1
|
Wan R, Liu Y, Yan J, Lin J. Cell therapy: A beacon of hope in the battle against pulmonary fibrosis. FASEB J 2025; 39:e70356. [PMID: 39873972 DOI: 10.1096/fj.202402790r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/28/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive interstitial lung disease characterized by abnormal activation of myofibroblasts and pathological remodeling of the extracellular matrix, with a poor prognosis and limited treatment options. Lung transplantation is currently the only approach that can extend the life expectancy of patients; however, its applicability is severely restricted due to donor shortages and patient-specific limitations. Therefore, the search for novel therapeutic strategies is imperative. In recent years, stem cells have shown great promise in the field of regenerative medicine due to their self-renewal capacity and multidirectional differentiation potential, and a growing body of literature supports the efficacy of stem cell therapy in PF treatment. This paper systematically summarizes the research progress of various stem cell types in the treatment of PF. Furthermore, it discusses the primary methods and clinical outcomes of stem cell therapy in PF, based on both preclinical and clinical data. Finally, the current challenges and key factors to consider in stem cell therapy for PF are objectively analyzed, and future directions for improving this therapy are proposed, providing new insights and references for the clinical treatment of PF patients.
Collapse
Affiliation(s)
- Ruyan Wan
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jingwen Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Zhang J, Wang S, Liu Z, Zhong C, Lei Y, Zheng Q, Xu Y, Shan S, He H, Ren T. Connexin 25 maintains self-renewal and functions of airway basal cells for airway regeneration. Stem Cell Res Ther 2024; 15:286. [PMID: 39256871 PMCID: PMC11389295 DOI: 10.1186/s13287-024-03908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The formation of stem cell clones enables close contact of stem cells inside. The gap junctions in such clone spheres establish a microenvironment that allows frequent intercellular communication to maintain self-renewal and functions of stem cells. Nevertheless, the essential gap junction protein for molecular signaling in clones is poorly known. METHODS Primary human airway basal cells (hBCs) were isolated from brushing samples through bronchoscopy and then cultured. A tightly focused femtosecond laser was used to excite the local Ca2+ in an individual cell to initiate an internal Ca2+ wave in a clone to screen gap junction proteins. Immunoflourescence staining and clonogenicity assay were used to evaluate self-renewal and functions. RNA and protein levels were assessed by PCR and Western blot. Air-liquid interface assay was conducted to evaluate the differentiation potential. A Naphthalene injury mouse model was used to assess the regeneration potential. RESULTS Herein, we identify Connexin 25 (Cx25) dominates intercellular Ca2+ communications in clones of hBCs in vitro to maintain the self-renewal and pluripotency of them. The self-renewal and in vitro differentiation functions and in vivo regeneration potential of hBCs in an airway damage model are both regulated by Cx25. The abnormal expression of Cx25 is validated in several diseases including IPF, Covid-19 and bronchiectasis. CONCLUSION Cx25 is essential for hBC clones in maintaining self-renewal and functions of hBCs via gap junctions.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Zhong
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuqiong Lei
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
3
|
Chandran RR, Vijayaraj P, Garcia-Milian R, King J, Castillo K, Chen L, Kwon Y, William S, Rickabaugh TM, Langerman J, Choi W, Sen C, Lever JEP, Li Q, Pavelkova N, Plosa EJ, Rowe SM, Plath K, Clair G, Gomperts BN. Loss of cell junctional components and matrix alterations drive cell desquamation and fibrotic changes in Idiopathic Pulmonary Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599411. [PMID: 38948715 PMCID: PMC11212876 DOI: 10.1101/2024.06.17.599411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The distal bronchioles in Idiopathic Pulmonary Fibrosis (IPF) exhibit histopathological abnormalities such as bronchiolization, peribronchiolar fibrosis and honeycomb cysts that contribute to the overall architectural remodeling of lung tissue seen in the disease. Here we describe an additional histopathologic finding of epithelial desquamation in patients with IPF, wherein epithelial cells detach from the basement membrane of the distal bronchioles. To understand the mechanism driving this pathology, we performed spatial transcriptomics of the epithelial cells and spatial proteomics of the basement membrane of the distal bronchioles from IPF patients and patients with no prior history of lung disease. Our findings reveal a downregulation of cell junctional components, upregulation of epithelial-mesenchymal transition signatures and dysregulated basement membrane matrix in IPF distal bronchioles, facilitating epithelial desquamation. Further, functional assays identified regulation between Collagen IV in the matrix, and the junctional genes JUP and PLEC , that is crucial for maintaining distal bronchiolar homeostasis. In IPF, this balanced regulation between matrix and cell-junctions is disrupted, leading to loss of epithelial adhesion, peribronchiolar fibrosis and epithelial desquamation. Overall, our study suggests that in IPF the interplay between the loss of cell junctions and a dysregulated matrix results in desquamation of distal bronchiolar epithelium and lung remodeling, exacerbating the disease. One Sentence Summary Two-way regulation of cell junctional proteins and matrix proteins drives cellular desquamation and fibrosis in the distal bronchioles of patients with Idiopathic Pulmonary Fibrosis.
