1
|
Bankaitis VA, Khan D, Chen XR, Wang Y, Igumenova TI. A brief history of phosphatidylinositol transfer proteins: from the backwaters of cell biology to prime time in lipid signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159625. [PMID: 40354930 DOI: 10.1016/j.bbalip.2025.159625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
How lipids are sorted between intracellular compartments and what mechanisms support inter-organellar lipid transport define questions that have enjoyed long-standing interest in the cell biology community. Despite tantalizing evidence to the effect that lipids can move between organelles independently of standard modes of vesicular membrane trafficking through the secretory pathway, biochemical dissection of these non-vesicular pathways was initially fraught with experimental challenges. Many of the obstacles have now been overcome and, following initial breakthroughs, the last two decades have witnessed a renaissance in the field of lipid trafficking. Indeed, lipid trafficking and mobilization are now significant components of any discussion regarding secretory vesicle trafficking, organelle biogenesis, agonist-stimulated lipid signaling, and inter-compartmental communication pathways that involve every organelle in the eukaryotic cell. In accord with the theme of this special issue, we focus on the topic of soluble lipid transfer proteins that interface with the metabolism of phosphatidylinositol (PtdIns) and its phosphorylated derivatives - the phosphoinositides. Although phosphoinositides are quantitatively minor lipids in cells, these molecules represent the chemical codes for a major pathway of intracellular signaling in all eukaryotic cells. It is now clear that soluble PtdIns transfer proteins (PITPs) are physiologically critical regulators of specific pathways of phosphoinositide - particularly PtdIns-4-phosphate - signaling. The 'where' PITPs determine the biological outcomes of phosphoinositide signaling, and the 'how' by which PITPs do so, represent increasingly active areas of research in contemporary cell biology. It is these issues we explore from a historical perspective with a focus on the Sec14-like PITPs.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | - Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiao-Ru Chen
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Tatyana I Igumenova
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
De Matteis MA, Fico M, Venditti R. Regulation and function of PI4P at the Golgi complex. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159626. [PMID: 40350028 DOI: 10.1016/j.bbalip.2025.159626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Fifty years after Bob Michell's visionary prediction, phosphatidylinositol 4-phosphate (PI4P) has emerged as a central regulator of Golgi function, influencing membrane trafficking, lipid metabolism, and signaling. PI4P homeostasis is tightly controlled by phosphatidylinositol 4-kinases (PI4Ks), phosphatidylinositol transfer proteins (PITPs), and the phosphatase SAC1, ensuring precise regulation across Golgi subdomains. Beyond its classical role in vesicular transport, PI4P orchestrates lipid exchange at membrane contact sites, enabling dynamic Golgi maturation and functional specialization. The interplay between PI4P, lipid transfer proteins, and Golgi adaptors underlies cargo sorting, glycosylation, and organelle architecture. Emerging evidence also highlights PI4P's role in oncogenesis and cellular signaling, positioning the Golgi as a critical hub beyond secretion. Yet, key questions remain regarding PI4P compartmentalization and its broader physiological impact. This review revisits PI4P's essential functions, integrating historical insights with recent discoveries to illuminate its pivotal role in Golgi biology and beyond.
Collapse
Affiliation(s)
- Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Marianna Fico
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Carrillo ND, Chen M, Wen T, Awasthi P, Wolfe TJ, Sterling C, Cryns VL, Anderson RA. Lipid Transfer Proteins and PI4KIIα Initiate Nuclear p53-Phosphoinositide Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.08.539894. [PMID: 37214930 PMCID: PMC10197520 DOI: 10.1101/2023.05.08.539894] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphoinositide (PIP n ) messengers are present in non-membranous regions of nuclei where they are assembled into a phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway that is distinct from the cytosolic membrane-localized pathway. In the nuclear pathway, PI kinases/phosphatases bind the p53 tumor suppressor protein (wild-type and mutant) to generate p53-PIP n complexes (p53-PIP n signalosome) that activate Akt by a PI3,4,5P 3 -dependent mechanism in non-membranous regions of the nucleus. This pathway is dependent on a source of nuclear PIP n s that is poorly characterized. Here we report that a subset of PI transfer proteins (PITPs), which transport PI between membranes to enable membrane-localized PIP n synthesis, also interact with p53 in the nucleus upon genotoxic stress. Class I PITPs (PITPα/β) specifically supply the PI required for the generation of p53-PIP n complexes and subsequent signaling in the nucleus. Additionally, the PI 4-kinase PI4KIIα binds to p53 and the PITPs to catalyze the formation of p53-PI4P. p53-PI4P is then sequentially phosphorylated to synthesize p53-PIP n complexes that regulate p53 stability, nuclear Akt activation and genotoxic stress resistance. In this way, PITPα/β and PI4KIIα bind p53 and collaborate to initiate p53-PIP n signaling by mechanisms that require PI transfer by PITPα/β and the catalytic activity of PI4KIIα. Moreover, the identification of these critical upstream regulators of p53-PIP n signaling point to PITPα/β and PI4KIIα as novel therapeutic targets in this pathway for diseases like cancer. Significance statement PI transfer proteins and a PI 4-kinase initiate nuclear p53-phosphoinositide signaling in membrane-free regions to promote stress resistance.
Collapse
|
5
|
Sasaki K, Toide M, Adachi T, Morishita F, Watanabe Y, Sakurai HT, Wakabayashi S, Kusumi S, Yamaji T, Sakurai K, Koga D, Hanada K, Yohda M, Yoshida H. Dysregulation of PI4P in the trans Golgi regions activates the mammalian Golgi stress response. J Biol Chem 2025; 301:108075. [PMID: 39675715 PMCID: PMC11770552 DOI: 10.1016/j.jbc.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The Golgi stress response is an important cytoprotective system that enhances Golgi function in response to cellular demand, while cells damaged by prolonged Golgi stress undergo cell death. OSW-1, a natural compound with anticancer activity, potently inhibits OSBP that transports cholesterol and phosphatidylinositol-4-phosphate (PI4P) at contact sites between the endoplasmic reticulum and the Golgi apparatus. Previously, we reported that OSW-1 induces the Golgi stress response, resulting in Golgi stress-induced transcription and cell death. However, the underlying molecular mechanism has been unknown. To reveal the mechanism of a novel pathway of the Golgi stress response regulating transcriptional induction and cell death (the PI4P pathway), we performed a genome-wide KO screen and found that transcriptional induction as well as cell death induced by OSW-1 was repressed by the loss of regulators of PI4P synthesis, such as PITPNB and PI4KB. Our data indicate that OSW-1 induces Golgi stress-dependent transcriptional induction and cell death through dysregulation of the PI4P metabolism in the Golgi.
