1
|
Garcia JQ, Mouilleau V, Ng H, Zhao X, Morgan DO, Guo S. Phosphorylation by Aurora kinase A facilitates cortical-cytoplasmic dynamics of Par-3 in asymmetric division of radial glia progenitors. SCIENCE ADVANCES 2025; 11:eadq3858. [PMID: 40367180 PMCID: PMC12077515 DOI: 10.1126/sciadv.adq3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/25/2025] [Indexed: 05/16/2025]
Abstract
During asymmetric cell division (ACD) of radial glia progenitors (RGPs), the cortical polarity regulator Par-3 is detected in the cytoplasm colocalizing with dynein and Notch ligand DeltaD (Dld). What drives Par-3 to the cytoplasm and its impact on RGP ACD remain unknown. Here, we visualize cytoplasmic Par-3 using in vivo time-lapse imaging and find that Ser954 of zebrafish Par-3 is phosphorylated by Aurora kinase A (AurkA) in vitro. Expression of the nonphosphorylated mutant Par-3S954A dominant negatively affects embryonic development, reduces cytoplasmic Par-3, and disrupts the anteroposterior asymmetry of cortical Par-3 and Dld endosomes and, in turn, daughter cell fate. AurkA in mitotic RGPs shows dynamic pericentrosomal distribution that transiently colocalizes with cortical Par-3 preferentially on the posterior side. AurkA is both necessary and sufficient to increase cytoplasmic while decreasing cortical Par-3, disrupts Par-3 cortical asymmetry, and perturbs polarized Dld endosome dynamics. These findings suggest that AurkA regulates Par-3 cortical-cytoplasmic dynamics that is critical for ACD and daughter cell fate.
Collapse
Affiliation(s)
- Jason Q. Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vincent Mouilleau
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Henry Ng
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David O. Morgan
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Programs in Biological Sciences and Quantitative Biosciences, Institute of Human Genetics, Kavli Institute for Fundamental Neuroscience, Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Deutz LN, Sarıkaya S, Dickinson DJ. Membrane extraction in native lipid nanodiscs reveals dynamic regulation of Cdc42 complexes during cell polarization. Biophys J 2025; 124:876-890. [PMID: 38006206 PMCID: PMC11947473 DOI: 10.1016/j.bpj.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Embryonic development requires the establishment of cell polarity to enable cell fate segregation and tissue morphogenesis. This process is regulated by Par complex proteins, which partition into polarized membrane domains and direct downstream polarized cell behaviors. The kinase aPKC (along with its cofactor Par6) is a key member of this network and can be recruited to the plasma membrane by either the small GTPase Cdc42 or the scaffolding protein Par3. Although in vitro interactions among these proteins are well established, much is still unknown about the complexes they form during development. Here, to enable the study of membrane-associated complexes ex vivo, we used a maleic acid copolymer to rapidly isolate membrane proteins from single C. elegans zygotes into lipid nanodiscs. We show that native lipid nanodisc formation enables detection of endogenous complexes involving Cdc42, which are undetectable when cells are lysed in detergent. We found that Cdc42 interacts more strongly with aPKC/Par6 during polarity maintenance than polarity establishment, two developmental stages that are separated by only a few minutes. We further show that Cdc42 and Par3 do not bind aPKC/Par6 simultaneously, confirming recent in vitro findings in an ex vivo context. Our findings establish a new tool for studying membrane-associated signaling complexes and reveal an unexpected mode of polarity regulation via Cdc42.
Collapse
Affiliation(s)
- Lars N Deutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Sena Sarıkaya
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
3
|
Vargas E, Penkert RR, Prehoda KE. A PDZ-kinase allosteric relay mediates Par complex regulator exchange. J Biol Chem 2025; 301:108097. [PMID: 39706275 PMCID: PMC11774777 DOI: 10.1016/j.jbc.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical PKC (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding. Here, we report the discovery that Par-3 binding to aPKC is regulated by aPKC autoinhibition and link this regulation to Cdc42 and Par-3 exchange. The Par-6 PDZ domain activates aPKC binding to Par-3 via a novel interaction with the aPKC kinase domain. Cdc42 and Par-3 have opposite effects on the Par-6 PDZ-aPKC kinase interaction: while the Par-6 kinase domain interaction competes with Cdc42 binding to the complex, Par-3 binding is enhanced by the interaction. The differential effect of Par-3 and Cdc42 on the Par-6 PDZ interaction with the aPKC kinase domain forms an allosteric relay that connects their binding sites and is responsible for the negative cooperativity that underlies Par complex polarization and activity.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, 1229 University of Oregon, Eugene, Oregon, USA
| | - Rhiannon R Penkert
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, 1229 University of Oregon, Eugene, Oregon, USA
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, 1229 University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
4
|
Tortajada-Pérez J, Carranza ADV, Trujillo-del Río C, Collado-Pérez M, Millán JM, García-García G, Vázquez-Manrique RP. Lipid Oxidation at the Crossroads: Oxidative Stress and Neurodegeneration Explored in Caenorhabditis elegans. Antioxidants (Basel) 2025; 14:78. [PMID: 39857412 PMCID: PMC11762898 DOI: 10.3390/antiox14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid metabolism plays a critical role in maintaining cellular integrity, especially within the nervous system, where lipids support neuronal structure, function, and synaptic plasticity. However, this essential metabolic pathway is highly susceptible to oxidative stress, which can lead to lipid peroxidation, a damaging process induced by reactive oxygen species. Lipid peroxidation generates by-products that disrupt many cellular functions, with a strong impact on proteostasis. In this review, we explore the role of lipid oxidation in protein folding and its associated pathological implications, with a particular focus on findings in neurodegeneration from Caenorhabditis elegans studies, an animal model that remains underutilized. Additionally, we highlight the effectiveness of different methodologies applied in this nematode to deepen our understanding of this intricate process. In the nervous system of any animal, including mammals and invertebrates, lipid oxidation can disturb the delicate balance of cellular homeostasis, leading to oxidative stress, the build-up of toxic by-products, and protein misfolding, key factors in neurodegenerative diseases. This disruption contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, or Huntington's disease. The findings from Caenorhabditis elegans studies offer valuable insights into these complex processes and highlight potential avenues for developing targeted therapies to mitigate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Julia Tortajada-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Andrea del Valle Carranza
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Cristina Trujillo-del Río
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - Mar Collado-Pérez
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
| | - José María Millán
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gema García-García
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Pascual Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.T.-P.); (C.T.-d.R.); (M.C.-P.); (J.M.M.); (G.G.-G.)
- Joint Unit for Rare Diseases IIS La Fe—CIPF, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Vaudano AP, Schwager F, Gotta M, Barbieri S. Internal feedback circuits among MEX-5, MEX-6, and PLK-1 maintain faithful patterning in the Caenorhabditis elegans embryo. Proc Natl Acad Sci U S A 2024; 121:e2407517121. [PMID: 39689170 DOI: 10.1073/pnas.2407517121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/29/2024] [Indexed: 12/19/2024] Open
Abstract
Proteins become asymmetrically distributed in the one-cell Caenorhabditis elegans embryo thanks to reaction-diffusion mechanisms that are often entangled in complex feedback loops. Cortical polarity drives the enrichment of the RNA-binding proteins MEX-5 and MEX-6 in the anterior cytoplasm through concentration gradients. MEX-5 and MEX-6 promote the patterning of other cytoplasmic factors, including that of the anteriorly enriched mitotic polo-like kinase PLK-1, but also contribute to proper cortical polarity. The gradient of MEX-5 forms through a differential-diffusion mechanism. How MEX-6 establishes a gradient and how MEX-5 and MEX-6 regulate cortical polarity is not known. Here, we reveal that the two MEX proteins develop concentration asymmetries via similar mechanisms, but despite their strong sequence homology, they differ in terms of how their concentration gradients are regulated. We find that PLK-1 promotes the enrichment of MEX-5 and MEX-6 at the anterior through different circuits: PLK-1 influences the MEX-5 gradient indirectly by regulating cortical polarity while it modulates the formation of the gradient of MEX-6 through its physical interaction with the protein. We thus propose a model in which PLK-1 mediates protein circuitries between MEX-5, MEX-6, and cortical proteins to faithfully establish and maintain polarity.