Collapse
|
4
|
Wang S, Shan S, Zhang J, Liu Z, Gu X, Hong Y, He H, Ren T. Airway epithelium regeneration by photoactivated basal cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112732. [PMID: 37290293 DOI: 10.1016/j.jphotobiol.2023.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
The airway epithelium is the footstone to maintain the structure and functions of lung, in which resident basal cells (BCs) maintain homeostasis and functional regeneration of epithelial barrier in response to injury. In recent clinical researches, transplanting BCs has shown great inspiring achievements in therapy of various lung diseases. In this study, we report a noninvasive optical method to activate BCs for airway epithelium regeneration in vivo by fast scanning of focused femtosecond laser on BCs of airway epithelium to active Ca2+ signaling and subsequent ERK and Wnt pathways. The photoactivated BCs present high proliferative capacity and maintain high pluripotency, which enables them to plant in the injured airway epithelium and differentiate to club cells for regeneration of epithelium. This optical method can also work in situ to activate localized BCs in airway tissue. Therefore, our results provide a powerful technology for noninvasive BC activation in stem-cell therapy of lung diseases.
Collapse
Affiliation(s)
- Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, 570228, Haikou, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Xiaohua Gu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China
| | - Yue Hong
- Stem Cell Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; School of Life Sciences, Hainan University, 58 Renmin Avenue, 570228 Haikou, China.
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, 200233 Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, 200233 Shanghai, China.
| |
Collapse
|
5
|
Wang Y, Chen D, Liu Y, Shi D, Duan C, Li J, Shi X, Zhang Y, Yu Z, Sun N, Wang W, Ma Y, Xu X, Otkur W, Liu X, Xia T, Qi H, Piao HL, Liu HX. Multidirectional characterization of cellular composition and spatial architecture in human multiple primary lung cancers. Cell Death Dis 2023; 14:462. [PMID: 37488117 PMCID: PMC10366158 DOI: 10.1038/s41419-023-05992-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Multiple primary lung cancers (MPLCs) pose diagnostic and therapeutic challenges in clinic. Here, we orchestrated the cellular and spatial architecture of MPLCs by combining single-cell RNA-sequencing and spatial transcriptomics. Notably, we identified a previously undescribed sub-population of epithelial cells termed as CLDN2+ alveolar type II (AT2) which was specifically enriched in MPLCs. This subtype was observed to possess a relatively stationary state, play a critical role in cellular communication, aggregate spatially in tumor tissues, and dominate the malignant histopathological patterns. The CLDN2 protein expression can help distinguish MPLCs from intrapulmonary metastasis and solitary lung cancer. Moreover, a cell surface receptor-TNFRSF18/GITR was highly expressed in T cells of MPLCs, suggesting TNFRSF18 as one potential immunotherapeutic target in MPLCs. Meanwhile, high inter-lesion heterogeneity was observed in MPLCs. These findings will provide insights into diagnostic biomarkers and therapeutic targets and advance our understanding of the cellular and spatial architecture of MPLCs.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yu Liu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Daiwang Shi
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Chao Duan
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jinghan Li
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiang Shi
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yong Zhang
- Department of Pathology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Zhanwu Yu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Nan Sun
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Wei Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Yegang Ma
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China
| | - Xiaohan Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122, Shenyang, China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, 110122, Shenyang, China.
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, 110042, Shenyang, China.