Collapse
Affiliation(s)
- Kanae Sasaki
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan.
| | - Marika Toide
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan
| | - Takuya Adachi
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan
| | - Fumi Morishita
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan
| | - Yuto Watanabe
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan
| | - Hajime Tajima Sakurai
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan
| | - Sadao Wakabayashi
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medicine and Dental Sciences, Kagoshima, Kagoshima, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan; Faculty of Pharmacy, Department of Microbiology and Immunology, Juntendo University, Urayasu, Chiba, Japan
| | - Kaori Sakurai
- Faculty of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan; Center for Quality Management Systems, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Masafumi Yohda
- Faculty of Engineering, Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Hiderou Yoshida
- Department of Molecular Biochemistry, Graduate School of Science, University of Hyogo, Ako, Hyogo, Japan.
| |
Collapse
|
6
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
7
|
Liu Y, Chen X, Ma Y, Song C, Ma J, Chen C, Su J, Ma L, Saiyin H. Endogenous mutant Huntingtin alters the corticogenesis via lowering Golgi recruiting ARF1 in cortical organoid. Mol Psychiatry 2024; 29:3024-3039. [PMID: 38654124 PMCID: PMC11449793 DOI: 10.1038/s41380-024-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Pathogenic mutant huntingtin (mHTT) infiltrates the adult Huntington's disease (HD) brain and impairs fetal corticogenesis. However, most HD animal models rarely recapitulate neuroanatomical alterations in adult HD and developing brains. Thus, the human cortical organoid (hCO) is an alternative approach to decode mHTT pathogenesis precisely during human corticogenesis. Here, we replicated the altered corticogenesis in the HD fetal brain using HD patient-derived hCOs. Our HD-hCOs had pathological phenotypes, including deficient junctional complexes in the neural tubes, delayed postmitotic neuronal maturation, dysregulated fate specification of cortical neuron subtypes, and abnormalities in early HD subcortical projections during corticogenesis, revealing a causal link between impaired progenitor cells and chaotic cortical neuronal layering in the HD brain. We identified novel long, oriented, and enriched polyQ assemblies of HTTs that hold large flat Golgi stacks and scaffold clathrin+ vesicles in the neural tubes of hCOs. Flat Golgi stacks conjugated polyQ assemblies by ADP-ribosylation factor 1 (ARF1). Inhibiting ARF1 activation with Brefeldin A (BFA) disassociated polyQ assemblies from Golgi. PolyQ assembles with mHTT scaffolded fewer ARF1 and formed shorter polyQ assembles with fewer and shorter Golgi and clathrin vesicles in neural tubes of HD-hCOs compared with those in hCOs. Inhibiting the activation of ARF1 by BFA in healthy hCOs replicated impaired junctional complexes in the neural tubes. Together, endogenous polyQ assemblies with mHTT reduced the Golgi recruiting ARF1 in the neuroepithelium, impaired the Golgi structure and activities, and altered the corticogenesis in HD-hCO.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunlong Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chenyun Song
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jixin Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Cheng Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 PMCID: PMC11533902 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
9
|
Kim YJ, Pemberton JG, Eisenreichova A, Mandal A, Koukalova A, Rohilla P, Sohn M, Konradi AW, Tang TT, Boura E, Balla T. Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition. EMBO J 2024; 43:2035-2061. [PMID: 38627600 PMCID: PMC11099152 DOI: 10.1038/s44318-024-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Amrita Mandal
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alena Koukalova
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Wijaya CS, Xu S. Reevaluating Golgi fragmentation and its implications in wound repair. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:4. [PMID: 38349608 PMCID: PMC10864233 DOI: 10.1186/s13619-024-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The Golgi Apparatus (GA) is pivotal in vesicle sorting and protein modifications within cells. Traditionally, the GA has been described as a perinuclear organelle consisting of stacked cisternae forming a ribbon-like structure. Changes in the stacked structure or the canonical perinuclear localization of the GA have been referred to as "GA fragmentation", a term widely employed in the literature to describe changes in GA morphology and distribution. However, the precise meaning and function of GA fragmentation remain intricate. This review aims to demystify this enigmatic phenomenon, dissecting the diverse morphological changes observed and their potential contributions to cellular wound repair and regeneration. Through a comprehensive analysis of current research, we hope to pave the way for future advancements in GA research and their important role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Chandra Sugiarto Wijaya
- Department of Burns and Wound Repair and Center for Stem Cell and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Suhong Xu
- Department of Burns and Wound Repair and Center for Stem Cell and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang, 314400, China.
| |
Collapse
|
11
|
Polenghi M, Taverna E. Intracellular traffic and polarity in brain development. Front Neurosci 2023; 17:1172016. [PMID: 37859764 PMCID: PMC10583573 DOI: 10.3389/fnins.2023.1172016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/31/2023] [Indexed: 10/21/2023] Open
Abstract
Neurons forming the human brain are generated during embryonic development by neural stem and progenitor cells via a process called neurogenesis. A crucial feature contributing to neural stem cell morphological and functional heterogeneity is cell polarity, defined as asymmetric distribution of cellular components. Cell polarity is built and maintained thanks to the interplay between polarity proteins and polarity-generating organelles, such as the endoplasmic reticulum (ER) and the Golgi apparatus (GA). ER and GA affect the distribution of membrane components and work as a hub where glycans are added to nascent proteins and lipids. In the last decades our knowledge on the role of polarity in neural stem and progenitor cells have increased tremendously. However, the role of traffic and associated glycosylation in neural stem and progenitor cells is still relatively underexplored. In this review, we discuss the link between cell polarity, architecture, identity and intracellular traffic, and highlight how studies on neurons have shaped our knowledge and conceptual framework on traffic and polarity. We will then conclude by discussing how a group of rare diseases, called congenital disorders of glycosylation (CDG) offers the unique opportunity to study the contribution of traffic and glycosylation in the context of neurodevelopment.