Collapse
Affiliation(s)
- Alexandre Pierre Vaudano
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Françoise Schwager
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Sofia Barbieri
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Vargas E, Penkert RR, Prehoda KE. A PDZ-kinase allosteric relay mediates Par complex regulator exchange. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619144. [PMID: 39464081 PMCID: PMC11507878 DOI: 10.1101/2024.10.18.619144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The Par complex polarizes the plasma membrane of diverse animal cells using the catalytic activity of atypical Protein Kinase C (aPKC) to pattern substrates. Two upstream regulators of the Par complex, Cdc42 and Par-3, bind separately to the complex to influence its activity in different ways. Each regulator binds a distinct member of the complex, Cdc42 to Par-6 and Par-3 to aPKC, making it unclear how they influence one another's binding. Here we report the discovery that Par-3 binding to aPKC is regulated by aPKC autoinhibition and link this regulation to Cdc42 and Par-3 exchange. The Par-6 PDZ domain activates aPKC binding to Par-3 via a novel interaction with the aPKC kinase domain. Cdc42 and Par-3 have opposite effects on the Par-6 PDZ-aPKC kinase interaction: while the Par-6 kinase domain interaction competes with Cdc42 binding to the complex, Par-3 binding is enhanced by the interaction. The differential effect of Par-3 and Cdc42 on the Par-6 PDZ interaction with the aPKC kinase domain forms an allosteric relay that connects their binding sites and is responsible for the negative cooperativity that underlies Par complex polarization and activity.
Collapse
Affiliation(s)
| | | | - Kenneth E. Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, 1229 University of Oregon, Eugene, OR 97403
| |
Collapse
|
7
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. Mol Biol Cell 2024; 35:ar127. [PMID: 39110529 PMCID: PMC11481705 DOI: 10.1091/mbc.e24-05-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.
Collapse
Affiliation(s)
- Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Derek T. Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Gwendolyn M. Beacham
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Matthew J. Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Lang C, Maxian O, Anneken A, Munro E. Oligomerization and positive feedback on membrane recruitment encode dynamically stable PAR-3 asymmetries in the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.04.552031. [PMID: 39253498 PMCID: PMC11383301 DOI: 10.1101/2023.08.04.552031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Studies of PAR polarity have emphasized a paradigm in which mutually antagonistic PAR proteins form complementary polar domains in response to transient cues. A growing body of work suggests that the oligomeric scaffold PAR-3 can form unipolar asymmetries without mutual antagonism, but how it does so is largely unknown. Here we combine single molecule analysis and modeling to show how the interplay of two positive feedback loops promote dynamically stable unipolar PAR-3 asymmetries in early C. elegans embryos. First, the intrinsic dynamics of PAR-3 membrane binding and oligomerization encode negative feedback on PAR-3 dissociation. Second, membrane-bound PAR-3 promotes its own recruitment through a mechanism that requires the anterior polarity proteins CDC-42, PAR-6 and PKC-3. Using a kinetic model tightly constrained by our experimental measurements, we show that these two feedback loops are individually required and jointly sufficient to encode dynamically stable and locally inducible unipolar PAR-3 asymmetries in the absence of posterior inhibition. Given the central role of PAR-3, and the conservation of PAR-3 membrane-binding, oligomerization, and core interactions with PAR-6/aPKC, these results have widespread implications for PAR-mediated polarity in metazoa.
Collapse
Affiliation(s)
- Charlie Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
- Current address: Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Ondrej Maxian
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Alexander Anneken
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
9
|
Bland T, Hirani N, Briggs DC, Rossetto R, Ng K, Taylor IA, McDonald NQ, Zwicker D, Goehring NW. Optimized PAR-2 RING dimerization mediates cooperative and selective membrane binding for robust cell polarity. EMBO J 2024; 43:3214-3239. [PMID: 38907033 PMCID: PMC11294563 DOI: 10.1038/s44318-024-00123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024] Open
Abstract
Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.
Collapse
Affiliation(s)
- Tom Bland
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | - Riccardo Rossetto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - KangBo Ng
- Francis Crick Institute, London, NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | - Neil Q McDonald
- Francis Crick Institute, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Nathan W Goehring
- Francis Crick Institute, London, NW1 1AT, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| |
Collapse
|
10
|
Kim AJ, Miller SI, Greiner EC, Kettenbach AN, Griffin EE. PLK-1 regulates MEX-1 polarization in the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605193. [PMID: 39091813 PMCID: PMC11291152 DOI: 10.1101/2024.07.26.605193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The one-cell C. elegans embryo undergoes an asymmetric cell division during which germline factors such as the RNA-binding proteins POS-1 and MEX-1 segregate to the posterior cytoplasm, leading to their asymmetric inheritance to the posterior germline daughter cell. Previous studies found that the RNA-binding protein MEX-5 recruits polo-like kinase PLK-1 to the anterior cytoplasm where PLK-1 inhibits the retention of its substrate POS-1, leading to POS-1 segregation to the posterior. In this study, we tested whether PLK-1 similarly regulates MEX-1 polarization. We find that both the retention of MEX-1 in the anterior and the segregation of MEX-1 to the posterior depend on PLK kinase activity and on the interaction between MEX-5 and PLK-1. Human PLK1 directly phosphorylates recombinant MEX-1 on 9 predicted PLK-1 sites in vitro, four of which were identified in previous phosphoproteomic analysis of C. elegans embryos. The introduction of alanine substitutions at these four PLK-1 phosphorylation sites (MEX-1(4A)) significantly weakened the inhibition of MEX-1 retention in the anterior, thereby weakening MEX-1 segregation to the posterior. In contrast, mutation of a predicted CDK1 phosphorylation site had no effect on MEX-1 retention or on MEX-1 segregation. MEX-1(4A) mutants are viable and fertile but display significant sterility and fecundity defects at elevated temperatures. Taken together with our previous findings, these findings suggest PLK-1 phosphorylation drives both MEX-1 and POS-1 polarization during the asymmetric division of the zygote.
Collapse
Affiliation(s)
- Amelia J. Kim
- Department of Biological Sciences, Dartmouth College, Hanover NH 03755
| | | | - Elora C. Greiner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755
- Dartmouth Cancer Center, Lebanon NH 03755
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover NH 03755
- Dartmouth Cancer Center, Lebanon NH 03755
| | - Erik E. Griffin
- Department of Biological Sciences, Dartmouth College, Hanover NH 03755
- School of Life Sciences, University of Warwick, Coventry UK
| |
Collapse
|
11
|
Packer J, Gubieda AG, Brooks A, Deutz LN, Squires I, Ellison S, Schneider C, Naganathan SR, Wollman AJ, Dickinson DJ, Rodriguez J. Atypical Protein Kinase C Promotes its own Asymmetric Localisation by Phosphorylating Cdc42 in the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.563985. [PMID: 38009101 PMCID: PMC10675845 DOI: 10.1101/2023.10.27.563985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in the C. elegans zygote that the feedback relies on aPKC phosphorylation of Cdc42 at serine 71. The turnover of CDC-42 phosphorylation ensures optimal aPKC asymmetry and activity throughout polarisation by tuning Par6/aPKC association with Par3 and Cdc42. Moreover, turnover of Cdc42 phosphorylation regulates actomyosin cortex dynamics that are known to drive aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust control of polarisation in many cell types.