- Department of Thoracic Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, 110042, Shenyang, China.
| |
Collapse
|
6
|
Reffsin S, Miller J, Ayyanathan K, Dunagin MC, Jain N, Schultz DC, Cherry S, Raj A. Single cell susceptibility to SARS-CoV-2 infection is driven by variable cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547955. [PMID: 37461472 PMCID: PMC10350037 DOI: 10.1101/2023.07.06.547955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The ability of a virus to infect a cell type is at least in part determined by the presence of host factors required for the viral life cycle. However, even within cell types that express known factors needed for infection, not every cell is equally susceptible, suggesting that our knowledge of the full spectrum of factors that promote infection is incomplete. Profiling the most susceptible subsets of cells within a population may reveal additional factors that promote infection. However, because viral infection dramatically alters the state of the cell, new approaches are needed to reveal the state of these cells prior to infection with virus. Here, we used single-cell clone tracing to retrospectively identify and characterize lung epithelial cells that are highly susceptible to infection with SARS-CoV-2. The transcriptional state of these highly susceptible cells includes markers of retinoic acid signaling and epithelial differentiation. Loss of candidate factors identified by our approach revealed that many of these factors play roles in viral entry. Moreover, a subset of these factors exert control over the infectable cell state itself, regulating the expression of key factors associated with viral infection and entry. Analysis of patient samples revealed the heterogeneous expression of these factors across both cells and patients in vivo. Further, the expression of these factors is upregulated in particular inflammatory pathologies. Altogether, our results show that the variable expression of intrinsic cell states is a major determinant of whether a cell can be infected by SARS-CoV-2.
Collapse
Affiliation(s)
- Sam Reffsin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C. Dunagin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Naveen Jain
- Genetics and Epigenetics, Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Arjun Raj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Zhao S, Wu X, Tan Z, Ren Y, Li L, Ou J, Lin Y, Song H, Feng L, Seto D, Wu J, Zhang Q, Rong Z. Generation of Human Embryonic Stem Cell-Derived Lung Organoids for Modeling Infection and Replication Differences between Human Adenovirus Types 3 and 55 and Evaluating Potential Antiviral Drugs. J Virol 2023; 97:e0020923. [PMID: 37120831 PMCID: PMC10231139 DOI: 10.1128/jvi.00209-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses type 3 (HAdV-3) and type 55 (HAdV-55) are frequently encountered, highly contagious respiratory pathogens with high morbidity rate. In contrast to HAdV-3, one of the most predominant types in children, HAdV-55 is a reemergent pathogen associated with more severe community-acquired pneumonia (CAP) in adults, especially in military camps. However, the infectivity and pathogenicity differences between these viruses remain unknown as in vivo models are not available. Here, we report a novel system utilizing human embryonic stem cells-derived 3-dimensional airway organoids (hAWOs) and alveolar organoids (hALOs) to investigate these two viruses. Firstly, HAdV-55 replicated more robustly than HAdV-3. Secondly, cell tropism analysis in hAWOs and hALOs by immunofluorescence staining revealed that HAdV-55 infected more airway and alveolar stem cells (basal and AT2 cells) than HAdV-3, which may lead to impairment of self-renewal functions post-injury and the loss of cell differentiation in lungs. Additionally, the viral life cycles of HAdV-3 and -55 in organoids were also observed using Transmission Electron Microscopy. This study presents a useful pair of lung organoids for modeling infection and replication differences between respiratory pathogens, illustrating that HAdV-55 has relatively higher replication efficiency and more specific cell tropism in human lung organoids than HAdV-3, which may result in relatively higher pathogenicity and virulence of HAdV-55 in human lungs. The model system is also suitable for evaluating potential antiviral drugs, as demonstrated with cidofovir. IMPORTANCE Human adenovirus (HAdV) infections are a major threat worldwide. HAdV-3 is one of the most predominant respiratory pathogen types found in children. Many clinical studies have reported that HAdV-3 causes less severe disease. In contrast, HAdV-55, a reemergent acute respiratory disease pathogen, is associated with severe community-acquired pneumonia in adults. Currently, no ideal in vivo models are available for studying HAdVs. Therefore, the mechanism of infectivity and pathogenicity differences between human adenoviruses remain unknown. In this study, a useful pair of 3-dimensional (3D) airway organoids (hAWOs) and alveolar organoids (hALOs) were developed to serve as a model. The life cycles of HAdV-3 and HAdV-55 in these human lung organoids were documented for the first time. These 3D organoids harbor different cell types, which are similar to the ones found in humans. This allows for the study of the natural target cells for infection. The finding of differences in replication efficiency and cell tropism between HAdV-55 and -3 may provide insights into the mechanism of clinical pathogenicity differences between these two important HAdV types. Additionally, this study provides a viable and effective in vitro tool for evaluating potential anti-adenoviral treatments.