Collapse
|
12
|
Arabiotorre A, Bankaitis VA, Grabon A. Regulation of phosphoinositide metabolism in Apicomplexan parasites. Front Cell Dev Biol 2023; 11:1163574. [PMID: 37791074 PMCID: PMC10543664 DOI: 10.3389/fcell.2023.1163574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 10/05/2023] Open
Abstract
Phosphoinositides are a biologically essential class of phospholipids that contribute to organelle membrane identity, modulate membrane trafficking pathways, and are central components of major signal transduction pathways that operate on the cytosolic face of intracellular membranes in eukaryotes. Apicomplexans (such as Toxoplasma gondii and Plasmodium spp.) are obligate intracellular parasites that are important causative agents of disease in animals and humans. Recent advances in molecular and cell biology of Apicomplexan parasites reveal important roles for phosphoinositide signaling in key aspects of parasitosis. These include invasion of host cells, intracellular survival and replication, egress from host cells, and extracellular motility. As Apicomplexans have adapted to the organization of essential signaling pathways to accommodate their complex parasitic lifestyle, these organisms offer experimentally tractable systems for studying the evolution, conservation, and repurposing of phosphoinositide signaling. In this review, we describe the regulatory mechanisms that control the spatial and temporal regulation of phosphoinositides in the Apicomplexan parasites Plasmodium and T. gondii. We further discuss the similarities and differences presented by Apicomplexan phosphoinositide signaling relative to how these pathways are regulated in other eukaryotic organisms.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| | - Vytas A. Bankaitis
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
- Department of Biochemistry and Biophysics Texas A&M University College Station, College Station, TX, United States
- Department of Chemistry Texas A&M University College Station, College Station, TX, United States
| | - Aby Grabon
- Department of Cell Biology and Genetics, College of Medicine Texas A&M Health Sciences Center College Station, Bryan, TX, United States
| |
Collapse
|
13
|
Zhao L, Thorsheim CL, Suzuki A, Stalker TJ, Min SH, Krishnaswamy S, Cockcroft S, Anderson KE, Weiderhold B, Abrams CS. Individual phosphatidylinositol transfer proteins have distinct functions that do not involve lipid transfer activity. Blood Adv 2023; 7:4233-4246. [PMID: 36930803 PMCID: PMC10424146 DOI: 10.1182/bloodadvances.2022008735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPβ, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPβ in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPβ-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Chelsea L. Thorsheim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aae Suzuki
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Timothy J. Stalker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sang H. Min
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sriram Krishnaswamy
- Department of Pediatrics, Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Shamshad Cockcroft
- Division of Bioscience, University College London, London, United Kingdom
| | - Karen E. Anderson
- Signaling ISP, Babraham Institute, Babraham, Cambridge, United Kingdom
| | - Brittany Weiderhold
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles S. Abrams
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
14
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
15
|
Yeh YT, Sona C, Yan X, Li Y, Pathak A, McDermott MI, Xie Z, Liu L, Arunagiri A, Wang Y, Cazenave-Gassiot A, Ghosh A, von Meyenn F, Kumarasamy S, Najjar SM, Jia S, Wenk MR, Traynor-Kaplan A, Arvan P, Barg S, Bankaitis VA, Poy MN. Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction. Nat Commun 2023; 14:4250. [PMID: 37460527 PMCID: PMC10352338 DOI: 10.1038/s41467-023-39978-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Defects in insulin processing and granule maturation are linked to pancreatic beta-cell failure during type 2 diabetes (T2D). Phosphatidylinositol transfer protein alpha (PITPNA) stimulates activity of phosphatidylinositol (PtdIns) 4-OH kinase to produce sufficient PtdIns-4-phosphate (PtdIns-4-P) in the trans-Golgi network to promote insulin granule maturation. PITPNA in beta-cells of T2D human subjects is markedly reduced suggesting its depletion accompanies beta-cell dysfunction. Conditional deletion of Pitpna in the beta-cells of Ins-Cre, Pitpnaflox/flox mice leads to hyperglycemia resulting from decreasing glucose-stimulated insulin secretion (GSIS) and reducing pancreatic beta-cell mass. Furthermore, PITPNA silencing in human islets confirms its role in PtdIns-4-P synthesis and leads to impaired insulin granule maturation and docking, GSIS, and proinsulin processing with evidence of ER stress. Restoration of PITPNA in islets of T2D human subjects reverses these beta-cell defects and identify PITPNA as a critical target linked to beta-cell failure in T2D.
Collapse
Affiliation(s)
- Yu-Te Yeh
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Chandan Sona
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Yunxiao Li
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, Rostock, 18147, Germany
| | - Adrija Pathak
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mark I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Zhigang Xie
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Liangwen Liu
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yuting Wang
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, 8603, Switzerland
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Shiqi Jia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 117456, Singapore, Singapore
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
| | - Alexis Traynor-Kaplan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
- ATK Analytics, Innovation and Discovery, LLC, North Bend, WA, 98045, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Sebastian Barg
- Medical Cell Biology, Uppsala University, 75123, Uppsala, Sweden
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew N Poy
- Johns Hopkins University, All Children's Hospital, St. Petersburg, FL, 33701, USA.
- Johns Hopkins University, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baltimore, MD, 21287, USA.
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, Berlin, 13125, Germany.
| |
Collapse
|
16
|
Chen XR, Poudel L, Hong Z, Johnen P, Katti S, Tripathi A, Nile AH, Green SM, Khan D, Schaaf G, Bono F, Bankaitis VA, Igumenova TI. Mechanisms by which small molecules of diverse chemotypes arrest Sec14 lipid transfer activity. J Biol Chem 2023; 299:102861. [PMID: 36603766 PMCID: PMC9898755 DOI: 10.1016/j.jbc.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.
Collapse
Affiliation(s)
- Xiao-Ru Chen
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Lokendra Poudel
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Zebin Hong
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Philipp Johnen
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Sachin Katti
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Ashutosh Tripathi
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Aaron H Nile
- Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Savana M Green
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA
| | - Danish Khan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA
| | - Gabriel Schaaf
- Institute for Crop Science and Resource Conservation, Universität Bonn, Bonn, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA; Department of Cell Biology & Genetics, Texas A&M University, College Station, Texas, USA.
| | - Tatyana I Igumenova
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas USA.
| |
Collapse
|
17
|
Arabiotorre A, Formanowicz M, Bankaitis VA, Grabon A. Phosphatidylinositol-4-phosphate signaling regulates dense granule biogenesis and exocytosis in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523261. [PMID: 36712082 PMCID: PMC9882004 DOI: 10.1101/2023.01.09.523261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphoinositide metabolism defines the foundation of a major signaling pathway that is conserved throughout the eukaryotic kingdom. The 4-OH phosphorylated phosphoinositides such as phosphatidylinositol-4-phosphate (PtdIns4P) and phosphatidylinositol-4,5-bisphosphate are particularly important molecules as these execute intrinsically essential activities required for the viability of all eukaryotic cells studied thus far. Using intracellular tachyzoites of the apicomplexan parasite Toxoplasma gondii as model for assessing primordial roles for PtdIns4P signaling, we demonstrate the presence of PtdIns4P pools in Golgi/trans-Golgi (TGN) system and in post-TGN compartments of the parasite. Moreover, we show that deficits in PtdIns4P signaling result in structural perturbation of compartments that house dense granule cargo with accompanying deficits in dense granule exocytosis. Taken together, the data report a direct role for PtdIns4P in dense granule biogenesis and exocytosis. The data further indicate that the biogenic pathway for secretion-competent dense granule formation in T. gondii is more complex than simple budding of fully matured dense granules from the TGN.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| | - Megan Formanowicz
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Vytas A. Bankaitis
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128
| | - Aby Grabon
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| |
Collapse
|
18
|
Andrews MG, Subramanian L, Salma J, Kriegstein AR. How mechanisms of stem cell polarity shape the human cerebral cortex. Nat Rev Neurosci 2022; 23:711-724. [PMID: 36180551 PMCID: PMC10571506 DOI: 10.1038/s41583-022-00631-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Apical-basal progenitor cell polarity establishes key features of the radial and laminar architecture of the developing human cortex. The unique diversity of cortical stem cell populations and an expansion of progenitor population size in the human cortex have been mirrored by an increase in the complexity of cellular processes that regulate stem cell morphology and behaviour, including their polarity. The study of human cells in primary tissue samples and human stem cell-derived model systems (such as cortical organoids) has provided insight into these processes, revealing that protein complexes regulate progenitor polarity by controlling cell membrane adherence within appropriate cortical niches and are themselves regulated by cytoskeletal proteins, signalling molecules and receptors, and cellular organelles. Studies exploring how cortical stem cell polarity is established and maintained are key for understanding the features of human brain development and have implications for neurological dysfunction.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Lakshmi Subramanian
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmacology, Ideaya Biosciences, South San Francisco, CA, USA
| | - Jahan Salma
- Centre for Regenerative Medicine and Stem Cell Research, The Aga Khan University, Karachi, Pakistan
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Fasano G, Muto V, Radio FC, Venditti M, Mosaddeghzadeh N, Coppola S, Paradisi G, Zara E, Bazgir F, Ziegler A, Chillemi G, Bertuccini L, Tinari A, Vetro A, Pantaleoni F, Pizzi S, Conti LA, Petrini S, Bruselles A, Prandi IG, Mancini C, Chandramouli B, Barth M, Bris C, Milani D, Selicorni A, Macchiaiolo M, Gonfiantini MV, Bartuli A, Mariani R, Curry CJ, Guerrini R, Slavotinek A, Iascone M, Dallapiccola B, Ahmadian MR, Lauri A, Tartaglia M. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish. Nat Commun 2022; 13:6841. [PMID: 36369169 PMCID: PMC9652361 DOI: 10.1038/s41467-022-34354-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Vesicle biogenesis, trafficking and signaling via Endoplasmic reticulum-Golgi network support essential developmental processes and their disruption lead to neurodevelopmental disorders and neurodegeneration. We report that de novo missense variants in ARF3, encoding a small GTPase regulating Golgi dynamics, cause a developmental disease in humans impairing nervous system and skeletal formation. Microcephaly-associated ARF3 variants affect residues within the guanine nucleotide binding pocket and variably perturb protein stability and GTP/GDP binding. Functional analysis demonstrates variably disruptive consequences of ARF3 variants on Golgi morphology, vesicles assembly and trafficking. Disease modeling in zebrafish validates further the dominant behavior of the mutants and their differential impact on brain and body plan formation, recapitulating the variable disease expression. In-depth in vivo analyses traces back impaired neural precursors' proliferation and planar cell polarity-dependent cell movements as the earliest detectable effects. Our findings document a key role of ARF3 in Golgi function and demonstrate its pleiotropic impact on development.