Collapse
Affiliation(s)
- John Packer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Alicia G. Gubieda
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Aaron Brooks
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | - Lars N. Deutz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- These authors contributed equally
| | - Iolo Squires
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- These authors contributed equally
| | | | | | - Sundar Ram Naganathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Adam J.M. Wollman
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Josana Rodriguez
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Lead contact
| |
Collapse
|
12
|
Loyer N, Hogg EKJ, Shaw HG, Pasztor A, Murray DH, Findlay GM, Januschke J. A CDK1 phosphorylation site on Drosophila PAR-3 regulates neuroblast polarisation and sensory organ formation. eLife 2024; 13:e97902. [PMID: 38869055 PMCID: PMC11216751 DOI: 10.7554/elife.97902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
Collapse
Affiliation(s)
- Nicolas Loyer
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hayley G Shaw
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Anna Pasztor
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - David H Murray
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jens Januschke
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
13
|
Schwenzer N, Teiwes NK, Kohl T, Pohl C, Giller MJ, Lehnart SE, Steinem C. Ca V1.3 channel clusters characterized by live-cell and isolated plasma membrane nanoscopy. Commun Biol 2024; 7:620. [PMID: 38783117 PMCID: PMC11116533 DOI: 10.1038/s42003-024-06313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
A key player of excitable cells in the heart and brain is the L-type calcium channel CaV1.3. In the heart, it is required for voltage-dependent Ca2+-signaling, i.e., for controlling and modulating atrial cardiomyocyte excitation-contraction coupling. The clustering of CaV1.3 in functionally relevant channel multimers has not been addressed due to a lack of stoichiometric labeling combined with high-resolution imaging. Here, we developed a HaloTag-labeling strategy to visualize and quantify CaV1.3 clusters using STED nanoscopy to address the questions of cluster size and intra-cluster channel density. Channel clusters were identified in the plasma membrane of transfected live HEK293 cells as well as in giant plasma membrane vesicles derived from these cells that were spread on modified glass support to obtain supported plasma membrane bilayers (SPMBs). A small fraction of the channel clusters was colocalized with early and recycling endosomes at the membranes. STED nanoscopy in conjunction with live-cell and SPMB imaging enabled us to quantify CaV1.3 cluster sizes and their molecular density revealing significantly lower channel densities than expected for dense channel packing. CaV1.3 channel cluster size and molecular density were increased in SPMBs after treatment of the cells with the sympathomimetic compound isoprenaline, suggesting a regulated channel cluster condensation mechanism.
Collapse
Affiliation(s)
- Niko Schwenzer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany
| | - Nikolas K Teiwes
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Tobias Kohl
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Celine Pohl
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Michelle J Giller
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert‑Koch‑Str. 42a, 37075, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Collaborative Research Center SFB 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Claudia Steinem
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37073, Göttingen, Germany.
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
14
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594761. [PMID: 38798613 PMCID: PMC11118560 DOI: 10.1101/2024.05.17.594761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans , we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologs of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states-an active dimer and an inactive monomer-gates the output of the Inversin complex.
Collapse
|
15
|
Wang GF, Shen L. Cauchy hyper-graph Laplacian nonnegative matrix factorization for single-cell RNA-sequencing data analysis. BMC Bioinformatics 2024; 25:169. [PMID: 38684942 PMCID: PMC11059750 DOI: 10.1186/s12859-024-05797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Many important biological facts have been found as single-cell RNA sequencing (scRNA-seq) technology has advanced. With the use of this technology, it is now possible to investigate the connections among individual cells, genes, and illnesses. For the analysis of single-cell data, clustering is frequently used. Nevertheless, biological data usually contain a large amount of noise data, and traditional clustering methods are sensitive to noise. However, acquiring higher-order spatial information from the data alone is insufficient. As a result, getting trustworthy clustering findings is challenging. We propose the Cauchy hyper-graph Laplacian non-negative matrix factorization (CHLNMF) as a unique approach to address these issues. In CHLNMF, we replace the measurement based on Euclidean distance in the conventional non-negative matrix factorization (NMF), which can lessen the influence of noise, with the Cauchy loss function (CLF). The model also incorporates the hyper-graph constraint, which takes into account the high-order link among the samples. The CHLNMF model's best solution is then discovered using a half-quadratic optimization approach. Finally, using seven scRNA-seq datasets, we contrast the CHLNMF technique with the other nine top methods. The validity of our technique was established by analysis of the experimental outcomes.
Collapse
Affiliation(s)
- Gao-Fei Wang
- School of Computer Science, Qufu Normal University, Rizhao, 276826, Shandong, China.
| | - Longying Shen
- School of Computer Science, Qufu Normal University, Rizhao, 276826, Shandong, China
| |
Collapse
|
16
|
Manzi NI, de Jesus BN, Shi Y, Dickinson DJ. Temporally distinct roles of Aurora A in polarization of the C. elegans zygote. Development 2024; 151:dev202479. [PMID: 38488018 PMCID: PMC11165718 DOI: 10.1242/dev.202479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.
Collapse
Affiliation(s)
- Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Bailey N. de Jesus
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| |
Collapse
|
17
|
Bai X, Smith HE, Romero LO, Bell B, Vásquez V, Golden A. A mutation in F-actin polymerization factor suppresses the distal arthrogryposis type 5 PIEZO2 pathogenic variant in Caenorhabditis elegans. Development 2024; 151:dev202214. [PMID: 38349741 PMCID: PMC10911111 DOI: 10.1242/dev.202214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024]
Abstract
The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing. We performed an unbiased chemical mutagen-based genetic suppressor screen to identify putative suppressors of a conserved gain-of-function variant pezo-1[R2405P] that in human PIEZO2 causes distal arthrogryposis type 5 (DA5; p. R2718P). Electrophysiological analyses indicate that pezo-1(R2405P) is a gain-of-function allele. Using genomic mapping and whole-genome sequencing approaches, we identified a candidate suppressor allele in the C. elegans gene gex-3. This gene is an ortholog of human NCKAP1 (NCK-associated protein 1), a subunit of the Wiskott-Aldrich syndrome protein (WASP)-verprolin homologous protein (WAVE/SCAR) complex, which regulates F-actin polymerization. Depletion of gex-3 by RNAi, or with the suppressor allele gex-3(av259[L353F]), significantly increased brood size and ovulation rate, as well as alleviating the crushed oocyte phenotype of the pezo-1(R2405P) mutant. Expression of GEX-3 in the soma is required to rescue the brood size defects in pezo-1(R2405P) animals. Actin organization and orientation were disrupted and distorted in the pezo-1 mutants. Mutation of gex-3(L353F) partially alleviated these defects. The identification of gex-3 as a suppressor of the pathogenic variant pezo-1(R2405P) suggests that the PIEZO coordinates with the cytoskeleton regulator to maintain the F-actin network and provides insight into the molecular mechanisms of DA5 and other PIEZO-associated diseases.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis O. Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN 38163, USA
| | - Briar Bell
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Barbieri S, Gotta M. Order from chaos: cellular asymmetries explained with modelling. Trends Cell Biol 2024; 34:122-135. [PMID: 37574346 DOI: 10.1016/j.tcb.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023]
Abstract
Molecules inside cells are subject to physical forces and undergo biochemical interactions, continuously changing their physical properties and dynamics. Despite this, cells achieve highly ordered molecular patterns that are crucial to regulate various cellular functions and to specify cell fate. In the Caenorhabditis elegans one-cell embryo, protein asymmetries are established in the narrow time window of a cell division. What are the mechanisms that allow molecules to establish asymmetries, defying the randomness imposed by Brownian motion? Mathematical and computational models have paved the way to the understanding of protein dynamics up to the 'single-molecule level' when resolution represents an issue for precise experimental measurements. Here we review the models that interpret cortical and cytoplasmic asymmetries in the one-cell C. elegans embryo.
Collapse
Affiliation(s)
- Sofia Barbieri
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland.