Collapse
Affiliation(s)
- Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xiaowei Wu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Yi Ren
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Junxian Ou
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jianguo Wu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Lin Q, Fang Z, Sun J, Chen F, Ren Y, Fu Z, Yang S, Feng L, Wang F, Song Z, Chen W, Yu W, Wang C, Shi Y, Liang Y, Zhang H, Qu H, Fang X, Xi Q. Single-cell transcriptomic analysis of the tumor ecosystem of adenoid cystic carcinoma. Front Oncol 2022; 12:1063477. [DOI: 10.3389/fonc.2022.1063477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is a malignant tumor that originates from exocrine gland epithelial cells. We profiled the transcriptomes of 49,948 cells from paracarcinoma and carcinoma tissues of three patients using single-cell RNA sequencing. Three main types of the epithelial cells were identified into myoepithelial-like cells, intercalated duct-like cells, and duct-like cells by marker genes. And part of intercalated duct-like cells with special copy number variations which altered with MYB family gene and EN1 transcriptomes were identified as premalignant cells. Developmental pseudo-time analysis showed that the premalignant cells eventually transformed into malignant cells. Furthermore, MYB and MYBL1 were found to belong to two different gene modules and were expressed in a mutually exclusive manner. The two gene modules drove ACC progression into different directions. Our findings provide novel evidence to explain the high recurrence rate of ACC and its characteristic biological behavior.
Collapse
|
10
|
Consequences of telomere dysfunction in fibroblasts, club and basal cells for lung fibrosis development. Nat Commun 2022; 13:5656. [PMID: 36202783 PMCID: PMC9537293 DOI: 10.1038/s41467-022-32771-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
TRF1 is an essential component of the telomeric protective complex or shelterin. We previously showed that dysfunctional telomeres in alveolar type II (ATII) cells lead to interstitial lung fibrosis. Here, we study the lung pathologies upon telomere dysfunction in fibroblasts, club and basal cells. TRF1 deficiency in lung fibroblasts, club and basal cells induced telomeric damage, proliferative defects, cell cycle arrest and apoptosis. While Trf1 deletion in fibroblasts does not spontaneously lead to lung pathologies, upon bleomycin challenge exacerbates lung fibrosis. Unlike in females, Trf1 deletion in club and basal cells from male mice resulted in lung inflammation and airway remodeling. Here, we show that depletion of TRF1 in fibroblasts, Club and basal cells does not lead to interstitial lung fibrosis, underscoring ATII cells as the relevant cell type for the origin of interstitial fibrosis. Our findings contribute to a better understanding of proper telomere protection in lung tissue homeostasis.
Collapse
|
11
|
Abstract
Pulmonary fibrosis (PF) is a chronic and relentlessly progressive interstitial lung disease in which the accumulation of fibroblasts and extracellular matrix (ECM) induces the destruction of normal alveolar structures, ultimately leading to respiratory failure. Patients with advanced PF are unable to perform physical labor and often have concomitant cough and dyspnea, which markedly impair their quality of life. However, there is a paucity of available pharmacological therapies, and to date, lung transplantation remains the only possible treatment for patients suffering from end-stage PF; moreover, the complexity of transplantation surgery and the paucity of donors greatly restrict the application of this treatment. Therefore, there is a pressing need for alternative therapeutic strategies for this complex disease. Due to their capacity for pluripotency and paracrine actions, stem cells are promising therapeutic agents for the treatment of interstitial lung disease, and an extensive body of literature supports the therapeutic efficacy of stem cells in lung fibrosis. Although stem cell transplantation may play an important role in the treatment of PF, some key issues, such as safety and therapeutic efficacy, remain to be resolved. In this review, we summarize recent preclinical and clinical studies on the stem cell-mediated regeneration of fibrotic lungs and present an analysis of concerning issues related to stem cell therapy to guide therapeutic development for this complex disease.