Collapse
Affiliation(s)
- Giulia Fasano
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Valentina Muto
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Francesca Clementina Radio
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Martina Venditti
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Niloufar Mosaddeghzadeh
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simona Coppola
- grid.416651.10000 0000 9120 6856National Center for Rare Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Graziamaria Paradisi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Erika Zara
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy ,grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Università “Sapienza”, Rome, 00185 Italy
| | - Farhad Bazgir
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alban Ziegler
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Giovanni Chillemi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Centro Nazionale delle Ricerche, 70126 Bari, Italy
| | - Lucia Bertuccini
- grid.416651.10000 0000 9120 6856Servizio grandi strumentazioni e core facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonella Tinari
- grid.416651.10000 0000 9120 6856Centro di riferimento per la medicina di genere, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Annalisa Vetro
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Francesca Pantaleoni
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Simone Pizzi
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Libenzio Adrian Conti
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- grid.414603.4Confocal Microscopy Core Facility, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Alessandro Bruselles
- grid.416651.10000 0000 9120 6856Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ingrid Guarnetti Prandi
- grid.12597.380000 0001 2298 9743Department for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Cecilia Mancini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Balasubramanian Chandramouli
- grid.431603.30000 0004 1757 1950Super Computing Applications and Innovation, CINECA, 40033 Casalecchio di Reno, Italy
| | - Magalie Barth
- grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Céline Bris
- grid.7252.20000 0001 2248 3363UFR Santé de l’Université d’Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France ,grid.411147.60000 0004 0472 0283Département de Génétique, CHU d’Angers, 49000 Angers, France
| | - Donatella Milani
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Angelo Selicorni
- grid.512106.1Mariani Center for Fragile Children Pediatric Unit, Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy
| | - Marina Macchiaiolo
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Michaela V. Gonfiantini
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Andrea Bartuli
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Riccardo Mariani
- grid.414603.4Department of Laboratories Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Cynthia J. Curry
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Renzo Guerrini
- grid.8404.80000 0004 1757 2304Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50139 Florence, Italy
| | - Anne Slavotinek
- grid.266102.10000 0001 2297 6811Genetic Medicine, Dept of Pediatrics, University of California San Francisco, Ca, Fresno, Ca, San Francisco, CA 94143 USA
| | - Maria Iascone
- grid.460094.f0000 0004 1757 8431Medical Genetics, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Bruno Dallapiccola
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Mohammad Reza Ahmadian
- grid.411327.20000 0001 2176 9917Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Antonella Lauri
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- grid.414603.4Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| |
Collapse
|
20
|
Li FL, Fu V, Liu G, Tang T, Konradi AW, Peng X, Kemper E, Cravatt BF, Franklin JM, Wu Z, Mayfield J, Dixon JE, Gerwick WH, Guan KL. Hippo pathway regulation by phosphatidylinositol transfer protein and phosphoinositides. Nat Chem Biol 2022; 18:1076-1086. [PMID: 35788180 DOI: 10.1038/s41589-022-01061-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/12/2022] [Indexed: 12/30/2022]
Abstract
The Hippo pathway plays a key role in development, organ size control and tissue homeostasis, and its dysregulation contributes to cancer. The LATS tumor suppressor kinases phosphorylate and inhibit the YAP/TAZ transcriptional co-activators to suppress gene expression and cell growth. Through a screen of marine natural products, we identified microcolin B (MCB) as a Hippo activator that preferentially kills YAP-dependent cancer cells. Structure-activity optimization yielded more potent MCB analogs, which led to the identification of phosphatidylinositol transfer proteins α and β (PITPα/β) as the direct molecular targets. We established a critical role of PITPα/β in regulating LATS and YAP. Moreover, we showed that PITPα/β influence the Hippo pathway via plasma membrane phosphatidylinositol-4-phosphate. This study uncovers a previously unrecognized role of PITPα/β in Hippo pathway regulation and as potential cancer therapeutic targets.
Collapse
Affiliation(s)
- Fu-Long Li
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Vivian Fu
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Guangbo Liu
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Tracy Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Andrei W Konradi
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Xiao Peng
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Vivace Therapeutics, Inc., San Mateo, CA, USA
| | - Esther Kemper
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - J Matthew Franklin
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhengming Wu
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Joshua Mayfield
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jack E Dixon
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | | | - Kun-Liang Guan
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Xie Z, Bankaitis VA. Phosphatidylinositol transfer protein/planar cell polarity axis regulates neocortical morphogenesis by supporting interkinetic nuclear migration. Cell Rep 2022; 39:110869. [PMID: 35649377 PMCID: PMC9230501 DOI: 10.1016/j.celrep.2022.110869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
The neocortex expands explosively during embryonic development. The earliest populations of neural stem cells (NSCs) form a thin pseudostratified epithelium whose contour determines that of the adult neocortex. Neocortical complexity is accompanied by disproportional expansion of the NSC layer in its tangential dimension to increase tissue surface area. How such disproportional expansion is controlled remains unknown. We demonstrate that a phosphatidylinositol transfer protein (PITP)/non-canonical Wnt planar cell polarity (ncPCP) signaling axis promotes tangential expansion of developing neocortex. PITP signaling supports trafficking of specific ncPCP receptors from the NSC Golgi system to potentiate actomyosin activity important for cell-cycle-dependent interkinetic nuclear migration (IKNM). In turn, IKNM promotes lateral dispersion of newborn NSCs and tangential growth of the cerebral wall. These findings clarify functional roles for IKNM in NSC biology and identify tissue dysmorphogenesis resulting from impaired IKNM as a factor in autism risk, developmental brain disabilities, and neural tube birth defects. Xie and Bankaitis report that a phosphatidylinositol transfer protein/non-canonical planar cell polarity signaling axis supports interkinetic nuclear migration by promoting trafficking of specific non-canonical planar cell polarity receptors from the Golgi system to the plasma membrane, activating actomyosin, and supporting lateral expansion of the neocortex via a convergent extension mechanism.
