1
|
Xu L, Ji J, Wang L, Pan J, Xiao M, Zhang C, Gan Y, Xie G, Tan M, Wang X, Wen C, Fan Y, Chin YE. LIF Promotes Sec15b-Mediated STAT3 Exosome Secretion to Maintain Stem Cell Pluripotency in Mouse Embryonic Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407971. [PMID: 39475099 DOI: 10.1002/advs.202407971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Indexed: 12/28/2024]
Abstract
LIF maintains self-renewal growth in mouse embryonic stem cells (mESC) by activating STAT3, which translocates into nucleus for pluripotent gene induction. However, the ERK signaling pathway activated by LIF at large counteract with pluripotent gene induction during self-renewal growth. Here, it is reported that in mESC STAT3 undergoes multivesicular endosomes (MVEs) translocation and subsequent secretion, LIF-activated STAT3 is acetylated on K177/180 and phosphorylated on Y293 residues within the N-terminal coiled-coil domain, which is responsible for the interaction between STAT3 and Secl5b, an exocyst complex component 6B (EXOC6B). STAT3 translocation into MVEs resulted in the downregulation of T202/Y204-ERK1/2 phosphorylation and up-regulation of S9-GSK3β phosphorylation for maintaining mESC self-renewal growth. STAT3 with K177R/K180R or Y293F substitution fails to execute MVEs translocation and Secl5b-dependent secretion. Mice expressing K177RK180R substitution (STAT3mut/mut) are partially embryonic lethal. In STAT3mut/mut embryos, gene expressions related to hematological system function changed significantly and those living ones carry a series of abnormalities in the hematopoietic system. Furthermore, mice with Secl5b knockout exhibit embryonic lethality. Thus, Secl5b mediated STAT3 MVEs translocation regulates the balance of ERK and GSK3β signaling pathways and maintain mESC self-renewal growth, which is involved in regulating the stability of hematopoietic system.
Collapse
Affiliation(s)
- Li Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Lingbo Wang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jieli Pan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingzhe Xiao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenxi Zhang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yihong Gan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingdian Tan
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Yongsheng Fan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
2
|
Garge RK, Lynch V, Fields R, Casadei S, Best S, Stone J, Snyder M, McGann CD, Shendure J, Starita LM, Hamazaki N, Schweppe DK. The proteomic landscape and temporal dynamics of mammalian gastruloid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.609098. [PMID: 39282277 PMCID: PMC11398484 DOI: 10.1101/2024.09.05.609098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Gastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is challenging to study in vivo, stem cell-derived models have emerged as powerful surrogates, e.g. human and mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have been extensively applied to characterize such in vitro embryo models, a paucity of measurements of protein dynamics and regulation leaves a major gap in our understanding. Here, we sought to address this by applying quantitative proteomics to human and mouse gastruloids at four key stages of their differentiation (naïve ESCs, primed ESCs, early gastruloids, late gastruloids). To the resulting data, we perform network analysis to map the dynamics of expression of macromolecular protein complexes and biochemical pathways, including identifying cooperative proteins that associate with them. With matched RNA-seq and phosphosite data from these same stages, we investigate pathway-, stage- and species-specific aspects of translational and post-translational regulation, e.g. finding peri-gastrulation stages of human and mice to be discordant with respect to the mitochondrial transcriptome vs. proteome, and nominating novel kinase-substrate relationships based on phosphosite dynamics. Finally, we leverage correlated dynamics to identify conserved protein networks centered around congenital disease genes. Altogether, our data (https://gastruloid.brotmanbaty.org/) and analyses showcase the potential of intersecting in vitro embryo models and proteomics to advance our understanding of early mammalian development in ways not possible through transcriptomics alone.