Collapse
|
12
|
Sano E, Suzuki T, Hashimoto R, Itoh Y, Sakamoto A, Sakai Y, Saito A, Okuzaki D, Motooka D, Muramoto Y, Noda T, Takasaki T, Sakuragi JI, Minami S, Kobayashi T, Yamamoto T, Matsumura Y, Nagao M, Okamoto T, Takayama K. Cell response analysis in SARS-CoV-2 infected bronchial organoids. Commun Biol 2022; 5:516. [PMID: 35637255 PMCID: PMC9151746 DOI: 10.1038/s42003-022-03499-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
The development of an in vitro cell model that can be used to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research is expected. Here we conducted infection experiments in bronchial organoids (BO) and an BO-derived air-liquid interface model (BO-ALI) using 8 SARS-CoV-2 variants. The infection efficiency in BO-ALI was more than 1,000 times higher than that in BO. Among the bronchial epithelial cells, we found that ciliated cells were infected with the virus, but basal cells were not. Ciliated cells died 7 days after the viral infection, but basal cells survived after the viral infection and differentiated into ciliated cells. Fibroblast growth factor 10 signaling was essential for this differentiation. These results indicate that BO and BO-ALI may be used not only to evaluate the cell response to SARS-CoV-2 and coronavirus disease 2019 (COVID-19) therapeutic agents, but also for airway regeneration studies.
Collapse
Affiliation(s)
- Emi Sano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Ayaka Sakamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8511, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, 253-0087, Japan
| | - Jun-Ichi Sakuragi
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, 253-0087, Japan
| | - Shohei Minami
- Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takeshi Kobayashi
- Laboratory of Viral Replication, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| |
Collapse
|
13
|
Noureddine N, Chalubinski M, Wawrzyniak P. The Role of Defective Epithelial Barriers in Allergic Lung Disease and Asthma Development. J Asthma Allergy 2022; 15:487-504. [PMID: 35463205 PMCID: PMC9030405 DOI: 10.2147/jaa.s324080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The respiratory epithelium constitutes the physical barrier between the human body and the environment, thus providing functional and immunological protection. It is often exposed to allergens, microbial substances, pathogens, pollutants, and environmental toxins, which lead to dysregulation of the epithelial barrier and result in the chronic inflammation seen in allergic diseases and asthma. This epithelial barrier dysfunction results from the disturbed tight junction formation, which are multi-protein subunits that promote cell-cell adhesion and barrier integrity. The increasing interest and evidence of the role of impaired epithelial barrier function in allergy and asthma highlight the need for innovative approaches that can provide new knowledge in this area. Here, we review and discuss the current role and mechanism of epithelial barrier dysfunction in developing allergic diseases and the effect of current allergy therapies on epithelial barrier restoration.
Collapse
Affiliation(s)
- Nazek Noureddine
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maciej Chalubinski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Paulina Wawrzyniak
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Sinjab A, Han G, Treekitkarnmongkol W, Hara K, Brennan PM, Dang M, Hao D, Wang R, Dai E, Dejima H, Zhang J, Bogatenkova E, Sanchez-Espiridion B, Chang K, Little DR, Bazzi S, Tran LM, Krysan K, Behrens C, Duose DY, Parra ER, Raso MG, Solis LM, Fukuoka J, Zhang J, Sepesi B, Cascone T, Byers LA, Gibbons DL, Chen J, Moghaddam SJ, Ostrin EJ, Rosen D, Heymach JV, Scheet P, Dubinett SM, Fujimoto J, Wistuba II, Stevenson CS, Spira A, Wang L, Kadara H. Resolving the Spatial and Cellular Architecture of Lung Adenocarcinoma by Multiregion Single-Cell Sequencing. Cancer Discov 2021; 11:2506-2523. [PMID: 33972311 PMCID: PMC8487926 DOI: 10.1158/2159-8290.cd-20-1285] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/26/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
Little is known of the geospatial architecture of individual cell populations in lung adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial proximities from the tumors. We show that cellular lineages, states, and transcriptomic features geospatially evolve across normal regions to LUADs. LUADs also exhibit pronounced intratumor cell heterogeneity within single sites and transcriptional lineage-plasticity programs. T regulatory cell phenotypes are increased in normal tissues with proximity to LUAD, in contrast to diminished signatures and fractions of cytotoxic CD8+ T cells, antigen-presenting macrophages, and inflammatory dendritic cells. We further find that the LUAD ligand-receptor interactome harbors increased expression of epithelial CD24, which mediates protumor phenotypes. These data provide a spatial atlas of LUAD evolution, and a resource for identification of targets for its treatment. SIGNIFICANCE: The geospatial ecosystem of the peripheral lung and early-stage LUAD is not known. Our multiregion single-cell sequencing analyses unravel cell populations, states, and phenotypes in the spatial and ecologic evolution of LUAD from the lung that comprise high-potential targets for early interception.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kieko Hara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Brennan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hitoshi Dejima