Collapse
Affiliation(s)
- Zhigang Xie
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | - Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
22
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
23
|
Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA. Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 2021; 109:2943-2966.e8. [PMID: 34480866 PMCID: PMC8454057 DOI: 10.1016/j.neuron.2021.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Collapse
Affiliation(s)
- Song-Jun Xu
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia I Lombroso
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Fischer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dylan M Marchione
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Hamilton
- Department of Brain and Cognitive Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Carissa J Lim
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA 19121, USA
| | - R Christopher Pierce
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA,19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Ashlin TG, Blunsom NJ, Cockcroft S. Courier service for phosphatidylinositol: PITPs deliver on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158985. [PMID: 34111527 PMCID: PMC8266687 DOI: 10.1016/j.bbalip.2021.158985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.
Collapse
Affiliation(s)
- Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
25
|
Emerging Prospects for Combating Fungal Infections by Targeting Phosphatidylinositol Transfer Proteins. Int J Mol Sci 2021; 22:ijms22136754. [PMID: 34201733 PMCID: PMC8269425 DOI: 10.3390/ijms22136754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of fungal “superbugs” resistant to the limited cohort of anti-fungal agents available to clinicians is eroding our ability to effectively treat infections by these virulent pathogens. As the threat of fungal infection is escalating worldwide, this dwindling response capacity is fueling concerns of impending global health emergencies. These developments underscore the urgent need for new classes of anti-fungal drugs and, therefore, the identification of new targets. Phosphoinositide signaling does not immediately appear to offer attractive targets due to its evolutionary conservation across the Eukaryota. However, recent evidence argues otherwise. Herein, we discuss the evidence identifying Sec14-like phosphatidylinositol transfer proteins (PITPs) as unexplored portals through which phosphoinositide signaling in virulent fungi can be chemically disrupted with exquisite selectivity. Recent identification of lead compounds that target fungal Sec14 proteins, derived from several distinct chemical scaffolds, reveals exciting inroads into the rational design of next generation Sec14 inhibitors. Development of appropriately refined next generation Sec14-directed inhibitors promises to expand the chemical weaponry available for deployment in the shifting field of engagement between fungal pathogens and their human hosts.
Collapse
|
26
|
Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, Zhukovsky MA, Vocat A, Pothukuchi P, Kunnathully V, Capolupo L, Boncompain G, Vitagliano C, Zito Marino F, Aquino G, Montariello D, Henklein P, Mandrich L, Botti G, Clausen H, Mandel U, Yamaji T, Hanada K, Budillon A, Perez F, Parashuraman S, Hannun YA, Nakano A, Corda D, D'Angelo G, Luini A. Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 2021; 40:e107238. [PMID: 33749896 DOI: 10.15252/embj.2020107238] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Pranoy Sahu
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Bernadette Lombardi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Domenico Supino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mikhail A Zhukovsky
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Anthony Vocat
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Vidya Kunnathully
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Carlo Vitagliano
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | | | - Gabriella Aquino
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Daniela Montariello
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Petra Henklein
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Henrik Clausen
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Ulla Mandel
- Faculty of Health Sciences, Centre for Glycomics, Department of Cellular and Molecular Medicine Nørre Alle 20, University of Copenhagen, Copenhagen N, Denmark
| | - Toshiyuki Yamaji
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alfredo Budillon
- Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Franck Perez
- Institute Curie - CNRS UMR1 44, Research Center, Paris, France
| | | | - Yusuf A Hannun
- Stony Brook University Medical Center, New York, NY, USA
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
27
|
Wang Y, Yuan P, Grabon A, Tripathi A, Lee D, Rodriguez M, Lönnfors M, Eisenberg-Bord M, Wang Z, Man Lam S, Schuldiner M, Bankaitis VA. Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase. J Cell Biol 2021; 219:151686. [PMID: 32303746 PMCID: PMC7199851 DOI: 10.1083/jcb.201907128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/20/2019] [Accepted: 02/10/2020] [Indexed: 01/20/2023] Open
Abstract
The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum–plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX.,Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Peihua Yuan
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Aby Grabon
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Ashutosh Tripathi
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Dongju Lee
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | - Martin Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX
| | - Max Lönnfors
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX
| | | | - Zehua Wang
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Vytas A Bankaitis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX.,Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX.,Department of Chemistry, Texas A&M University, College Station, TX
| |
Collapse
|
28
|
Deb S, Felix DA, Koch P, Deb MK, Szafranski K, Buder K, Sannai M, Groth M, Kirkpatrick J, Pietsch S, Gollowitzer A, Groß A, Riemenschneider P, Koeberle A, González‐Estévez C, Rudolph KL. Tnfaip2/exoc3-driven lipid metabolism is essential for stem cell differentiation and organ homeostasis. EMBO Rep 2021; 22:e49328. [PMID: 33300287 PMCID: PMC7788457 DOI: 10.15252/embr.201949328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para-ortholog, Smed-exoc3, abrogates in vivo tissue homeostasis and regeneration-processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2-deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)-a known inducer of LD formation. Smed-exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl-L-carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2-deficient ESCs and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.
Collapse
Affiliation(s)
- Sarmistha Deb
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | - Daniel A Felix
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | - Philipp Koch
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | | | - Karol Szafranski
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | - Katrin Buder
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | - Mara Sannai
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | - Marco Groth
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | | | - Stefan Pietsch
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
| | - André Gollowitzer
- Institute of PharmacyFriedrich‐Schiller‐UniversityJenaGermany
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Alexander Groß
- Institute of Medical Systems BiologyUlm UniversityUlmGermany
| | | | - Andreas Koeberle
- Institute of PharmacyFriedrich‐Schiller‐UniversityJenaGermany
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | | | - Karl Lenhard Rudolph
- Leibniz Institute on Aging – Fritz Lipmann Institute e.V.JenaGermany
- University Hospital JenaFriedrich Schiller UniversityJenaGermany
| |
Collapse
|
29
|
David Y, Castro IG, Schuldiner M. The Fast and the Furious: Golgi Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:1-15. [PMID: 35071979 PMCID: PMC7612241 DOI: 10.1177/25152564211034424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contact sites are areas of close apposition between two membranes that coordinate nonvesicular communication between organelles. Such interactions serve a wide range of cellular functions from regulating metabolic pathways to executing stress responses and coordinating organelle inheritance. The past decade has seen a dramatic increase in information on certain contact sites, mostly those involving the endoplasmic reticulum. However, despite its central role in the secretory pathway, the Golgi apparatus and its contact sites remain largely unexplored. In this review, we discuss the current knowledge of Golgi contact sites and share our thoughts as to why Golgi contact sites are understudied. We also highlight what exciting future directions may exist in this emerging field.