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
19
|
Zhao Q, Shen Y, Li X, Li Y, Tian F, Yu X, Liu Z, Tong R, Park H, Yobas L, Huang P. Nanobead-based single-molecule pulldown for single cells. Heliyon 2023; 9:e22306. [PMID: 38027957 PMCID: PMC10679481 DOI: 10.1016/j.heliyon.2023.e22306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Investigation of cell-to-cell variability holds critical physiological and clinical implications. Thus, numerous new techniques have been developed for studying cell-to-cell variability, and these single-cell techniques can also be used to investigate rare cells. Moreover, for studying protein-protein interactions (PPIs) in single cells, several techniques have been developed based on the principle of the single-molecule pulldown (SiMPull) assay. However, the applicability of these single-cell SiMPull (sc-SiMPull) techniques is limited because of their high technical barrier and special requirements for target cells and molecules. Here, we report a highly innovative nanobead-based approach for sc-SiMPull that is based on our recently developed microbead-based, improved version of SiMPull for cell populations. In our sc-SiMPull method, single cells are captured in microwells and lysed in situ, after which commercially available, pre-surface-functionalized magnetic nanobeads are placed in the microwells to specifically capture proteins of interest together with their binding partners from cell extracts; subsequently, the PPIs are examined under a microscope at the single-molecule level. Relative to previously published methods, nanobead-based sc-SiMPull is considerably faster, easier to use, more reproducible, and more versatile for distinct cell types and protein molecules, and yet provides similar sensitivity and signal-to-background ratio. These crucial features should enable universal application of our method to the study of PPIs in single cells.
Collapse
Affiliation(s)
- Qirui Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusheng Shen
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaofen Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yulin Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Fang Tian
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaojie Yu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhengzhao Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hyokeun Park
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Levent Yobas
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
20
|
Manzi NI, de Jesus BN, Shi Y, Dickinson DJ. Temporally distinct roles of Aurora A in polarization of the C. elegans zygote. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563816. [PMID: 37961467 PMCID: PMC10634818 DOI: 10.1101/2023.10.25.563816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
During asymmetric cell division, coordination of cell polarity and the cell cycle is critical for proper inheritance of cell fate determinants and generation of cellular diversity. In Caenorhabditis elegans (C. elegans), polarity is established in the zygote and is governed by evolutionarily conserved Partitioning defective (PAR) proteins that localize to distinct cortical domains. At the time of polarity establishment, anterior and posterior PARs segregate to opposing cortical domains that specify asymmetric cell fates. Timely establishment of these PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C.elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including no posterior domain, reversed polarity, and excess posterior domains. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system, drug treatments, and high-resolution microscopy, we found that AIR-1 regulates polarity via distinct mechanisms at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent the formation of bipolar domains, while in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together these data clarify the origin of the multiple polarization phenotypes observed in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with the progression of the cell cycle.
Collapse
Affiliation(s)
- Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Bailey N. de Jesus
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| |
Collapse
|
21
|
Stolpner NJ, Manzi NI, Su T, Dickinson DJ. Apical PAR protein caps orient the mitotic spindle in C. elegans early embryos. Curr Biol 2023; 33:4312-4329.e6. [PMID: 37729910 PMCID: PMC10615879 DOI: 10.1016/j.cub.2023.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases, it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact-free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, isolated single blastomeres lacking cell contacts are able to break symmetry and form PAR-3/atypical protein kinase C (aPKC) caps. Polarity caps form independently of actomyosin flows and microtubules and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.
Collapse
Affiliation(s)
- Naomi J Stolpner
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Nadia I Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Thomas Su
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Ng K, Hirani N, Bland T, Borrego-Pinto J, Wagner S, Kreysing M, Goehring NW. Cleavage furrow-directed cortical flows bias PAR polarization pathways to link cell polarity to cell division. Curr Biol 2023; 33:4298-4311.e6. [PMID: 37729912 DOI: 10.1016/j.cub.2023.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
During development, the conserved PAR polarity network is continuously redeployed, requiring that it adapt to changing cellular contexts and environmental cues. In the early C. elegans embryo, polarity shifts from being a cell-autonomous process in the zygote to one that must be coordinated between neighbors as the embryo becomes multicellular. Here, we sought to explore how the PAR network adapts to this shift in the highly tractable C. elegans germline P lineage. We find that although P lineage blastomeres exhibit a distinct pattern of polarity emergence compared with the zygote, the underlying mechanochemical processes that drive polarity are largely conserved. However, changes in the symmetry-breaking cues of P lineage blastomeres ensure coordination of their polarity axis with neighboring cells. Specifically, we show that furrow-directed cortical flows associated with cytokinesis of the zygote induce symmetry breaking in the germline blastomere P1 by transporting PAR-3 into the nascent cell contact. This pool of PAR-3 then biases downstream PAR polarization pathways to establish the polarity axis of P1 with respect to the position of its anterior sister, AB. Thus, our data suggest that cytokinesis itself induces symmetry breaking through the advection of polarity proteins by furrow-directed flows. By directly linking cell polarity to cell division, furrow-directed cortical flows could be a general mechanism to ensure proper organization of cell polarity within actively dividing systems.
Collapse
Affiliation(s)
- KangBo Ng
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Nisha Hirani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tom Bland
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | | | - Susan Wagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathan W Goehring
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
25
|
Illukkumbura R, Hirani N, Borrego-Pinto J, Bland T, Ng K, Hubatsch L, McQuade J, Endres RG, Goehring NW. Design principles for selective polarization of PAR proteins by cortical flows. J Cell Biol 2023; 222:e202209111. [PMID: 37265444 PMCID: PMC10238861 DOI: 10.1083/jcb.202209111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Clustering of membrane-associated molecules is thought to promote interactions with the actomyosin cortex, enabling size-dependent transport by actin flows. Consistent with this model, in the Caenorhabditis elegans zygote, efficient anterior segregation of the polarity protein PAR-3 requires oligomerization. However, through direct assessment of local coupling between motion of PAR proteins and the underlying cortex, we find no links between PAR-3 oligomer size and the degree of coupling. Indeed, both anterior and posterior PAR proteins experience similar advection velocities, at least over short distances. Consequently, differential cortex engagement cannot account for selectivity of PAR protein segregation by cortical flows. Combining experiment and theory, we demonstrate that a key determinant of differential segregation of PAR proteins by cortical flow is the stability of membrane association, which is enhanced by clustering and enables transport across cellular length scales. Thus, modulation of membrane binding dynamics allows cells to achieve selective transport by cortical flows despite widespread coupling between membrane-associated molecules and the cell cortex.
Collapse
Affiliation(s)
- Rukshala Illukkumbura
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | | | | | - Tom Bland
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - KangBo Ng
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Lars Hubatsch
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Jessica McQuade
- Department of Life Sciences, Imperial College London, London, UK
| | - Robert G. Endres
- Department of Life Sciences, Imperial College London, London, UK
| | - Nathan W. Goehring
- The Francis Crick Institute, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| |
Collapse
|
26
|
Bai X, Smith HE, Romero LO, Bell B, Vásquez V, Golden A. Mutation in F-actin Polymerization Factor Suppresses Distal Arthrogryposis Type 5 (DA5) PIEZO2 Pathogenic Variant in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550416. [PMID: 37546771 PMCID: PMC10402071 DOI: 10.1101/2023.07.24.550416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing. We performed an unbiased chemical mutagen-based genetic suppressor screen to identify putative suppressors of a conserved gain-of-function variant pezo-1[R2405P] that in human PIEZO2 causes distal arthrogryposis type 5 (DA5; p. R2718P). Electrophysiological analyses indicate that pezo-1(R2405P) is a gain-of-function allele. Using genomic mapping and whole genome sequencing approaches, we identified a candidate suppressor allele in the C. elegans gene gex-3. This gene is an ortholog of human NCKAP1 (NCK-associated protein 1), a subunit of the Wiskott-Aldrich syndrome protein (WASP)-verprolin homologous protein (WAVE/SCAR) complex, which regulates F-actin polymerization. Depletion of gex-3 by RNAi, or with the suppressor allele gex-3(av259[L353F]) , significantly restored the small brood size and low ovulation rate, as well as alleviated the crushed oocyte phenotype of the pezo-1(R2405P) mutant. Auxin-inducible degradation of GEX-3 revealed that only somatic-specific degradation of GEX-3 restored the reduced brood size in the pezo-1(R2405P) mutants. Additionally, actin organization and orientation were disrupted and distorted in the pezo-1 mutants. Mutation of gex-3(L353F) partially alleviated these defects. The identification of gex-3 as a suppressor of the pathogenic variant pezo-1(R2405P) suggests that the cytoskeleton plays an important role in regulating PIEZO channel activity and provides insight into the molecular mechanisms of DA5 and other PIEZO-associated diseases.
