and large-scale mechanics in a rapidly developing embryo.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Nareg J-V Djabrayan
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Celia M Smits
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Clarence W Rowley
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey; Department of Molecular Biology, Princeton University, Princeton, New Jersey; Center for Computational Biology, Flatiron Institute, New York, New York.
| |
Collapse
|
17
|
Arnaoutov A, Lee H, Plevock Haase K, Aksenova V, Jarnik M, Oliver B, Serpe M, Dasso M. IRBIT Directs Differentiation of Intestinal Stem Cell Progeny to Maintain Tissue Homeostasis. iScience 2020; 23:100954. [PMID: 32179478 PMCID: PMC7068126 DOI: 10.1016/j.isci.2020.100954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 11/27/2022] Open
Abstract
The maintenance of the intestinal epithelium is ensured by the controlled proliferation of intestinal stem cells (ISCs) and differentiation of their progeny into various cell types, including enterocytes (ECs) that both mediate nutrient absorption and provide a barrier against pathogens. The signals that regulate transition of proliferative ISCs into differentiated ECs are not fully understood. IRBIT is an evolutionarily conserved protein that regulates ribonucleotide reductase (RNR), an enzyme critical for the generation of DNA precursors. Here, we show that IRBIT expression in ISC progeny within the Drosophila midgut epithelium cells regulates their differentiation via suppression of RNR activity. Disruption of this IRBIT-RNR regulatory circuit causes a premature loss of intestinal tissue integrity. Furthermore, age-related dysplasia can be reversed by suppression of RNR activity in ISC progeny. Collectively, our findings demonstrate a role of the IRBIT-RNR pathway in gut homeostasis. IRBIT is required for homeostasis of the intestinal epithelium IRBIT inhibition of RNR ensures proper intestinal stem cell differentiation Suppression of RNR in intestinal stem cell progeny reverses age-related dysplasia
Collapse
Affiliation(s)
- Alexei Arnaoutov
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA.
| | - Hangnoh Lee
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| | | | - Vasilisa Aksenova
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, MD 20892, USA
| | - Brian Oliver
- Developmental Genomics Section, Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20814, USA
| | - Mihaela Serpe
- Section on Cellular Communications, NICHD, NIH, Bethesda, MD 20892, USA
| | - Mary Dasso
- Section on Cell Cycle Regulation, NICHD, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Ferree P, Di Talia S. Developmental Biology: Embryos Need to Control Their Nucleotides Just Right. Curr Biol 2019; 29:R252-R254. [PMID: 30939309 DOI: 10.1016/j.cub.2019.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The maternal-to-zygotic transition in the Drosophila embryo requires accurate control of the levels of free nucleotides, arguing for an essential role of nucleotide metabolism in the regulation of the cell cycle during early embryogenesis.
Collapse
Affiliation(s)
- Patrick Ferree
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
19
|
Liu B, Großhans J. The role of dNTP metabolites in control of the embryonic cell cycle. Cell Cycle 2019; 18:2817-2827. [PMID: 31544596 PMCID: PMC6791698 DOI: 10.1080/15384101.2019.1665948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.
Collapse
Affiliation(s)
- Boyang Liu
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| | - Jörg Großhans
- Institut für Entwicklungsbiochemie, Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
- Entwicklungsgenetik, Fachbereich Biologie, Philipps-Universität, Marburg, Germany
| |
Collapse
|
20
|
Chari S, Wilky H, Govindan J, Amodeo AA. Histone concentration regulates the cell cycle and transcription in early development. Development 2019; 146:dev.177402. [PMID: 31511251 DOI: 10.1242/dev.177402] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
The early embryos of many animals, including flies, fish and frogs, have unusually rapid cell cycles and delayed onset of transcription. These divisions are dependent on maternally supplied RNAs and proteins including histones. Previous work suggests that the pool size of maternally provided histones can alter the timing of zygotic genome activation (ZGA) in frogs and fish. Here, we examine the effects of under- and overexpression of maternal histones in Drosophila embryogenesis. Decreasing histone concentration advances zygotic transcription, cell cycle elongation, Chk1 activation and gastrulation. Conversely, increasing histone concentration delays transcription and results in an additional nuclear cycle before gastrulation. Numerous zygotic transcripts are sensitive to histone concentration, and the promoters of histone-sensitive genes are associated with specific chromatin features linked to increased histone turnover. These include enrichment of the pioneer transcription factor Zelda, and lack of SIN3A and associated histone deacetylases. Our findings uncover a crucial regulatory role for histone concentrations in ZGA of Drosophila.