Collapse
Affiliation(s)
- Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Inês G Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Lete MG, Tripathi A, Chandran V, Bankaitis VA, McDermott MI. Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Adv Biol Regul 2020; 78:100740. [PMID: 32992233 PMCID: PMC7986245 DOI: 10.1016/j.jbior.2020.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Cellular membranes are critical platforms for intracellular signaling that involve complex interfaces between lipids and proteins, and a web of interactions between a multitude of lipid metabolic pathways. Membrane lipids impart structural and functional information in this regulatory circuit that encompass biophysical parameters such as membrane thickness and fluidity, as well as chaperoning the interactions of protein binding partners. Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play key roles in intracellular membrane signaling, and these involvements are translated into an impressively diverse set of biological outcomes. The phosphatidylinositol transfer proteins (PITPs) are key regulators of phosphoinositide signaling. Found in a diverse array of organisms from plants, yeast and apicomplexan parasites to mammals, PITPs were initially proposed to be simple transporters of lipids between intracellular membranes. It now appears increasingly unlikely that the soluble versions of these proteins perform such functions within the cell. Rather, these serve to facilitate the activity of intrinsically biologically insufficient inositol lipid kinases and, in so doing, promote diversification of the biological outcomes of phosphoinositide signaling. The central engine for execution of such functions is the lipid exchange cycle that is a fundamental property of PITPs. How PITPs execute lipid exchange remains very poorly understood. Molecular dynamics simulation approaches are now providing the first atomistic insights into how PITPs, and potentially other lipid-exchange/transfer proteins, operate.
Collapse
Affiliation(s)
- Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Institute Biofisika (UPV/EHU, CSIC) and University of the Basque Country, Leioa, Spain
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vijay Chandran
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Mark I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
31
|
Alberca CD, Papale LA, Madrid A, Gianatiempo O, Cánepa ET, Alisch RS, Chertoff M. Perinatal protein malnutrition results in genome-wide disruptions of 5-hydroxymethylcytosine at regions that can be restored to control levels by an enriched environment. Epigenetics 2020; 16:1085-1101. [PMID: 33172347 DOI: 10.1080/15592294.2020.1841871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.
Collapse
Affiliation(s)
- Carolina D Alberca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Octavio Gianatiempo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Mariela Chertoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
32
|
Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc Natl Acad Sci U S A 2020; 117:28102-28113. [PMID: 33106410 DOI: 10.1073/pnas.2007432117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Better understanding myelination of peripheral nerves would benefit patients affected by peripheral neuropathies, including Charcot-Marie-Tooth disease. Little is known about the role the Golgi compartment plays in Schwann cell (SC) functions. Here, we studied the role of Golgi in myelination of peripheral nerves in mice through SC-specific genetic inactivation of phosphatidylinositol 4-kinase beta (PI4KB), a Golgi-associated lipid kinase. Sciatic nerves of such mice showed thinner myelin of large diameter axons and gross aberrations in myelin organization affecting the nodes of Ranvier, the Schmidt-Lanterman incisures, and Cajal bands. Nonmyelinating SCs showed a striking inability to engulf small diameter nerve fibers. SCs of mutant mice showed a distorted Golgi morphology and disappearance of OSBP at the cis-Golgi compartment, together with a complete loss of GOLPH3 from the entire Golgi. Accordingly, the cholesterol and sphingomyelin contents of sciatic nerves were greatly reduced and so was the number of caveolae observed in SCs. Although the conduction velocity of sciatic nerves of mutant mice showed an 80% decrease, the mice displayed only subtle impairment in their motor functions. Our analysis revealed that Golgi functions supported by PI4KB are critically important for proper myelination through control of lipid metabolism, protein glycosylation, and organization of microvilli in the nodes of Ranvier of peripheral nerves.
Collapse
|
33
|
Sun A, Simsek Papur O, Dirkx E, Wong L, Sips T, Wang S, Strzelecka A, Nabben M, Glatz JFC, Neumann D, Luiken JJFP. Phosphatidylinositol 4-kinase IIIβ mediates contraction-induced GLUT4 translocation and shows its anti-diabetic action in cardiomyocytes. Cell Mol Life Sci 2020; 78:2839-2856. [PMID: 33090289 PMCID: PMC8004495 DOI: 10.1007/s00018-020-03669-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/31/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023]
Abstract
In the diabetic heart, long-chain fatty acid (LCFA) uptake is increased at the expense of glucose uptake. This metabolic shift ultimately leads to insulin resistance and a reduced cardiac function. Therefore, signaling kinases that mediate glucose uptake without simultaneously stimulating LCFA uptake could be considered attractive anti-diabetic targets. Phosphatidylinositol-4-kinase-IIIβ (PI4KIIIβ) is a lipid kinase downstream of protein kinase D1 (PKD1) that mediates Golgi-to-plasma membrane vesicular trafficking in HeLa-cells. In this study, we evaluated whether PI4KIIIβ is involved in myocellular GLUT4 translocation induced by contraction or oligomycin (an F1F0-ATP synthase inhibitor that activates contraction-like signaling). Pharmacological targeting, with compound MI14, or genetic silencing of PI4KIIIβ inhibited contraction/oligomycin-stimulated GLUT4 translocation and glucose uptake in cardiomyocytes but did not affect CD36 translocation nor LCFA uptake. Addition of the PI4KIIIβ enzymatic reaction product phosphatidylinositol-4-phosphate restored oligomycin-stimulated glucose uptake in the presence of MI14. PI4KIIIβ activation by PKD1 involves Ser294 phosphorylation and altered its localization with unchanged enzymatic activity. Adenoviral PI4KIIIβ overexpression stimulated glucose uptake, but did not activate hypertrophic signaling, indicating that unlike PKD1, PI4KIIIβ is selectively involved in GLUT4 translocation. Finally, PI4KIIIβ overexpression prevented insulin resistance and contractile dysfunction in lipid-overexposed cardiomyocytes. Together, our studies identify PI4KIIIβ as positive and selective regulator of GLUT4 translocation in response to contraction-like signaling, suggesting PI4KIIIβ as a promising target to rescue defective glucose uptake in diabetics.