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiexin Zhang
- Department of Bioinformatics and Computer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beatriz Sanchez-Espiridion
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Danielle R Little
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samer Bazzi
- Faculty of Arts and Sciences, University of Balamand, Koura, Lebanon
| | - Linh M Tran
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kostyantyn Krysan
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carmen Behrens
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fukuoka
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jianjun Zhang
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina Cascone
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Averett Byers
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L Gibbons
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin J Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Rosen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - John V Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven M Dubinett
- Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Avrum Spira
- Lung Cancer Initiative at Johnson and Johnson, Boston, Massachusetts
- Section of Computational Biomedicine, Boston University, Boston, Massachusetts
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Lehmann M, Königshoff M. Regenerative Medicine and the Hope for a Cure. Clin Chest Med 2021; 42:365-373. [PMID: 34024411 PMCID: PMC11283847 DOI: 10.1016/j.ccm.2021.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current therapeutic strategies have succeeded in slowing down the progression of idiopathic pulmonary fibrosis (IPF). Emerging evidence highlights IPF as a disease of aging and impaired regeneration. Novel antiaging and regenerative medicine approaches hold promise to be able to reverse disease and might present hope for a cure. Research focusing on a deeper understanding of lung stem cell populations and how these are regulated and altered in fibrotic disease continues to drive the field, and accompanied by earlier diagnosis, the adaptation of clinically relevant models and readouts for regeneration of diseased lung, ultimately paves the way for translation into clinics.
Collapse
Affiliation(s)
- Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Center of Lung Research (DZL), Max-Lebsche-Platz 31, München 81377, Germany
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, German Center of Lung Research (DZL), Max-Lebsche-Platz 31, München 81377, Germany; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Singh K, Chen YC, Hassanzadeh S, Han K, Judy JT, Seifuddin F, Tunc I, Sack MN, Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. Front Genet 2021; 12:599261. [PMID: 33796130 PMCID: PMC8008150 DOI: 10.3389/fgene.2021.599261] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Analyzing host cells' transcriptional response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will help delineate biological processes underlying viral pathogenesis. First, analysis of expression profiles of lung cell lines A549 and Calu3 revealed upregulation of antiviral interferon signaling genes in response to all three SARS-CoV-2, MERS-CoV, or influenza A virus (IAV) infections. However, perturbations in expression of genes involved in inflammatory, mitochondrial, and autophagy processes were specifically observed in SARS-CoV-2-infected cells. Next, a validation study in infected human nasopharyngeal samples also revealed perturbations in autophagy and mitochondrial processes. Specifically, mTOR expression, mitochondrial ribosomal, mitochondrial complex I, lysosome acidification, and mitochondrial fission promoting genes were concurrently downregulated in both infected cell lines and human samples. SARS-CoV-2 infection impeded autophagic flux either by upregulating GSK3B in lung cell lines or by downregulating autophagy genes, SNAP29, and lysosome acidification genes in human samples, contributing to increased viral replication. Therefore, drugs targeting lysosome acidification or autophagic flux could be tested as intervention strategies. Finally, age-stratified SARS-CoV-2-positive human data revealed impaired upregulation of chemokines, interferon-stimulated genes, and tripartite motif genes that are critical for antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and mitochondrial function that are uniquely perturbed in SARS-CoV-2-infected host cells.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer T. Judy
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
18
|
Singh K, Chen YC, Judy JT, Seifuddin F, Tunc I, Pirooznia M. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.13.092536. [PMID: 32511341 PMCID: PMC7241104 DOI: 10.1101/2020.05.13.092536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Analyzing host transcriptional changes in response to SARS-CoV-2 infection will help delineate biological processes underlying viral pathogenesis. Comparison of expression profiles of lung cell lines A549 (infected with either SARS-CoV-2 (with ACE2 expression)) or Influenza A virus (IAV)) and Calu3 (infected with SARS-CoV-2 or MERS-CoV) revealed upregulation of the antiviral interferon signaling in all three viral infections. However, perturbations in inflammatory, mitochondrial, and autophagy processes were specifically observed in SARS-CoV-2 infected cells. Validation of findings from cell line data revealed perturbations in autophagy and mitochondrial processes in the infected human nasopharyngeal samples. Specifically, downregulation of mTOR expression, mitochondrial ribosomal, mitochondrial complex I, and lysosome acidification genes were concurrently observed in both infected cell lines and human datasets. Furthermore, SARS-CoV-2 infection impedes autophagic flux by upregulating GSK3B in lung cell lines, or by downregulating autophagy genes, SNAP29 and lysosome acidification genes in human samples, contributing to increased viral replication. Therefore, drugs targeting lysosome acidification or autophagic flux could be tested as intervention strategies. Additionally, downregulation of MTFP1 (in cell lines) or SOCS6 (in human samples) results in hyperfused mitochondria and impede proper interferon response. Coexpression networks analysis identifies correlated clusters of genes annotated to inflammation and mitochondrial processes that are misregulated in SARS-CoV-2 infected cells. Finally, comparison of age stratified human gene expression data revealed impaired upregulation of chemokines, interferon stimulated and tripartite motif genes that are critical for antiviral signaling. Together, this analysis has revealed specific aspects of autophagic and mitochondrial function that are uniquely perturbed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Komudi Singh
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer T Judy
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Sun F, Cheng L, Guo H, Sun Y, Ma Y, Wang Y, Feng W, Yuan Q, Dai X. Application of autologous SOX9 + airway basal cells in patients with bronchiectasis. CLINICAL RESPIRATORY JOURNAL 2020; 14:839-848. [PMID: 32436281 DOI: 10.1111/crj.13216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Bronchiectasis is a common condition and a leading cause of respiratory morbidity and mortality. The treatment method for bronchiectasis is mainly symptomatic treatment or surgery; however, this condition is extremely prone to recurrence. OBJECTIVES To preliminarily evaluate the safety and efficacy of applying SOX9+ autologous airway basal cells (BCs) in patients with bronchiectasis. METHODS SOX9+ BCs were isolated from microscale tissue of a grade 3-5 bronchus by bronchoscopic brushing and expanded in vitro for approximately 4 weeks. Subsequently, the autologous SOX9+ BCs were transplanted into the diseased bronchus to treat patients with bronchiectasis. RESULTS The forced expiratory volume in1 second (FEV1)%, forced vital capacity (FVC)%, total lung capacity (TLC)%, residual volume (RV)% and RV/TLC ratio of predicted value in patients with bronchiectasis were improved at 4, 12, 24 and 48 weeks after cell transplantation, although the differences were not statistically significant (P > .05). Chest CT scans showed that the lesions in the pulmonary segment had not progressed at 4, 12 and 24 weeks after transplantation. No patients died during the follow-up. At 4, 12 and 24 weeks after transplantation, routine blood tests, liver function tests, renal function tests and myocardial enzymatic indexes were normal (P > .05). CONCLUSION Transplantation of autologous SOX9+ BCs has positive effects and is safe for patients with bronchiectasis.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Cheng
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiqing Guo
- Department of Respiratory Disease, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Yufen Sun
- Regend Therapeutics Co. Ltd, Zhejiang, China
| | - Yu Ma
- Regend Therapeutics Co. Ltd, Zhejiang, China
| | - Yu Wang
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Feng
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Qian Yuan
- Department of Pharmacy, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaotian Dai
- Department of Respiratory Disease, the First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
20
|
Sarode P, Mansouri S, Karger A, Schaefer MB, Grimminger F, Seeger W, Savai R. Epithelial cell plasticity defines heterogeneity in lung cancer. Cell Signal 2019; 65:109463. [PMID: 31693875 DOI: 10.1016/j.cellsig.2019.109463] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the leading cause of cancer death for both men and women and accounts for almost 18.4% of all deaths due to cancer worldwide, with the global incidence increasing by approximately 0.5% per year. Lung cancer is regarded as a devastating type of cancer owing to its high prevalence, reduction in the health-related quality of life, frequently delayed diagnosis, low response rate, high toxicity, and resistance to available therapeutic options. The highly heterogeneous nature of this cancer with a proximal-to-distal distribution throughout the respiratory tract dramatically affects its diagnostic and therapeutic management. The diverse composition and plasticity of lung epithelial cells across the respiratory tract are regarded as significant factors underlying lung cancer heterogeneity. Therefore, definitions of the cells of origin for different types of lung cancer are urgently needed to understand lung cancer biology and to achieve early diagnosis and develop cell-targeted therapies. In the present review, we will discuss the current understanding of the cellular and molecular alterations in distinct lung epithelial cells that result in each type of lung cancer.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Annika Karger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany; Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35390, Germany.
| |
Collapse
|