Collapse
Affiliation(s)
- Sudarshan Chari
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Henry Wilky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jayalakshmi Govindan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Amanda A Amodeo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Dutta S, Djabrayan NJV, Torquato S, Shvartsman SY, Krajnc M. Self-Similar Dynamics of Nuclear Packing in the Early Drosophila Embryo. Biophys J 2019; 117:743-750. [PMID: 31378311 DOI: 10.1016/j.bpj.2019.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022] Open
Abstract
Embryonic development starts with cleavages, a rapid sequence of reductive divisions that result in an exponential increase of cell number without changing the overall size of the embryo. In Drosophila, the final four rounds of cleavages occur at the surface of the embryo and give rise to ∼6000 nuclei under a common plasma membrane. We use live imaging to study the dynamics of this process and to characterize the emergent nuclear packing in this system. We show that the characteristic length scale of the internuclear interaction scales with the density, which allows the densifying embryo to sustain the level of structural order at progressively smaller length scales. This is different from nonliving materials, which typically undergo disorder-order transition upon compression. To explain this dynamics, we use a particle-based model that accounts for density-dependent nuclear interactions and synchronous divisions. We reproduce the pair statistics of the disordered packings observed in embryos and recover the scaling relation between the characteristic length scale and the density both in real and reciprocal space. This result reveals how the embryo can robustly preserve the nuclear-packing structure while being densified. In addition to providing quantitative description of self-similar dynamics of nuclear packings, this model generates dynamic meshes for the computational analysis of pattern formation and tissue morphogenesis.
Collapse
Affiliation(s)
- Sayantan Dutta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - Nareg J-V Djabrayan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey; Department of Physics, Princeton University, Princeton, New Jersey; Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey; Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey; Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| | - Matej Krajnc
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.
| |
Collapse
|
22
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
23
|
Liu B, Winkler F, Herde M, Witte CP, Großhans J. A Link between Deoxyribonucleotide Metabolites and Embryonic Cell-Cycle Control. Curr Biol 2019; 29:1187-1192.e3. [PMID: 30880011 DOI: 10.1016/j.cub.2019.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/05/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
The egg contains maternal RNAs and proteins, which have instrumental functions in patterning and morphogenesis. Besides these, the egg also contains metabolites, whose developmental functions have been little investigated. For example, the rapid increase of DNA content during the fast embryonic cell cycles poses high demands on the supply of deoxyribonucleotides (dNTPs), which may be synthesized in the embryo or maternally provided [1, 2]. Here, we analyze the role of dNTP in early Drosophila embryos. We found that dNTP levels initially decreased about 2-fold before reaching stable levels at the transition from syncytial to cellular blastoderm. Employing a mutant of the metabolic enzyme serine hydroxymethyl transferase (SHMT), which is impaired in the embryonic synthesis of deoxythymidine triphosphate (dTTP), we found that the maternal supply of dTTP was specifically depleted by interphase 13. SHMT mutants showed persistent S phase, replication stress, and a checkpoint-dependent cell-cycle arrest in NC13, depending on the loss of dTTP. The cell-cycle arrest in SHMT mutants was suppressed by reduced zygotic transcription. Consistent with the requirement of dTTP for cell-cycle progression, increased dNTP levels accelerated the cell cycle in embryos lacking zygotic transcription. We propose a model that both a limiting dNTP supply and interference of zygotic transcription with DNA replication [3] elicit DNA replication stress and checkpoint activation. Our study reveals a specific mechanism of how dNTP metabolites contribute to the embryonic cell-cycle control.
Collapse
Affiliation(s)
- Boyang Liu
- Institute for Developmental Biochemistry, Medical School, Georg August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Franziska Winkler
- Institute for Developmental Biochemistry, Medical School, Georg August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Marco Herde
- Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Institute of Plant Nutrition, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Medical School, Georg August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
24
|
Metabolic Regulation of Developmental Cell Cycles and Zygotic Transcription. Curr Biol 2019; 29:1193-1198.e5. [PMID: 30880009 DOI: 10.1016/j.cub.2019.02.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022]
Abstract
The thirteen nuclear cleavages that give rise to the Drosophila blastoderm are some of the fastest known cell cycles [1]. Surprisingly, the fertilized egg is provided with at most one-third of the dNTPs needed to complete the thirteen rounds of DNA replication [2]. The rest must be synthesized by the embryo, concurrent with cleavage divisions. What is the reason for the limited supply of DNA building blocks? We propose that frugal control of dNTP synthesis contributes to the well-characterized deceleration of the cleavage cycles and is needed for robust accumulation of zygotic gene products. In support of this model, we demonstrate that when the levels of dNTPs are abnormally high, nuclear cleavages fail to sufficiently decelerate, the levels of zygotic transcription are dramatically reduced, and the embryo catastrophically fails early in gastrulation. Our work reveals a direct connection between metabolism, the cell cycle, and zygotic transcription.