Collapse
Affiliation(s)
- A Sun
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - O Simsek Papur
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - E Dirkx
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - L Wong
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - T Sips
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - S Wang
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - A Strzelecka
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - M Nabben
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - J F C Glatz
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,Department of Clinical Genetics, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands
| | - D Neumann
- Department of Pathology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - J J F P Luiken
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center+, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Human Golgi phosphoprotein 3 is an effector of RAB1A and RAB1B. PLoS One 2020; 15:e0237514. [PMID: 32790781 PMCID: PMC7425898 DOI: 10.1371/journal.pone.0237514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a peripheral membrane protein localized at the trans-Golgi network that is also distributed in a large cytosolic pool. GOLPH3 has been involved in several post-Golgi protein trafficking events, but its precise function at the molecular level is not well understood. GOLPH3 is also considered the first oncoprotein of the Golgi apparatus, with important roles in several types of cancer. Yet, it is unknown how GOLPH3 is regulated to achieve its contribution in the mechanisms that lead to tumorigenesis. Binding of GOLPH3 to Golgi membranes depends on its interaction to phosphatidylinositol-4-phosphate. However, an early finding showed that GTP promotes the binding of GOLPH3 to Golgi membranes and vesicles. Nevertheless, it remains largely unknown whether this response is consequence of the function of GTP-dependent regulatory factors, such as proteins of the RAB family of small GTPases. Interestingly, in Drosophila melanogaster the ortholog of GOLPH3 interacts with- and behaves as effector of the ortholog of RAB1. However, there is no experimental evidence implicating GOLPH3 as a possible RAB1 effector in mammalian cells. Here, we show that human GOLPH3 interacted directly with either RAB1A or RAB1B, the two isoforms of RAB1 in humans. The interaction was nucleotide dependent and it was favored with GTP-locked active state variants of these GTPases, indicating that human GOLPH3 is a bona fide effector of RAB1A and RAB1B. Moreover, the expression in cultured cells of the GTP-locked variants resulted in less distribution of GOLPH3 in the Golgi apparatus, suggesting an intriguing model of GOLPH3 regulation.
Collapse
|
35
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
36
|
Bergeron J, Castle JD. Kathryn Howell (1939-2020) "The Secretory Pathway was Imprinted in her Heart". Traffic 2020; 21:552-555. [PMID: 32489008 DOI: 10.1111/tra.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/27/2022]
Abstract
On April 10, 2020, a treasured cell biologist and ardent champion of the Golgi complex passed away. This has caused deep sadness, and we seek to commemorate her remarkable scientific contributions, her warm and generous personality, and her endearing sense of humor.
Collapse
Affiliation(s)
- John Bergeron
- Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada
| | - J David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
37
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
38
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
39
|
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic 2019; 21:200-219. [PMID: 31650663 DOI: 10.1111/tra.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Ravichandran Y, Goud B, Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr Opin Cell Biol 2019; 62:104-113. [PMID: 31751898 DOI: 10.1016/j.ceb.2019.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.
Collapse
Affiliation(s)
- Yamini Ravichandran
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Institut Pasteur, CNRS, UMR 3691, 25 rue du Docteur Roux F-75014, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France.
| |
Collapse
|
41
|
Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and Golgi stress in microcephaly. Cell Stress 2019; 3:369-384. [PMID: 31832602 PMCID: PMC6883743 DOI: 10.15698/cst2019.12.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.
Collapse
Affiliation(s)
- Sandrine Passemard
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas'Hospital, London, United Kingdom
| | | |
Collapse
|
42
|
Ding Y, Fang A, Yan J, Duan J, Wang N, Yi Y, Shen C. Selective downregulation of distinct circRNAs in the tissues and plasma of patients with primary hepatic carcinoma. Oncol Lett 2019; 18:5255-5268. [PMID: 31612035 PMCID: PMC6781726 DOI: 10.3892/ol.2019.10908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Multiple studies have indicated that circular RNAs (circRNAs) are closely associated with malignant tumor development and metastasis. However, the significance of circRNAs in primary hepatic carcinoma (PHC), particularly in the plasma, remains largely undetermined. In the current study, circRNA expression profiles in three pairs of tumor and adjacent normal samples from patients with PHC, were examined using circRNA chip screening. A total of 80 circRNAs were upregulated, while 75 circRNAs were downregulated in PHC tissues, relative to para-tumor tissues (fold change, ≥1.5). A total of two upregulated circRNAs and three downregulated circRNAs were selected as candidates for further validation of their differential expression. This was performed using reverse transcription-quantitative PCR with 11 pairs of PHC tissues and para-tumor tissues. The results indicated that hsa_circ_0003056 exhibited reduced expression in PHC tissues. Moreover, hsa_circ_0003056 and hsa_circ_0067127 were quantified in the plasma samples of 35 PHC patients and 32 healthy donors. The results revealed that hsa_circ_0067127 was significantly downregulated in the patients' plasma. Finally, a competing endogenous RNA network was constructed, which consisted of one circRNA (hsa_circ_0003056 or has_circ_0067127), five miRNAs and miRNA-targeted genes (mRNAs). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that differentially expressed (DE) genes were significantly enriched in the pathway associated with ‘regulation of the pluripotency of stem cells’ for hsa_circ_0003056, and ‘ubiquitin-mediated proteolysis’ and ‘prostate cancer’ for hsa_circ_0067127. Gene ontology analysis revealed that DE genes were primarily associated with the ‘modulation of kinase activity’ and ‘intracellular and transmembrane-ephrin receptor activity’ for hsa_circ_0003056, ‘artery morphogenesis activity’, ‘HOPS complex and transferase activity’ and in ‘transferring acyl groups’ for hsa_circ_0067127. This approach indicated that hsa_circ_0003056 in PHC tissue, and hsa_circ_0067127 in PHC plasma, are downregulated and may be implicated in the tumorigenesis of PHC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China.,Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Anning Fang
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jialai Yan
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui 230601, P.R. China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China
| | - Nianyue Wang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China
| | - Yongxiang Yi
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing, Jiangsu 210003, P.R. China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
43
|
Makowski SL, Kuna RS, Field SJ. Induction of membrane curvature by proteins involved in Golgi trafficking. Adv Biol Regul 2019; 75:100661. [PMID: 31668661 PMCID: PMC7056495 DOI: 10.1016/j.jbior.2019.100661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022]
Abstract
The Golgi apparatus serves a key role in processing and sorting lipids and proteins for delivery to their final cellular destinations. Vesicle exit from the Golgi initiates with directional deformation of the lipid bilayer to produce a bulge. Several mechanisms have been described by which lipids and proteins can induce directional membrane curvature to promote vesicle budding. Here we review some of the mechanisms implicated in inducing membrane curvature at the Golgi to promote vesicular trafficking to various cellular destinations.
Collapse
Affiliation(s)
- Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
44
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
45
|
Nishimura T, Stefan CJ. Specialized ER membrane domains for lipid metabolism and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158492. [PMID: 31349025 DOI: 10.1016/j.bbalip.2019.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/15/2022]
Abstract
The endoplasmic reticulum (ER) is a highly organized organelle that performs vital functions including de novo membrane lipid synthesis and transport. Accordingly, numerous lipid biosynthesis enzymes are localized in the ER membrane. However, it is now evident that lipid metabolism is sub-compartmentalized within the ER and that lipid biosynthetic enzymes engage with lipid transfer proteins (LTPs) to rapidly shuttle newly synthesized lipids from the ER to other organelles. As such, intimate relationships between lipid metabolism and lipid transfer pathways exist within the ER network. Notably, certain LTPs enhance the activities of lipid metabolizing enzymes; likewise, lipid metabolism can ensure the specificity of LTP transfer/exchange reactions. Yet, our understanding of these mutual relationships is still emerging. Here, we highlight past and recent key findings on specialized ER membrane domains involved in efficient lipid metabolism and transport and consider unresolved issues in the field.