Collapse
Affiliation(s)
- Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Valerie Lynch
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Sabrina Best
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Matthew Snyder
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Chris D. McGann
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Hu L, Xiao X, Huang W, Zhou T, Chen W, Zhang C, Ying QL. A novel chemical genetic approach reveals paralog-specific role of ERK1/2 in mouse embryonic stem cell fate control. Front Cell Dev Biol 2024; 12:1415621. [PMID: 39071800 PMCID: PMC11272557 DOI: 10.3389/fcell.2024.1415621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction: Mouse embryonic stem cell (ESC) self-renewal can be maintained through dual inhibition of GSK3 and MEK kinases. MEK has two highly homologous downstream kinases, extracellular signal-regulated kinase 1 and 2 (ERK1/2). However, the exact roles of ERK1/2 in mouse ESC self-renewal and differentiation remain unclear. Methods: We selectively deleted or inhibited ERK1, ERK2, or both using genetic and chemical genetic approaches combined with small molecule inhibitors. The effects of ERK paralog-specific inhibition on mouse ESC self-renewal and differentiation were then assessed. Results: ERK1/2 were found to be dispensable for mouse ESC survival and self-renewal. The inhibition of both ERK paralogs, in conjunction with GSK3 inhibition, was sufficient to maintain mouse ESC self-renewal. In contrast, selective deletion or inhibition of only one ERK paralog did not mimic the effect of MEK inhibition in promoting mouse ESC self-renewal. Regarding ESC differentiation, inhibition of ERK1/2 prevented mesendoderm differentiation. Additionally, selective inhibition of ERK1, but not ERK2, promoted mesendoderm differentiation. Discussion: These findings suggest that ERK1 and ERK2 have both overlapping and distinct roles in regulating ESC self-renewal and differentiation. This study provides new insights into the molecular mechanisms of ERK1/2 in governing ESC maintenance and lineage commitment, potentially informing future strategies for controlling stem cell fate in research and therapeutic applications.
Collapse
Affiliation(s)
- Liang Hu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiong Xiao
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wesley Huang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tao Zhou
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Weilu Chen
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chao Zhang
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Qi-Long Ying
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Park DS, Nguyen SC, Isenhart R, Shah PP, Kim W, Barnett RJ, Chandra A, Luppino JM, Harke J, Wai M, Walsh PJ, Abdill RJ, Yang R, Lan Y, Yoon S, Yunker R, Kanemaki MT, Vahedi G, Phillips-Cremins JE, Jain R, Joyce EF. High-throughput Oligopaint screen identifies druggable 3D genome regulators. Nature 2023; 620:209-217. [PMID: 37438531 PMCID: PMC11305015 DOI: 10.1038/s41586-023-06340-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randi Isenhart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wonho Kim
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jailynn Harke
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - May Wai
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Walsh
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Yang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sora Yoon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Gao L, Lu Y, Chen HN, Li Z, Hu M, Zhang R, Wang X, Xu Z, Gong Y, Wang R, Du D, Hai S, Li S, Su D, Li Y, Xu H, Zhou ZG, Dai L. Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Mol Cell Proteomics 2023; 22:100545. [PMID: 37031867 PMCID: PMC10196724 DOI: 10.1016/j.mcpro.2023.100545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
GSK3α and GSK3β are two GSK3 isoforms with 84% overall identity and 98% identity in their catalytic domains. GSK3β plays important roles in the pathogenesis of cancer, while GSK3α has long been considered a functionally redundant protein of GSK3β. Few studies have specifically investigated the functions of GSK3α. In this study, unexpectedly, we found that the expression of GSK3α, but not GSK3β, was significantly correlated with the overall survival of colon cancer patients in 4 independent cohorts. To decipher the roles of GSK3α in colon cancer, we profiled the phosphorylation substrates of GSK3α and uncovered 156 phosphosites from 130 proteins specifically regulated by GSK3α. A number of these GSK3α-mediated phosphosites have never been reported before or have been incorrectly identified as substrates of GSK3β. Among them, the levels of HSF1S303p, CANXS583p, MCM2S41p, POGZS425p, SRRM2T983p, and PRPF4BS431p were significantly correlated with the overall survival of colon cancer patients. Further pull-down assays identified 23 proteins, such as THRAP3, BCLAF1, and STAU1, showing strong binding affinity to GSK3α. The interaction between THRAP3 and GSK3α was verified by biochemical experiments. Notably, among the 18 phosphosites of THRAP3, phosphorylation at S248, S253, and S682 is specifically mediated by GSK3α. Mutation of S248 to D (S248D), which mimics the effect of phosphorylation, obviously increased cancer cell migration and the binding affinity to proteins related to DNA damage repair. Collectively, this work not only discloses the specific function of GSK3α as a kinase but also suggests GSK3α as a promising therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Li Gao
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Hu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rou Zhang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqiang Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China; Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Cormier KW, Larsen B, Gingras AC, Woodgett JR. Interactomes of Glycogen Synthase Kinase-3 Isoforms. J Proteome Res 2023; 22:977-989. [PMID: 36779422 PMCID: PMC9990120 DOI: 10.1021/acs.jproteome.2c00825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Functional differentiation of the two isoforms of the protein-serine/threonine kinase, glycogen synthase kinase-3 (GSK-3), is an unsettled area of research. The isoforms are highly similar in structure and are largely redundant, though there is also evidence for specific roles. Identification of isoform-specific protein interactors may elucidate the differences in function and provide insight into isoform-selective regulation. We therefore sought to identify novel GSK-3 interaction partners and to examine differences in the interactomes of the two isoforms using both affinity purification and proximity-dependent biotinylation (BioID) mass spectrometry methods. While the interactomes of the two isomers are highly similar in HEK293 cells, BioID in HeLa cells yielded a variety of preys that are preferentially associated with one of the two isoforms. DCP1B, which favored GSK-3α, and MISP, which favored GSK-3β, were evaluated for reciprocal interactions. The differences in interactions between isoforms may help in understanding the distinct functions and regulation of the two isoforms as well as offer avenues for the development of isoform-specific strategies.