Collapse
|
27
|
Jafari G, Khan LA, Zhang H, Membreno E, Yan S, Dempsey G, Gobel V. Branched-chain actin dynamics polarizes vesicle trajectories and partitions apicobasal epithelial membrane domains. SCIENCE ADVANCES 2023; 9:eade4022. [PMID: 37379384 PMCID: PMC10306301 DOI: 10.1126/sciadv.ade4022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
In prevailing epithelial polarity models, membrane- and junction-based polarity cues such as the partitioning-defective PARs specify the positions of apicobasal membrane domains. Recent findings indicate, however, that intracellular vesicular trafficking can determine the position of the apical domain, upstream of membrane-based polarity cues. These findings raise the question of how vesicular trafficking becomes polarized independent of apicobasal target membrane domains. Here, we show that the apical directionality of vesicle trajectories depends on actin dynamics during de novo polarized membrane biogenesis in the C. elegans intestine. We find that actin, powered by branched-chain actin modulators, determines the polarized distribution of apical membrane components, PARs, and itself. Using photomodulation, we demonstrate that F-actin travels through the cytoplasm and along the cortex toward the future apical domain. Our findings support an alternative polarity model where actin-directed trafficking asymmetrically inserts the nascent apical domain into the growing epithelial membrane to partition apicobasal membrane domains.
Collapse
Affiliation(s)
- Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Liakot A. Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Siyang Yan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| | - Graham Dempsey
- Chemistry and Chemical Biology Department, Harvard University, Cambridge, MA, USA
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, MGHfC, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Witten G, DeMott E, Huang G, Zelasko F, de Jesus B, Mulchand C, Schuck L, Pullman S, Perez A, Mahableshwarkar P, Wu Z, Cardona EA, Pierce JT, Dickinson DJ, Doonan R. mScarlet and split fluorophore mScarlet resources for plasmid-based CRISPR/Cas9 knock-in in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000871. [PMID: 37396790 PMCID: PMC10308244 DOI: 10.17912/micropub.biology.000871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Fluorescent proteins allow the expression of a gene and the behavior of its protein product to be observed in living animals. The ability to create endogenous fluorescent protein tags via CRISPR genome engineering has revolutionized the authenticity of this expression, and mScarlet is currently our first-choice red fluorescent protein (RFP) for visualizing gene expression in vivo . Here, we have cloned versions of mScarlet and split fluorophore mScarlet previously optimized for C. elegans into the SEC-based system of plasmids for CRISPR/Cas9 knock-in. Ideally, an endogenous tag will be easily visible while not interfering with the normal expression and function of the targeted protein. For low molecular weight proteins that are a fraction of the size of a fluorescent protein tag (e.g. GFP or mCherry) and/or proteins known to be non-functional when tagged in this way, split fluorophore tagging could be an alternative. Here, we used CRISPR/Cas9 knock-in to tag three such proteins with split-fluorophore wrmScarlet: HIS-72, EGL-1, and PTL-1. Although we find that split fluorophore tagging does not disrupt the function of any of these proteins, we were unfortunately unable to observe the expression of most of these tags with epifluorescence, suggesting that split fluorophore tags are often very limited as endogenous reporters. Nevertheless, our plasmid toolkit provides a new resource that enables straightforward knock-in of either mScarlet or split mScarlet in C. elegans.
Collapse
Affiliation(s)
- Gillian Witten
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ella DeMott
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - George Huang
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Francis Zelasko
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Bailey de Jesus
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Chandi Mulchand
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Liam Schuck
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Stephen Pullman
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Amelie Perez
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Priya Mahableshwarkar
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Zheng Wu
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Eric Andrew Cardona
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Jonathan T Pierce
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ryan Doonan
- Glow Worms Stream, Freshman Research Initiative, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
29
|
Stolpner NJ, Manzi NI, Su T, Dickinson DJ. Apical PAR-3 caps orient the mitotic spindle in C. elegans early embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534341. [PMID: 37034756 PMCID: PMC10081169 DOI: 10.1101/2023.03.27.534341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, apical PAR-3 can form polarity caps independently of actomyosin flows and the small GTPase CDC-42, and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.
Collapse
Affiliation(s)
- Naomi J. Stolpner
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Thomas Su
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| |
Collapse
|
30
|
Pecori F, Torres-Padilla ME. Dynamics of nuclear architecture during early embryonic development and lessons from liveimaging. Dev Cell 2023; 58:435-449. [PMID: 36977375 PMCID: PMC10062924 DOI: 10.1016/j.devcel.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Nuclear organization has emerged as a potential key regulator of genome function. During development, the deployment of transcriptional programs must be tightly coordinated with cell division and is often accompanied by major changes in the repertoire of expressed genes. These transcriptional and developmental events are paralleled by changes in the chromatin landscape. Numerous studies have revealed the dynamics of nuclear organization underlying them. In addition, advances in live-imaging-based methodologies enable the study of nuclear organization with high spatial and temporal resolution. In this Review, we summarize the current knowledge of the changes in nuclear architecture in the early embryogenesis of various model systems. Furthermore, to highlight the importance of integrating fixed-cell and live approaches, we discuss how different live-imaging techniques can be applied to examine nuclear processes and their contribution to our understanding of transcription and chromatin dynamics in early development. Finally, we provide future avenues for outstanding questions in this field.
Collapse
Affiliation(s)
- Federico Pecori
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany; Faculty of Biology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
31
|
Abstract
Cells are the smallest building blocks of all living eukaryotic organisms, usually ranging from a couple of micrometers (for example, platelets) to hundreds of micrometers (for example, neurons and oocytes) in size. In eukaryotic cells that are more than 100 µm in diameter, very often a self-organized large-scale movement of cytoplasmic contents, known as cytoplasmic streaming, occurs to compensate for the physical constraints of large cells. In this Review, we discuss cytoplasmic streaming in multiple cell types and the mechanisms driving this event. We particularly focus on the molecular motors responsible for cytoplasmic movements and the biological roles of cytoplasmic streaming in cells. Finally, we describe bulk intercellular flow that transports cytoplasmic materials to the oocyte from its sister germline cells to drive rapid oocyte growth.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| |
Collapse
|
32
|
Vargas E, Prehoda KE. Negative cooperativity underlies dynamic assembly of the Par complex regulators Cdc42 and Par-3. J Biol Chem 2023; 299:102749. [PMID: 36436559 PMCID: PMC9793311 DOI: 10.1016/j.jbc.2022.102749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The Par complex polarizes diverse animal cells through the concerted action of multiple regulators. Binding to the multi-PDZ domain containing protein Par-3 couples the complex to cortical flows that construct the Par membrane domain. Once localized properly, the complex is thought to transition from Par-3 to the Rho GTPase Cdc42 to activate the complex. While this transition is a critical step in Par-mediated polarity, little is known about how it occurs. Here, we used a biochemical reconstitution approach with purified, intact Par complex and qualitative binding assays and found that Par-3 and Cdc42 exhibit strong negative cooperativity for the Par complex. The energetic coupling arises from interactions between the second and third PDZ protein interaction domains of Par-3 and the aPKC Kinase-PBM (PDZ binding motif) that mediate the displacement of Cdc42 from the Par complex. Our results indicate that Par-3, Cdc42, Par-6, and aPKC are the minimal components that are sufficient for this transition to occur and that no external factors are required. Our findings provide the mechanistic framework for understanding a critical step in the regulation of Par complex polarization and activity.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Eugene, Oregon, USA
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Eugene, Oregon, USA.