Collapse
Affiliation(s)
- Taki Nishimura
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
46
|
Rahajeng J, Kuna RS, Makowski SL, Tran TTT, Buschman MD, Li S, Cheng N, Ng MM, Field SJ. Efficient Golgi Forward Trafficking Requires GOLPH3-Driven, PI4P-Dependent Membrane Curvature. Dev Cell 2019; 50:573-585.e5. [PMID: 31231041 PMCID: PMC7583631 DOI: 10.1016/j.devcel.2019.05.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/22/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Vesicle budding for Golgi-to-plasma membrane trafficking is a key step in secretion. Proteins that induce curvature of the Golgi membrane are predicted to be required, by analogy to vesicle budding from other membranes. Here, we demonstrate that GOLPH3, upon binding to the phosphoinositide PI4P, induces curvature of synthetic membranes in vitro and the Golgi in cells. Moreover, efficient Golgi-to-plasma membrane trafficking critically depends on the ability of GOLPH3 to curve the Golgi membrane. Interestingly, uncoupling of GOLPH3 from its binding partner MYO18A results in extensive curvature of Golgi membranes, producing dramatic tubulation of the Golgi, but does not support forward trafficking. Thus, forward trafficking from the Golgi to the plasma membrane requires the ability of GOLPH3 both to induce Golgi membrane curvature and to recruit MYO18A. These data provide fundamental insight into the mechanism of Golgi trafficking and into the function of the unique Golgi secretory oncoproteins GOLPH3 and MYO18A.
Collapse
Affiliation(s)
- Juliati Rahajeng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramya S Kuna
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefanie L Makowski
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thuy T T Tran
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew D Buschman
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sheng Li
- Department of Medicine, Division of Rheumatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Norton Cheng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle M Ng
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seth J Field
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Blunsom NJ, Cockcroft S. Phosphatidylinositol synthesis at the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158471. [PMID: 31173893 DOI: 10.1016/j.bbalip.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/23/2022]
Abstract
Phosphatidylinositol (PI) is a minor phospholipid with a characteristic fatty acid profile; it is highly enriched in stearic acid at the sn-1 position and arachidonic acid at the sn-2 position. PI is phosphorylated into seven specific derivatives, and individual species are involved in a vast array of cellular functions including signalling, membrane traffic, ion channel regulation and actin dynamics. De novo PI synthesis takes place at the endoplasmic reticulum where phosphatidic acid (PA) is converted to PI in two enzymatic steps. PA is also produced at the plasma membrane during phospholipase C signalling, where hydrolysis of phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) leads to the production of diacylglycerol which is rapidly phosphorylated to PA. This PA is transferred to the ER to be also recycled back to PI. For the synthesis of PI, CDP-diacylglycerol synthase (CDS) converts PA to the intermediate, CDP-DG, which is then used by PI synthase to make PI. The de novo synthesised PI undergoes remodelling to acquire its characteristic fatty acid profile, which is altered in p53-mutated cancer cells. In mammals, there are two CDS enzymes at the ER, CDS1 and CDS2. In this review, we summarise the de novo synthesis of PI at the ER and the enzymes involved in its subsequent remodelling to acquire its characteristic acyl chains. We discuss how CDS, the rate limiting enzymes in PI synthesis are regulated by different mechanisms. During phospholipase C signalling, the CDS1 enzyme is specifically upregulated by cFos via protein kinase C.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
48
|
Wang Y, Mousley CJ, Lete MG, Bankaitis VA. An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems. Curr Opin Cell Biol 2019; 59:58-72. [PMID: 31039522 DOI: 10.1016/j.ceb.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Recent years have witnessed the evolution of the cell biology of lipids into an extremely active area of investigation. Deciphering the involvement of lipid metabolism and lipid signaling in membrane trafficking pathways defines a major nexus of contemporary experimental activity on this front. Significant effort in that direction is invested in understanding the trans-Golgi network/endosomal system where unambiguous connections between membrane trafficking and inositol lipid and phosphatidylcholine metabolism were first discovered. However, powered by new advances in contemporary cell biology, the march of science is rapidly expanding that window of inquiry to include ever more diverse arms of the lipid metabolome, and to include other compartments of the secretory pathway as well.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|
49
|
Lipid exchange and signaling at ER–Golgi contact sites. Curr Opin Cell Biol 2019; 57:8-15. [DOI: 10.1016/j.ceb.2018.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/24/2023]
|
50
|
The knocking down of the oncoprotein Golgi phosphoprotein 3 in T98G cells of glioblastoma multiforme disrupts cell migration by affecting focal adhesion dynamics in a focal adhesion kinase-dependent manner. PLoS One 2019; 14:e0212321. [PMID: 30779783 PMCID: PMC6380552 DOI: 10.1371/journal.pone.0212321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/31/2019] [Indexed: 01/29/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a conserved protein of the Golgi apparatus that in humans has been implicated in tumorigenesis. However, the precise function of GOLPH3 in malignant transformation is still unknown. Nevertheless, clinicopathological data shows that in more than a dozen kinds of cancer, including gliomas, GOLPH3 could be found overexpressed, which correlates with poor prognosis. Experimental data shows that overexpression of GOLPH3 leads to transformation of primary cells and to tumor growth enhancement. Conversely, the knocking down of GOLPH3 in GOLPH3-overexpressing tumor cells reduces tumorigenic features, such as cell proliferation and cell migration and invasion. The cumulative evidence indicate that GOLPH3 is an oncoprotein that promotes tumorigenicity by a mechanism that impact at different levels in different types of cells, including the sorting of Golgi glycosyltransferases, signaling pathways, and the actin cytoskeleton. How GOLPH3 connects mechanistically these processes has not been determined yet. Further studies are important to have a more complete understanding of the role of GOLPH3 as oncoprotein. Given the genetic diversity in cancer, a still outstanding aspect is how in this inherent heterogeneity GOLPH3 could possibly exert its oncogenic function. We have aimed to evaluate the contribution of GOLPH3 overexpression in the malignant phenotype of different types of tumor cells. Here, we analyzed the effect on cell migration that resulted from stable, RNAi-mediated knocking down of GOLPH3 in T98G cells of glioblastoma multiforme, a human glioma cell line with unique features. We found that the reduction of GOLPH3 levels produced dramatic changes in cell morphology, involving rearrangements of the actin cytoskeleton and reduction in the number and dynamics of focal adhesions. These effects correlated with decreased cell migration and invasion due to affected persistence and directionality of cell motility. Moreover, the knocking down of GOLPH3 also caused a reduction in autoactivation of focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase that regulates focal adhesions. Our data support a model in which GOLPH3 in T98G cells promotes cell migration by stimulating the activity of FAK.
Collapse
|