Collapse
Affiliation(s)
- Kevin W Cormier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
7
|
Liao J, Zhang X, Zhang L, Xu Z, Kang S, Xu L, Chen H, Sun M, Wu S, Qin Q, Wei J. Characterization and functional analysis of GSK3β from Epinephelus coioides in Singapore grouper iridovirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:549-558. [PMID: 36273516 DOI: 10.1016/j.fsi.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β), a serine/threonine protein kinase, is a crucial regulator of several signaling pathways and plays a vital role in cell proliferation, growth, apoptosis, and immune responses. However, the role of GSK3β during viral infection in teleosts remains largely unknown. In the present study, a GSK3β homologue from Epinephelus coioides (EcGSK3β) was cloned and characterized. The open reading frame of EcGSK3β consists of 1323 bp, encoding a 440 amino acid protein, with a predicted molecular mass of 48.23 kDa. Similar to its mammalian counterpart, EcGSK3β contains an S_TKc domain. EcGSK3β shares 99.77% homology with the giant grouper (Epinephelus lanceolatus). Quantitative real-time PCR analysis indicated that EcGSK3β mRNA was broadly expressed in all tested tissues, with abundant expression in the skin, blood, and intestines. Additionally, the expression of EcGSK3β increased after Singapore grouper iridovirus (SGIV) infection in grouper spleen (GS) cells. Intracellular localization analysis demonstrated that EcGSK3β is mainly distributed in the cytoplasm. EcGSK3β overexpression promoted SGIV replication during viral infection in vitro. In contrast, silencing of EcGSK3β inhibited SGIV replication. EcGSK3β significantly downregulated the activities of interferon-β, interferon-sensitive response element, and NF-κB. Taken together, these findings are important for a better understanding of the function of GSK3β in fish and reveal its involvement in the host response to viral immune challenge.
Collapse
Affiliation(s)
- Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Mengshi Sun
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 528478, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
8
|
Rezende Miranda R, Zhang C. Reactivity-based chemical-genetic study of protein kinases. RSC Med Chem 2022; 13:783-797. [PMID: 35923719 PMCID: PMC9298188 DOI: 10.1039/d1md00389e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022] Open
Abstract
The human protein kinase superfamily comprises over 500 members that operate in nearly every signal transduction pathway and regulate essential cellular processes. Deciphering the functional roles of protein kinases with small-molecule inhibitors is essential to enhance our understanding of cell signaling and to facilitate the development of new therapies. However, it is rather challenging to identify selective kinase inhibitors because of the conserved nature of the ATP binding site. A number of chemical-genetic approaches have been developed during the past two decades to enable selective chemical perturbation of the activity of individual kinases. Herein, we review the development and application of chemical-genetic strategies that feature the use of covalent inhibitors targeting cysteine residues to dissect the cellular functions of protein kinases.