| |
Collapse
|
33
|
Fazeli G, Frondoni J, Kolli S, Wehman AM. Visualizing Phagocytic Cargo In Vivo from Engulfment to Resolution in Caenorhabditis elegans. Methods Mol Biol 2023; 2692:337-360. [PMID: 37365478 DOI: 10.1007/978-1-0716-3338-0_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The nematode Caenorhabditis elegans offers many experimental advantages to study conserved mechanisms of phagocytosis and phagocytic clearance. These include the stereotyped timing of phagocytic events in vivo for time-lapse imaging, the availability of transgenic reporters labeling molecules involved in different steps of phagocytosis, and the transparency of the animal for fluorescence imaging. Further, the ease of forward and reverse genetics in C. elegans has enabled many of the initial discoveries of proteins involved in phagocytic clearance. In this chapter, we focus on phagocytosis by the large undifferentiated blastomeres of C. elegans embryos, which engulf and eliminate diverse phagocytic cargo from the corpse of the second polar body to cytokinetic midbody remnants. We describe the use of fluorescent time-lapse imaging to observe the distinct steps of phagocytic clearance and methods to normalize this process to distinguish defects in mutant strains. These approaches have enabled us to reveal new insights from the initial signaling to induce phagocytosis up until the final resolution of phagocytic cargo in phagolysosomes.
Collapse
Affiliation(s)
- Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Julia Frondoni
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA.
| |
Collapse
|
34
|
Regulation of cell size and Wee1 kinase by elevated levels of the cell cycle regulatory protein kinase Cdr2. J Biol Chem 2022; 299:102831. [PMID: 36574843 PMCID: PMC9860436 DOI: 10.1016/j.jbc.2022.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Many cell cycle regulatory proteins catalyze cell cycle progression in a concentration-dependent manner. In the fission yeast Schizosaccharomyces pombe, the protein kinase Cdr2 promotes mitotic entry by organizing cortical oligomeric nodes that lead to inhibition of Wee1, which itself inhibits the cyclin-dependent kinase Cdk1. cdr2Δ cells lack nodes and divide at increased size due to overactive Wee1, but it has not been known how increased Cdr2 levels might impact Wee1 and cell size. It also has not been clear if and how Cdr2 might regulate Wee1 in the absence of the related kinase Cdr1/Nim1. Using a tetracycline-inducible expression system, we found that a 6× increase in Cdr2 expression caused hyperphosphorylation of Wee1 and reduction in cell size even in the absence of Cdr1/Nim1. This overexpressed Cdr2 formed clusters that sequestered Wee1 adjacent to the nuclear envelope. Cdr2 mutants that disrupt either kinase activity or clustering ability failed to sequester Wee1 and to reduce cell size. We propose that Cdr2 acts as a dosage-dependent regulator of cell size by sequestering its substrate Wee1 in cytoplasmic clusters, away from Cdk1 in the nucleus. This mechanism has implications for other clustered kinases, which may act similarly by sequestering substrates.
Collapse
|
35
|
Lang CF, Munro EM. Oligomerization of peripheral membrane proteins provides tunable control of cell surface polarity. Biophys J 2022; 121:4543-4559. [PMID: 36815706 PMCID: PMC9750853 DOI: 10.1016/j.bpj.2022.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
Abstract
Asymmetric distributions of peripheral membrane proteins define cell polarity across all kingdoms of life. Non-linear positive feedback on membrane binding is essential to amplify and stabilize these asymmetries, but how specific molecular sources of non-linearity shape polarization dynamics remains poorly understood. Here we show that the ability to oligomerize, which is common to many peripheral membrane proteins, can play a profound role in shaping polarization dynamics in simple feedback circuits. We show that size-dependent binding avidity and mobility of membrane-bound oligomers endow polarity circuits with several key properties. Size-dependent membrane binding avidity confers a form of positive feedback on the accumulation of oligomer subunits. Although insufficient by itself, this sharply reduces the amount of additional feedback required for spontaneous emergence and stable maintenance of polarized states. Size-dependent oligomer mobility makes symmetry breaking and stable polarity more robust with respect to variation in subunit diffusivities and cell sizes, and slows the approach to a final stable spatial distribution, allowing cells to "remember" polarity boundaries imposed by transient external cues. Together, these findings reveal how oligomerization of peripheral membrane proteins can provide powerful and highly tunable sources of non-linear feedback in biochemical circuits that govern cell surface polarity. Given its prevalence and widespread involvement in cell polarity, we speculate that self-oligomerization may have provided an accessible path to evolving simple polarity circuits.
Collapse
Affiliation(s)
- Charles F Lang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois
| | - Edwin M Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois; Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
36
|
Chang Y, Dickinson DJ. Non-invasive chimeric HaloTag labeling to study clustering and diffusion of membrane proteins. STAR Protoc 2022; 3:101857. [PMID: 36595905 PMCID: PMC9676207 DOI: 10.1016/j.xpro.2022.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
As live imaging plays an increasingly critical role in cell biology research, the desire to label and track individual protein molecules in vivo has been growing. To address this, in this protocol we describe steps for sparse labeling using two different HaloTag ligand dyes in C. elegans. This labeling approach is simple, is non-invasive, and preserves the view of the bulk protein population. We further describe how to carry out single-particle tracking experiments and extract information about particle diffusion behavior. For complete details on the use and execution of this protocol, please refer to Chang and Dickinson (2022).1.
Collapse
Affiliation(s)
- Yiran Chang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA,Corresponding author
| |
Collapse
|
37
|
Pickett MA, Sallee MD, Cote L, Naturale VF, Akpinaroglu D, Lee J, Shen K, Feldman JL. Separable mechanisms drive local and global polarity establishment in the Caenorhabditiselegans intestinal epithelium. Development 2022; 149:dev200325. [PMID: 36264257 PMCID: PMC9845746 DOI: 10.1242/dev.200325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Apico-basolateral polarization is essential for epithelial cells to function as selective barriers and transporters, and to provide mechanical resilience to organs. Epithelial polarity is established locally, within individual cells to establish distinct apical, junctional and basolateral domains, and globally, within a tissue where cells coordinately orient their apico-basolateral axes. Using live imaging of endogenously tagged proteins and tissue-specific protein depletion in the Caenorhabditiselegans embryonic intestine, we found that local and global polarity establishment are temporally and genetically separable. Local polarity is initiated prior to global polarity and is robust to perturbation. PAR-3 is required for global polarization across the intestine but local polarity can arise in its absence, as small groups of cells eventually established polarized domains in PAR-3-depleted intestines in a HMR-1 (E-cadherin)-dependent manner. Despite the role of PAR-3 in localizing PKC-3 to the apical surface, we additionally found that PAR-3 and PKC-3/aPKC have distinct roles in the establishment and maintenance of local and global polarity. Taken together, our results indicate that different mechanisms are required for local and global polarity establishment in vivo.
Collapse
Affiliation(s)
- Melissa A. Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biological Sciences, San Jose State University, San Jose, CA 95112, USA
| | - Maria D. Sallee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lauren Cote
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Joo Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
38
|
Barros-Carvalho A, Morais-de-Sá E. Balancing cell polarity PARts through dephosphorylation. J Cell Biol 2022; 221:e202208008. [PMID: 36121422 PMCID: PMC9486083 DOI: 10.1083/jcb.202208008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How cells spatially organize their plasma membrane, cytoskeleton, and cytoplasm remains a central question for cell biologists. In this issue of JCB, Calvi et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202201048) identify PP1 phosphatases as key regulators of C. elegans anterior-posterior polarity, by counterbalancing aPKC-mediated phosphorylation of PAR-2.