Collapse
|
25
|
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
26
|
Rodenfels J, Neugebauer KM, Howard J. Heat Oscillations Driven by the Embryonic Cell Cycle Reveal the Energetic Costs of Signaling. Dev Cell 2019; 48:646-658.e6. [PMID: 30713074 DOI: 10.1016/j.devcel.2018.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
All living systems function out of equilibrium and exchange energy in the form of heat with their environment. Thus, heat flow can inform on the energetic costs of cellular processes, which are largely unknown. Here, we have repurposed an isothermal calorimeter to measure heat flow between developing zebrafish embryos and the surrounding medium. Heat flow increased over time with cell number. Unexpectedly, a prominent oscillatory component of the heat flow, with periods matching the synchronous early reductive cleavage divisions, persisted even when DNA synthesis and mitosis were blocked by inhibitors. Instead, the heat flow oscillations were driven by the phosphorylation and dephosphorylation reactions catalyzed by the cell-cycle oscillator, the biochemical network controlling mitotic entry and exit. We propose that the high energetic cost of cell-cycle signaling reflects the significant thermodynamic burden of imposing accurate and robust timing on cell proliferation during development.
Collapse
Affiliation(s)
- Jonathan Rodenfels
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
27
|
Shindo Y, Amodeo AA. Dynamics of Free and Chromatin-Bound Histone H3 during Early Embryogenesis. Curr Biol 2019; 29:359-366.e4. [DOI: 10.1016/j.cub.2018.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/29/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
|
28
|
Avilés-Pagán EE, Orr-Weaver TL. Activating embryonic development in Drosophila. Semin Cell Dev Biol 2018; 84:100-110. [PMID: 29448071 PMCID: PMC6301029 DOI: 10.1016/j.semcdb.2018.02.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/21/2017] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
The transition from oocyte to embryo marks the onset of development. This process requires complex regulation to link developmental signals with profound changes in mRNA translation, cell cycle control, and metabolism. This control is beginning to be understood for most organisms, and research in the fruit fly Drosophila melanogaster has generated new insights. Recent findings have increased our understanding of the roles played by hormone and Ca2+ signaling events as well as metabolic remodeling crucial for this transition. Specialized features of the structure and assembly of the meiotic spindle have been identified. The changes in protein levels, mRNA translation, and polyadenylation that occur as the oocyte becomes an embryo have been identified together with key aspects of their regulation. Here we highlight these important developments and the insights they provide on the intricate regulation of this dramatic transition.
Collapse
Affiliation(s)
- Emir E Avilés-Pagán
- Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Terry L Orr-Weaver
- Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
29
|
Abstract
Early embryonic development is characterized by rapid cleavage divisions, which impose significant constraints on metabolic pathways. In this issue, Song et al. (2017) show that Drosophila embryos synthesize a large fraction of nucleotides on the go and that negative feedback between dATP and ribonucleotide reductase ensures tight control of dNTP concentration.
Collapse
Affiliation(s)
- Patrick L Ferree
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, USA.
| |
Collapse
|
30
|
Olafsson S, Whittington D, Murray J, Regnier M, Moussavi-Harami F. Fast and sensitive HPLC-MS/MS method for direct quantification of intracellular deoxyribonucleoside triphosphates from tissue and cells. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:90-97. [PMID: 29032043 DOI: 10.1016/j.jchromb.2017.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/26/2017] [Accepted: 10/04/2017] [Indexed: 01/31/2023]
Abstract
Deoxyribonucleoside triphosphates (dNTPs) are used in DNA synthesis and repair. Even slight imbalances can have adverse biological effects. This study validates a fast and sensitive HPLC-MS/MS method for direct quantification of intracellular dNTPs from tissue. Equal volumes of methanol and water were used for nucleotide extraction from mouse heart and gastrocnemius muscle and isolated cardiomyocytes followed by centrifugation to remove particulates. The resulting supernatant was analyzed on a porous graphitic carbon chromatography column using an elution gradient of ammonium acetate in water and ammonium hydroxide in acetonitrile with a run time of just 10min. Calibration curves of all dNTPs ranged from 62.5 to 2500fmol injections and demonstrated excellent linearity (r2>0.99). The within day and between day precision, as measured by the coefficient of variation (CV (%)), was <25% for all points, including the lower limit of quantification (LLOQ). The inter-day accuracy was within 12% of expected concentration for the LLOQ and within 7% for all other points on the calibration curve. The intra-day accuracy was within 22% for the LLOQ and within 11% for all points on the curve. Compared to existing methods, this study presents a faster and more sensitive method for dNTP quantification.
Collapse
Affiliation(s)
- Sigurast Olafsson
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109, United States
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Box 357610 H172, Health Science Building, Seattle, WA 98195-7610, United States
| | - Jason Murray
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific Street, HSB Room G424, Box 357290, Seattle, WA 98195-7290, United States
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, United States
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|