Collapse
Affiliation(s)
- Renata Rezende Miranda
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester New York 14623 USA
| | - Chao Zhang
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California Los Angeles California 90089 USA
- USC Norris Comprehensive Cancer Center, University of Southern California Los Angeles California 90089 USA
| |
Collapse
|
9
|
Kim W, Park S, Kwon W, Kim D, Park JK, Han JE, Cho GJ, Han SH, Sung Y, Yi JK, Kim MO, Ryoo ZY, Choi SK. Suppression of transient receptor potential melastatin 7 regulates pluripotency, proliferation, and differentiation of mouse embryonic stem cells via mechanistic target of rapamycin-extracellular signal-regulated kinase activation. J Cell Biochem 2021; 123:547-567. [PMID: 34958137 DOI: 10.1002/jcb.30199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Mouse embryonic stem cells (mESCs) are a widely used model for their diverse availability in studying early embryonic development and their application in regenerative treatment of various intractable diseases. Transient receptor potential melastatin 7 (Trpm7) regulates Ca2+ as a nonselective ion channel and is essential for early embryonic development; however, the precise role of Trpm7 in mESCs has not been clearly elucidated. In this study, we showed that the inhibition of Trpm7 affects the pluripotency and self-renewal of mESCs. We found that short hairpin RNA (shRNA)-mediated suppression of Trpm7 resulted in decreased expression of transcriptional regulators, Oct4 and Sox2, which maintain stemness in mESCs. In addition, Trpm7 knockdown led to alterations in the basic properties of mESCs, such as decreased proliferation, cell cycle arrest at the G0/G1 phase, and increased apoptosis. Furthermore, embryoid body (EB) formation and teratoma formation assays revealed abnormal regulation of differentiation due to Trpm7 knockdown, including the smaller size of EBs, elevated ectodermal differentiation, and diminished endodermal and mesodermal differentiation. We found that EB Day 7 samples displayed decreased intracellular Ca2+ levels compared to those of the scrambled group. Finally, we identified that these alterations induced by Trpm7 knockdown occurred due to decreased phosphorylation of mechanistic target of rapamycin (mTOR) and subsequent activation of extracellular signal-regulated kinase (ERK) in mESCs. Our findings suggest that Trpm7 could be a novel regulator for maintaining stemness and modulating the differentiation of mESCs.
Collapse
Affiliation(s)
- Wansoo Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea.,School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, South Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Division of Biotechnology, DGIST, Daegu, South Korea
| | - Daehwan Kim
- Core Protein Resources Center, DGIST, Daegu, South Korea.,School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, South Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Se-Hyeon Han
- Department of News-team, SBS (Seoul Broadcasting System), Seoul, South Korea.,School of Media Communication, Hanyang University, Seoul, South Korea
| | - Yonghun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju, South Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, South Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, South Korea.,Division of Biotechnology, DGIST, Daegu, South Korea
| |
Collapse
|
10
|
Zhang S, Zhu L, Hou C, Yuan H, Yang S, Dehwah MAS, Shi L. GSK3β Plays a Negative Role During White Spot Syndrome Virus (WSSV) Infection by Regulating NF-κB Activity in Shrimp Litopenaeus vannamei. Front Immunol 2020; 11:607543. [PMID: 33324423 PMCID: PMC7725904 DOI: 10.3389/fimmu.2020.607543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3), a cytoplasmic serine/threonine-protein kinase involved in a large number of key cellular processes, is a little-known signaling molecule in virus study. In this study, a GSK3 protein which was highly similar to GSK3β homologs from other species in Litopenaeus vannamei (designated as LvGSK3β) was obtained. LvGSK3β was expressed constitutively in the healthy L. vannamei, at the highest level in the intestine and the lowest level in the eyestalk. White spot syndrome virus (WSSV) reduced LvGSK3β expression was in immune tissues including the hemocyte, intestine, gill and hepatopancreas. The inhibition of LvGSK3β resulted in significantly higher survival rates of L. vannamei during WSSV infection than the control group, and significantly lower WSSV viral loads in LvGSK3β-inhibited L. vannamei were observed. Knockdown of LvGSK3β by RNAi resulted in increases in the expression of LvDorsal and several NF-κB driven antimicrobial peptide (AMP) genes (including ALF, PEN and crustin), but a decrease in LvCactus expression. Accordingly, overexpression of LvGSK3β could reduce the promoter activity of LvDorsal and several AMPs, while the promoter activity of LvCactus was increased. Electrophoretic mobility shift assays (EMSA) showed that LvDorsal could bind to the promoter of LvGSK3β. The interaction between LvGSK3β and LvDorsal or LvCactus was confirmed using co-immunoprecipitation (Co-IP) assays. In addition, the expression of LvGSK3β was dramatically reduced by knockdown of LvDorsal. In summary, the results presented in this study indicated that LvGSK3β had a negative effect on L. vannamei by mediating a feedback regulation of the NF-κB pathway when it is infected by WSSV.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.,Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Lulu Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Cuihong Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Sheng Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Mustafa Abdo Saif Dehwah
- Department of Medical Laboratories, Faculty of Medical and Health Science, Taiz University/AL-Turba Branch, Taiz, Yemen
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
11
|
Silva-García O, Cortés-Vieyra R, Mendoza-Ambrosio FN, Ramírez-Galicia G, Baizabal-Aguirre VM. GSK3α: An Important Paralog in Neurodegenerative Disorders and Cancer. Biomolecules 2020; 10:E1683. [PMID: 33339170 PMCID: PMC7765659 DOI: 10.3390/biom10121683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The biological activity of the enzyme glycogen synthase kinase-3 (GSK3) is fulfilled by two paralogs named GSK3α and GSK3β, which possess both redundancy and specific functions. The upregulated activity of these proteins is linked to the development of disorders such as neurodegenerative disorders (ND) and cancer. Although various chemical inhibitors of these enzymes restore the brain functions in models of ND such as Alzheimer's disease (AD), and reduce the proliferation and survival of cancer cells, the particular contribution of each paralog to these effects remains unclear as these molecules downregulate the activity of both paralogs with a similar efficacy. Moreover, given that GSK3 paralogs phosphorylate more than 100 substrates, the simultaneous inhibition of both enzymes has detrimental effects during long-term inhibition. Although the GSK3β kinase function has usually been taken as the global GSK3 activity, in the last few years, a growing interest in the study of GSK3α has emerged because several studies have recognized it as the main GSK3 paralog involved in a variety of diseases. This review summarizes the current biological evidence on the role of GSK3α in AD and various types of cancer. We also provide a discussion on some strategies that may lead to the design of the paralog-specific inhibition of GSK3α.