Collapse
Affiliation(s)
- André Barros-Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Eurico Morais-de-Sá
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
39
|
Costache V, Prigent Garcia S, Plancke CN, Li J, Begnaud S, Suman SK, Reymann AC, Kim T, Robin FB. Rapid assembly of a polar network architecture drives efficient actomyosin contractility. Cell Rep 2022; 39:110868. [PMID: 35649363 PMCID: PMC9210446 DOI: 10.1016/j.celrep.2022.110868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Actin network architecture and dynamics play a central role in cell contractility and tissue morphogenesis. RhoA-driven pulsed contractions are a generic mode of actomyosin contractility, but the mechanisms underlying how their specific architecture emerges and how this architecture supports the contractile function of the network remain unclear. Here we show that, during pulsed contractions, the actin network is assembled by two subpopulations of formins: a functionally inactive population (recruited) and formins actively participating in actin filament elongation (elongating). We then show that elongating formins assemble a polar actin network, with barbed ends pointing out of the pulse. Numerical simulations demonstrate that this geometry favors rapid network contraction. Our results show that formins convert a local RhoA activity gradient into a polar network architecture, causing efficient network contractility, underlying the key function of kinetic controls in the assembly and mechanics of cortical network architectures. RhoA-driven actomyosin contractility plays a key role in driving cell and tissue contractility during morphogenesis. Tracking individual formins, Costache et al. show that the network assembled downstream of RhoA displays a polar architecture, barbed ends pointing outward, a feature that supports efficient contractility and force transmission during pulsed contractions.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Serena Prigent Garcia
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Camille N Plancke
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Simon Begnaud
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France
| | - Anne-Cécile Reymann
- IGBMC, CNRS UMR7104, INSERM U1258, and Université de Strasbourg, Illkirch, France
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| | - François B Robin
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine IBPS, Laboratoire de Biologie du Développement, Paris, France.
| |
Collapse
|
40
|
A particle size threshold governs diffusion and segregation of PAR-3 during cell polarization. Cell Rep 2022; 39:110652. [PMID: 35417695 PMCID: PMC9093022 DOI: 10.1016/j.celrep.2022.110652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/14/2021] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The actomyosin cortex regulates the localization and function of proteins at the plasma membrane. Here, we study how membrane binding, cortical movements, and diffusion determine membrane protein distribution. In Caenorhabditis elegans zygotes, actomyosin flows transport PAR polarity proteins to establish the anterior-posterior axis. Oligomerization of a key scaffold protein, PAR-3, is required for polarization. PAR-3 oligomers are a heterogeneous population of many different sizes, and it remains unclear how oligomer size affects PAR-3 segregation. To address this question, we engineered PAR-3 to defined sizes. We report that PAR-3 trimers are necessary and sufficient for PAR-3 function during polarization and later embryo development. Quantitative analysis of PAR-3 diffusion shows that a threshold size of three subunits allows PAR-3 clusters to stably bind the membrane, where they are corralled and transported by the actomyosin cortex. Our study provides a quantitative model for size-dependent protein transportation of peripheral membrane proteins by cortical flow. The actomyosin cytoskeleton is a major regulator of cellular organization. Chang and Dickinson develop protein-engineering and particle-tracking tools to study how clustered membrane-bound proteins are transported by actomyosin contractions in vivo. Data-driven modeling reveals how membrane binding, diffusion, and collisions with F-actin contribute to protein movement.
Collapse
|
41
|
Gallaud E, Richard-Parpaillon L, Bataillé L, Pascal A, Métivier M, Archambault V, Giet R. The spindle assembly checkpoint and the spatial activation of Polo kinase determine the duration of cell division and prevent tumor formation. PLoS Genet 2022; 18:e1010145. [PMID: 35377889 PMCID: PMC9009772 DOI: 10.1371/journal.pgen.1010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/14/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
The maintenance of a restricted pool of asymmetrically dividing stem cells is essential for tissue homeostasis. This process requires the control of mitotic progression that ensures the accurate chromosome segregation. In addition, this event is coupled to the asymmetric distribution of cell fate determinants in order to prevent stem cell amplification. How this coupling is regulated remains poorly described. Here, using asymmetrically dividing Drosophila neural stem cells (NSCs), we show that Polo kinase activity levels determine timely Cyclin B degradation and mitotic progression independent of the spindle assembly checkpoint (SAC). This event is mediated by the direct phosphorylation of Polo kinase by Aurora A at spindle poles and Aurora B kinases at centromeres. Furthermore, we show that Aurora A-dependent activation of Polo is the major event that promotes NSC polarization and together with the SAC prevents brain tumor growth. Altogether, our results show that an Aurora/Polo kinase module couples NSC mitotic progression and polarization for tissue homeostasis.
Collapse
Affiliation(s)
- Emmanuel Gallaud
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, ERL U1305, Rennes, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, ERL U1305, Rennes, France
| | - Laetitia Bataillé
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, ERL U1305, Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, ERL U1305, Rennes, France
| | - Mathieu Métivier
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, ERL U1305, Rennes, France
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Régis Giet
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, ERL U1305, Rennes, France
- * E-mail:
| |
Collapse
|
42
|
Modeling protein dynamics in Caenorhabditis elegans embryos reveals that the PLK-1 gradient relies on weakly coupled reaction-diffusion mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2114205119. [PMID: 35259017 PMCID: PMC8931239 DOI: 10.1073/pnas.2114205119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular gradients have essential roles in cell and developmental biology, but their formation is not fully understood. We have developed a computational approach facilitating interpretation of protein dynamics and gradient formation. We have combined this computational approach with experiments to understand how Polo-Like Kinase 1 (PLK-1) forms a cytoplasmic gradient in Caenorhabditis elegans embryos. Although the PLK-1 gradient depends on the Muscle EXcess-5/6 (MEX-5/6) proteins, we reveal differences in PLK-1 and MEX-5 gradient formation that can be explained by a model with two components, PLK-1 bound to MEX-5 and unbound PLK-1. Our combined approach suggests that a weak coupling between PLK-1 and MEX-5 reaction–diffusion mechanisms dictates the dynamic exchange of PLK-1 with the cytoplasm, explaining PLK-1 high diffusivity and smooth gradient. Protein gradients have fundamental roles in cell and developmental biology. In the one-cell Caenorhabditis elegans embryo, the mitotic Polo-Like Kinase 1 (PLK-1) forms an anterior-rich cytoplasmic gradient, which is crucial for asymmetric cell division and embryonic development. The PLK-1 gradient depends on the RNA-binding Muscle-EXcess-5 protein (MEX-5), whose slow-diffusing complexes accumulate in the anterior via a reaction–diffusion mechanism. Here, we combine experiments and a computational approach to investigate the dynamics of PLK-1 gradient formation. We find that the gradient of PLK-1 initiates later, is less steep, and forms with slower dynamics than does the MEX-5 gradient. The data show that PLK-1 diffuses faster than MEX-5 in both anterior and posterior cytoplasmic regions. Our simulations suggest that binding to slow-diffusing MEX-5 is required for PLK-1 gradient formation, but that a significant fraction of unbound PLK-1 is necessary to justify the different gradient dynamics. We provide a computational tool able to predict gradient establishment prior to cell division and show that a two-component, bound and unbound, model of PLK-1 dynamics recapitulates the experimental observations.
Collapse
|
43
|
Biophysical Models of PAR Cluster Transport by Cortical Flow in C. elegans Early Embryogenesis. Bull Math Biol 2022; 84:40. [PMID: 35142872 DOI: 10.1007/s11538-022-00997-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
Abstract
The clustering of membrane-bound proteins facilitates their transport by cortical actin flow in early Caenorhabditis elegans embryo cell polarity. PAR-3 clustering is critical for this process, yet the biophysical processes that couple protein clusters to cortical flow remain unknown. We develop a discrete, stochastic agent-based model of protein clustering and test four hypothetical models for how clusters may interact with the flow. Results show that the canonical way to assess transport characteristics from single-particle tracking data used thus far in this area, the Péclet number, is insufficient to distinguish these hypotheses and that all models can account for transport characteristics quantified by this measure. However, using this model, we demonstrate that these different cluster-cortex interactions may be distinguished using a different metric, namely the scalar projection of cluster displacement on to the flow displacement vector. Our results thus provide a testable way to use existing single-particle tracking data to test how endogenous protein clusters may interact with the cortical flow to localize during polarity establishment. To facilitate this investigation, we also develop both improved simulation and semi-analytic methodologies to quantify motion summary statistics (e.g., Péclet number and scalar projection) for these stochastic models as a function of biophysical parameters.