Collapse
Affiliation(s)
- Octavio Silva-García
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Ricarda Cortés-Vieyra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Michoacán 58000, Mexico;
| | | | - Guillermo Ramírez-Galicia
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Víctor M. Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán 58893, Mexico
| |
Collapse
|
12
|
Korona D, Nightingale D, Fabre B, Nelson M, Fischer B, Johnson G, Lees J, Hubbard S, Lilley K, Russell S. Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy. PLoS One 2020; 15:e0236679. [PMID: 32760087 PMCID: PMC7410302 DOI: 10.1371/journal.pone.0236679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively, this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoforms we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3β proteins encoded by independent vertebrate genes. Our analysis suggests that different proteoforms generated by alternative splicing are likely to perform distinct functions.
Collapse
Affiliation(s)
- Dagmara Korona
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Nightingale
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Bertrand Fabre
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Michael Nelson
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre Manchester, University of Manchester, Manchester, United Kingdom
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Glynnis Johnson
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Lees
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Simon Hubbard
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre Manchester, University of Manchester, Manchester, United Kingdom
| | - Kathryn Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Gupte M, Umbarkar P, Singh AP, Zhang Q, Tousif S, Lal H. Deletion of Cardiomyocyte Glycogen Synthase Kinase-3 Beta (GSK-3β) Improves Systemic Glucose Tolerance with Maintained Heart Function in Established Obesity. Cells 2020; 9:cells9051120. [PMID: 32365965 PMCID: PMC7291092 DOI: 10.3390/cells9051120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/12/2023] Open
Abstract
Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity). In the present study, we investigated the role of CM-GSK-3β in a clinically more relevant model of established obesity (deletion of CM-GSK-3β after established obesity). CM-GSK-3β knockout (GSK-3βfl/flCre+/-) and controls (GSK-3βfl/flCre-/-) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3β specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3β knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3β in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical β-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.
Collapse
Affiliation(s)
- Manisha Gupte
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Department of Biology, Austin Peay State University, Clarksville, TN 37044, USA
| | - Prachi Umbarkar
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Anand Prakash Singh
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Sultan Tousif
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
| | - Hind Lal
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (M.G.); (P.U.); (A.P.S.); (Q.Z.)
- Division of Cardiovascular Disease, UAB|University of Alabama at Birmingham, Birmingham, AL 35294-1913, USA;
- Correspondence: ; Tel.: (205)-996-4219; Fax: (205)-975-5104
| |
Collapse
|
14
|
Javvaji PK, Dhali A, Francis JR, Kolte AP, Roy SC, Selvaraju S, Mech A, Sejian V. IGF-1 treatment during in vitro maturation improves developmental potential of ovine oocytes through the regulation of PI3K/Akt and apoptosis signaling. Anim Biotechnol 2020; 32:798-805. [PMID: 32293977 DOI: 10.1080/10495398.2020.1752703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study aimed to assess the effect of the insulin-like grow factor 1 (IGF-1) treatment during in vitro maturation on the gene expression and developmental ability of ovine oocytes. Ovine cumulus-oocyte complexes (COC) were matured in vitro without (control) or with the supplementation of IGF-1 (100 ng/ml) and then subjected to in vitro fertilization and culture. The rate of oocyte maturation and embryo development was recorded and expression of the selected genes (involved in the PI3K/Akt and apoptosis signaling) was assessed in the matured oocytes. The IGF-1 treatment significantly (p < .05) improved the oocyte maturation rate (%) as compared to the control (81.5 ± 2.40 vs. 73.6 ± 0.94). Similarly, as compared to the control, the IGF-1 treatment significantly (p < .05) improved the rate (%) of cleavage (54.7 ± 1.58 vs. 67.2 ± 3.65) and the formation of 4-8 cell embryos (30.7 ± 2.89 vs. 44.1 ± 4.01) and morula (20.7 ± 2.08 vs. 32.8 ± 2.78). The IGF-1 treatment significantly (p < .05) upregulated the expression of IGF1R, PI3KR1, AKT1 and BCL2 and downregulated the expression of GSK3β, FOXO3 and CASP9 in the matured oocytes. In conclusion, the IGF-1 treatment significantly improved the developmental competence of ovine oocytes through the regulation of the PI3K/Akt and apoptosis signaling.
Collapse
Affiliation(s)
- Pradeep Krishna Javvaji
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Centre for Post Graduate Studies, Jain University, Bengaluru, India
| | - Arindam Dhali
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Joseph Rabinson Francis
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India.,Centre for Post Graduate Studies, Jain University, Bengaluru, India
| | - Atul P Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sudhir C Roy
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sellappan Selvaraju
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Anjumoni Mech
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Veerasamy Sejian
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| |
Collapse
|
15
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
16
|
Li J, Liu L, Zhang J, Cheng L, Ren L, Zhao Y. The expression of miR-129-5p and its target genes in the skin of goats. Anim Biotechnol 2020; 32:573-579. [PMID: 32078403 DOI: 10.1080/10495398.2020.1730392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coat color is one of the major quality traits of animals, and miR-129-5p acts as an important regulator for melanin biosynthesis in mammals. In this study, real-time PCR and western blotting were used to examine the expression of miR-129-5p and its targets genes in the skin of different coat color goats. The results showed that the expression of miR-129-5p in the skin samples of Inner Mongolia cashmere goats (IMCG) was higher than that of Dazu black goat (DBG). Also, the target genes (tyrosinase (TYR), frizzled 6 (FZD6) and glycogen synthase kinase 3β (GSK3β)) of miR-129-5p was highly expressed in the skin samples of DBG. The expression of miR-129-5p firstly increased and then decreased with age in F1 hybrid generation of DBG and IMCG. In addition, the expression of TYR decreased with age, while the expression of MITF increased with age but then decreased. The expression of FZD6 and GSK3β in the skin samples of F1 of different ages were irregular. Our results indicated that miR-129-5p mainly affects the formation of coat color of goats by decreasing the expression of TYR. This study suggests that miR-129-5p can act as a suppressor in the formation of coat color to lay the foundation for studying the effect of miR-129-5p on melanin synthesis.
Collapse
Affiliation(s)
- Jialu Li
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Lei Cheng
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Lingtong Ren
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing, P. R. China.,Chongqing Key Laboratory of Forage and Herbivore, Beibei, Chongqing, P. R. China.,Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Beibei, Chongqing, P. R. China
| |
Collapse
|
17
|
Jin XF, Spöttl G, Maurer J, Nölting S, Auernhammer CJ. Inhibition of Wnt/β-Catenin Signaling in Neuroendocrine Tumors in vitro: Antitumoral Effects. Cancers (Basel) 2020; 12:cancers12020345. [PMID: 32033025 PMCID: PMC7072467 DOI: 10.3390/cancers12020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/18/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background and aims: Inhibition of Wnt/β-catenin signaling by specific inhibitors is currently being investigated as an antitumoral strategy for various cancers. The role of Wnt/β-catenin signaling in neuroendocrine tumors still needs to be further investigated. Methods: This study investigated the antitumor activity of the porcupine (PORCN) inhibitor WNT974 and the β-catenin inhibitor PRI-724 in human neuroendocrine tumor (NET) cell lines BON1, QGP-1, and NCI-H727 in vitro. NET cells were treated with WNT974, PRI-724, or small interfering ribonucleic acids against β-catenin, and subsequent analyses included cell viability assays, flow cytometric cell cycle analysis, caspase3/7 assays and Western blot analysis. Results: Treatment of NET cells with WNT974 significantly reduced NET cell viability in a dose- and time-dependent manner by inducing NET cell cycle arrest at the G1 and G2/M phases without inducing apoptosis. WNT974 primarily blocked Wnt/β-catenin signaling by the dose- and time-dependent downregulation of low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation and non-phosphorylated β-catenin and total β-catenin, as well as the genes targeting the latter (c-Myc and cyclinD1). Furthermore, the WNT974-induced reduction of NET cell viability occurred through the inhibition of GSK-3-dependent or independent signaling (including pAKT/mTOR, pEGFR and pIGFR signaling). Similarly, treatment of NET cells with the β-catenin inhibitor PRI-724 caused significant growth inhibition, while the knockdown of β-catenin expression by siRNA reduced NET tumor cell viability of BON1 cells but not of NCI-H727 cells. Conclusions: The PORCN inhibitor WNT974 possesses antitumor properties in NET cell lines by inhibiting Wnt and related signaling. In addition, the β-catenin inhibitor PRI-724 possesses antitumor properties in NET cell lines. Future studies are needed to determine the role of Wnt/β-catenin signaling in NET as a potential therapeutic target.