Collapse
|
44
|
Yao B, Donoughe S, Michaux J, Munro E. Modulating RhoA effectors induces transitions to oscillatory and more wavelike RhoA dynamics in C. elegans zygotes. Mol Biol Cell 2022; 33:ar58. [PMID: 35138935 PMCID: PMC9265151 DOI: 10.1091/mbc.e21-11-0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pulsatile RhoA dynamics underlie a wide range of cell and tissue behaviors. The circuits that produce these dynamics in different cells share common architectures based on fast positive and delayed negative feedback through F-actin, but they can produce very different spatiotemporal patterns of RhoA activity. However, the underlying causes of this variation remain poorly understood. Here we asked how this variation could arise through modulation of actin network dynamics downstream of active RhoA in early C. elegans embryos. We find that perturbing two RhoA effectors - formin and anillin - induce transitions from non-recurrent focal pulses to either large noisy oscillatory pulses (formin depletion) or noisy oscillatory waves (anillin depletion). In both cases these transitions could be explained by changes in local F-actin levels and depletion dynamics, leading to changes in spatial and temporal patterns of RhoA inhibition. However, the underlying mechanisms for F-actin depletion are distinct, with different dependencies on myosin II activity. Thus, modulating actomyosin network dynamics could shape the spatiotemporal dynamics of RhoA activity for different physiological or morphogenetic functions. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Baixue Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637
| | - Seth Donoughe
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637
| | | | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Cell Biology, University of Chicago, Chicago, IL 60637.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637.,Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| |
Collapse
|
45
|
Ha T, Kaiser C, Myong S, Wu B, Xiao J. Next generation single-molecule techniques: Imaging, labeling, and manipulation in vitro and in cellulo. Mol Cell 2022; 82:304-314. [PMID: 35063098 PMCID: PMC12104962 DOI: 10.1016/j.molcel.2021.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.
Collapse
Affiliation(s)
- Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Christian Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
46
|
Ramalho JJ, Jones VAS, Mutte S, Weijers D. Pole position: How plant cells polarize along the axes. THE PLANT CELL 2022; 34:174-192. [PMID: 34338785 PMCID: PMC8774072 DOI: 10.1093/plcell/koab203] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function, and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization. Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the regulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and discuss the evolution of polarity machineries in plants.
Collapse
Affiliation(s)
| | | | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6703WE Wageningen, The Netherlands
| | | |
Collapse
|
47
|
Stolpner N, Dickinson DJ. Single-Cell Single-Molecule Pull-Down (sc-SiMPull) for Detection of Protein Complexes from Embryonic Lysates. Methods Mol Biol 2022; 2438:59-81. [PMID: 35147935 PMCID: PMC8851684 DOI: 10.1007/978-1-0716-2035-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mapping how proteins form complexes and change binding partners is central to understanding cell signaling. Bulk biochemistry can provide a summary of what complexes are present in a cell, but information about the diversity of individual protein complexes is lost. Here, we describe single-cell , single-molecule pull-down (sc-SiMPull), a TIRF microscopy-based coimmunoprecipitation method, to visualize thousands of individual proteins, their binding partners, and protein complex stoichiometry directly from single-cell lysate. By iterating sc-SiMPull over time, temporal dynamics of protein complexes in response to signaling can be constructed.
Collapse
Affiliation(s)
- Naomi Stolpner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
48
|
Sarıkaya S, Dickinson DJ. Rapid extraction and kinetic analysis of protein complexes from single cells. Biophys J 2021; 120:5018-5031. [PMID: 34653388 PMCID: PMC8633716 DOI: 10.1016/j.bpj.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
Proteins contribute to cell biology by forming dynamic, regulated interactions, and measuring these interactions is a foundational approach in biochemistry. We present a rapid, quantitative in vivo assay for protein-protein interactions, based on optical cell lysis followed by time-resolved single-molecule analysis of protein complex binding to an antibody-coated substrate. We show that our approach has better reproducibility, higher dynamic range, and lower background than previous single-molecule pull-down assays. Furthermore, we demonstrate that by monitoring cellular protein complexes over time after cell lysis, we can measure the dissociation rate constant of a cellular protein complex, providing information about binding affinity and kinetics. Our dynamic single-cell, single-molecule pull-down method thus approaches the biochemical precision that is often sought from in vitro assays while being applicable to native protein complexes isolated from single cells in vivo.
Collapse
Affiliation(s)
- Sena Sarıkaya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Daniel J Dickinson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
49
|
Caroti F, Thiels W, Vanslambrouck M, Jelier R. Wnt Signaling Induces Asymmetric Dynamics in the Actomyosin Cortex of the C. elegans Endomesodermal Precursor Cell. Front Cell Dev Biol 2021; 9:702741. [PMID: 34604213 PMCID: PMC8484649 DOI: 10.3389/fcell.2021.702741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
During asymmetrical division of the endomesodermal precursor cell EMS, a cortical flow arises, and the daughter cells, endodermal precursor E and mesodermal precursor MS, have an enduring difference in the levels of F-actin and non-muscular myosin. Ablation of the cell cortex suggests that these observed differences lead to differences in cortical tension. The higher F-actin and myosin levels in the MS daughter coincide with cell shape changes and relatively lower tension, indicating a soft, actively moving cell, whereas the lower signal in the E daughter cell is associated with higher tension and a more rigid, spherical shape. The cortical flow is under control of the Wnt signaling pathway. Perturbing the pathway removes the asymmetry arising during EMS division and induces subtle defects in the cellular movements at the eight-cell stage. The perturbed cellular movement appears to be associated with an asymmetric distribution of E-cadherin across the EMS cytokinesis groove. ABpl forms a lamellipodium which preferentially adheres to MS by the E-cadherin HMR-1. The HMR-1 asymmetry across the groove is complete just at the moment cytokinesis completes. Perturbing Wnt signaling equalizes the HMR-1 distribution across the lamellipodium. We conclude that Wnt signaling induces a cortical flow during EMS division, which results in a transition in the cortical contractile network for the daughter cells, as well as an asymmetric distribution of E-cadherin.
Collapse
Affiliation(s)
- Francesca Caroti
- Predictive Genetics and Multicellular Systems, CMPG, University of Leuven, Leuven, Belgium
| | - Wim Thiels
- Predictive Genetics and Multicellular Systems, CMPG, University of Leuven, Leuven, Belgium
| | - Michiel Vanslambrouck
- Predictive Genetics and Multicellular Systems, CMPG, University of Leuven, Leuven, Belgium
| | - Rob Jelier
- Predictive Genetics and Multicellular Systems, CMPG, University of Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Li Y, Munro E. Filament-guided filament assembly provides structural memory of filament alignment during cytokinesis. Dev Cell 2021; 56:2486-2500.e6. [PMID: 34480876 DOI: 10.1016/j.devcel.2021.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 10/24/2022]
Abstract
During cytokinesis, animal cells rapidly remodel the equatorial cortex to build an aligned array of actin filaments called the contractile ring. Local reorientation of filaments by active equatorial compression is thought to underlie the emergence of filament alignment during ring assembly. Here, combining single molecule analysis and modeling in one-cell C. elegans embryos, we show that filaments turnover is far too fast for reorientation of individual filaments by equatorial compression to explain the observed alignment, even if favorably oriented filaments are selectively stabilized. By tracking single formin/CYK-1::GFP particles to monitor local filament assembly, we identify a mechanism that we call filament-guided filament assembly (FGFA), in which existing filaments serve as templates to orient the growth of new filaments. FGFA sharply increases the effective lifetime of filament orientation, providing structural memory that allows cells to build highly aligned filament arrays in response to equatorial compression, despite rapid turnover of individual filaments.
Collapse
Affiliation(s)
- Younan Li
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|