Collapse
Affiliation(s)
- Xi-Feng Jin
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
| | - Gerald Spöttl
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
| | - Julian Maurer
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
| | - Svenja Nölting
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
| | - Christoph Josef Auernhammer
- Department of Internal Medicine 4, University-Hospital, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany; (X.-F.J.); (G.S.); (J.M.); (S.N.)
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM), Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Marchioninistr. 15, 81377 Munich, Germany
- Correspondence:
| |
Collapse
|
18
|
Panagi I, Jennings E, Zeng J, Günster RA, Stones CD, Mak H, Jin E, Stapels DAC, Subari NZ, Pham THM, Brewer SM, Ong SYQ, Monack DM, Helaine S, Thurston TLM. Salmonella Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase to Direct Macrophage Polarization. Cell Host Microbe 2020; 27:41-53.e6. [PMID: 31862381 PMCID: PMC6953433 DOI: 10.1016/j.chom.2019.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/13/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment.
Collapse
Affiliation(s)
- Ioanna Panagi
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Elliott Jennings
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Jingkun Zeng
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Regina A Günster
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cullum D Stones
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hazel Mak
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Enkai Jin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Daphne A C Stapels
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nur Z Subari
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Trung H M Pham
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Susan M Brewer
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Samantha Y Q Ong
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Denise M Monack
- Departments of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Teresa L M Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.
| |
Collapse
|
19
|
Chen D, Yang M, Xie L, Lu Z, Mo L, Yang W, Sun J, Xu H, Lu K, Liao Y, Lu Y. GSK-3 signaling is involved in proliferation of chicken primordial germ cells. Theriogenology 2020; 141:62-67. [DOI: 10.1016/j.theriogenology.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/10/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023]
|
20
|
Díaz ML. Regenerative medicine: could Parkinson's be the first neurodegenerative disease to be cured? Future Sci OA 2019; 5:FSO418. [PMID: 31608157 PMCID: PMC6787491 DOI: 10.2144/fsoa-2019-0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is one of the most insidious neurodegenerative diseases in developed countries. Today, human pluripotent stem cells are produced from embryonic or adult cells, multiplied, differentiated into neural cell lines and ultimately transplanted into disease animal models or patients. Nowadays, DOPAminergic neurons derived from human pluripotent stem cells and human parthenogenetic cells are being clinically tested in China and Australia, respectively. More importantly, good manufacturing practices have been developed and the neurons obtained have been successfully tested in nonhuman primates by teams in Europe, USA and Japan. However, there is a need for translational clinical studies with small molecules tested in vitro, as well as testing of the the efficacy of additional therapies.
Collapse
Affiliation(s)
- Mariacruz L Díaz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Reproducción Animal, Madrid 28040, Spain
| |
Collapse
|
21
|
Tan R, Cheng H, Li H, Tu Y. Clinical Chemistry Route for Investigation of Alzheimer's Disease: A Label-Free Electrochemiluminescent Biosensor for Glycogen Synthase Kinase-3 Beta. ACS Chem Neurosci 2019; 10:3758-3768. [PMID: 31322849 DOI: 10.1021/acschemneuro.9b00278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Herein, we report a novel label-free electrochemiluminescent (ECL) biosensor for the detection of glycogen synthase kinase-3 beta (GSK-3β). A simple and feasible sensor was prepared by a two-step process. A polymeric coordination layer of phosphorylated poly vinyl with Zr4+ was used as the sensory hosting matrix because it efficiently formed a complex. The exterior Zr4+ can further combine with another phosphate through coordination, and GSK-3β catalyzes the phosphorylation of protein molecules. Thus, the biosensor can detect GSK-3β using luminol as an ECL probe. The ECL intensity of the proposed sensor responded proportionally to the concentration of GSK-3β under direct immersion mode with a linear response in a logarithmic scale over the wide range from 0.5 to 91.5 ng L-1 and a detection limit of 0.055 ng L-1. Excellent selectivity, stability, and reproducibility were achieved using the prepared biosensor, which has a simple preparation, low cost, and disposable suitability. This work aims to provide a novel tool for early diagnosis and pathological mechanism exploration about AD by detecting inchoate change of GSK-3β content in body fluid, thus to precaution the risk of Alzheimer's disease. It is of great importance for clinical chemistry for the investigation of Alzheimer's disease.
Collapse
Affiliation(s)
- Rong Tan
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Hongying Cheng
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Huiling Li
- College of Nursing, Soochow University, Suzhou, 215006, P. R. China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
22
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
Grainger S, Willert K. Mechanisms of Wnt signaling and control. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1422. [PMID: 29600540 PMCID: PMC6165711 DOI: 10.1002/wsbm.1422] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| | - Karl Willert
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla California
| |
Collapse
|
24
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
The origin of GSKIP, a multifaceted regulatory factor in the mammalian Wnt pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1046-1059. [DOI: 10.1016/j.bbamcr.2018.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022]
|
26
|
Rasmussen ML, Ortolano NA, Romero-Morales AI, Gama V. Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells. Genes (Basel) 2018; 9:genes9020109. [PMID: 29463061 PMCID: PMC5852605 DOI: 10.3390/genes9020109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
The core transcriptional network regulating stem cell self-renewal and pluripotency remains an intense area of research. Increasing evidence indicates that modified regulation of basic cellular processes such as mitochondrial dynamics, apoptosis, and cell cycle are also essential for pluripotent stem cell identity and fate decisions. Here, we review evidence for Wnt regulation of pluripotency and self-renewal, and its connections to emerging features of pluripotent stem cells, including (1) increased mitochondrial fragmentation, (2) increased sensitivity to cell death, and (3) shortened cell cycle. We provide a general overview of the stem cell–specific mechanisms involved in the maintenance of these uncharacterized hallmarks of pluripotency and highlight potential links to the Wnt signaling pathway. Given the physiological importance of stem cells and their enormous potential for regenerative medicine, understanding fundamental mechanisms mediating the crosstalk between Wnt, organelle-dynamics, apoptosis, and cell cycle will be crucial to gain insight into the regulation of stemness.
Collapse
Affiliation(s)
- Megan L Rasmussen
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
| | - Natalya A Ortolano
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
| | | | - Vivian Gama
- Department of Cell and Developmental Biology; Vanderbilt University, Nashville, TN37232, United States.
- Vanderbilt Center for Stem Cell Biology; Vanderbilt University, Nashville, TN37232, United States.
- Vanderbilt Ingram Cancer Center; Vanderbilt University, Nashville, TN37232, United States.
| |
Collapse
|
27
|
Cardiomyocyte-specific deletion of GSK-3β leads to cardiac dysfunction in a diet induced obesity model. Int J Cardiol 2018; 259:145-152. [PMID: 29398139 DOI: 10.1016/j.ijcard.2018.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND RATIONALE Obesity, an independent risk factor for the development of myocardial diseases is a growing healthcare problem worldwide. It's well established that GSK-3β is critical to cardiac pathophysiology. However, the role cardiomyocyte (CM) GSK-3β in diet-induced cardiac dysfunction is unknown. METHODS CM-specific GSK-3β knockout (CM-GSK-3β-KO) and littermate controls (WT) mice were fed either a control diet (CD) or high-fat diet (HFD) for 55weeks. Cardiac function was assessed by transthoracic echocardiography. RESULTS At baseline, body weights and cardiac function were comparable between the WT and CM-GSK-3β-KOs. However, HFD-fed CM-GSK-3β-KO mice developed severe cardiac dysfunction. Consistently, both heart weight/tibia length and lung weight/tibia length were significantly elevated in the HFD-fed CM-GSK-3β-KO mice. The impaired cardiac function and adverse ventricular remodeling in the CM-GSK-3β-KOs were independent of body weight or the lean/fat mass composition as HFD-fed CM-GSK-3β-KO and controls demonstrated comparable body weight and body masses. At the molecular level, on a CD, CM-GSK-3α compensated for the loss of CM-GSK-3β, as evident by significantly reduced GSK-3αs21 phosphorylation (activation) resulting in a preserved canonical β-catenin ubiquitination pathway and cardiac function. However, this protective compensatory mechanism is lost with HFD, leading to excessive accumulation of β-catenin in HFD-fed CM-GSK-3β-KO hearts, resulting in adverse ventricular remodeling and cardiac dysfunction. CONCLUSION In summary, these results suggest that cardiac GSK-3β is crucial to protect against obesity-induced adverse ventricular remodeling and cardiac dysfunction.
Collapse
|