1
|
Teran A, Jung J, Platenkamp A, Pardini A, Zhao A, Chandramouli S, Jefferis A, Applewhite DA. The Drosophila SPECC1L homolog, Split Discs, co-localizes with non-muscle myosin II and regulates focal adhesion dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.06.647460. [PMID: 40236004 PMCID: PMC11996496 DOI: 10.1101/2025.04.06.647460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Allelic variations of Sperm antigen with calponin homology and Coiled-Coil domains 1 Like (SPECC1L) have been associated with a spectrum of cranial-facial pathologies including Teebi hypertelorism and Opitz G/BBB syndrome which manifest as clefting of the palate, wide-eyes, and incomplete closure of the esophagus among others. These pathologies may be indicative of improper cranial neural crest cell (CNCC) delamination and migration. SPECC1L is hypothesized to be an actin-microtubule cross-linking protein as it co-localizes with both microtubules and actin in tissue culture cells. Further, it has been shown to immunoprecipitate with a protein phosphatase complex-1β (PP1β) member, MYPT1, as well as being involved in the PI3K-AKT signaling axis. In this study we sought to investigate the SPECC1L Drosophila homolog Spdi and despite sharing close homology with its mammalian counterpart we found that Spdi is associated with both non-muscle myosin-II and actin. RNAi depletion of Spdi led to an increase in focal adhesion dynamics and when we introduced conserved point mutations to Spdi that are analogous to those associated with human disease we observed a further increase in focal adhesion dynamics above that of depletion alone. Collectively, our findings suggest that Spdi is a non-muscle myosin II (NMII) binding protein that likely affects focal adhesion dynamics through this association. Our results also suggest that some of the pathologies associated with allelic variants of SPECC1L may be the result of aberrant cell-matrix adhesion.
Collapse
|
2
|
Leonard CE, McIntosh A, Sanyal J, Taneyhill LA. The transcriptional landscape of the developing chick trigeminal ganglion. Dev Biol 2025; 520:108-116. [PMID: 39719193 PMCID: PMC11863308 DOI: 10.1016/j.ydbio.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance. Avian models have, so far, enabled key insights into craniofacial and peripheral nervous system development. Yet the molecular mechanisms driving trigeminal ganglion formation and subsequent nerve growth remain elusive. In this study, we performed RNA-sequencing at multiple stages of chick trigeminal ganglion development and generated a novel transcriptomic dataset that has been curated to illustrate temporally dynamic gene expression patterns. This publicly available resource identifies major pathways involved in trigeminal gangliogenesis, particularly with respect to the condensation and maturation of placode-derived neurons, thus inviting new lines of research into the essential processes governing trigeminal ganglion development.
Collapse
Affiliation(s)
- Carrie E Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Alec McIntosh
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Johena Sanyal
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Hu Y, Zhang Q, Jiang W, Wang X, Guo X, Chen L, Cheng S, Ying J, Ye J, Zhang L. Aristolochic acid I induced mitochondrial Ca 2+ accumulation triggers the production of MitoROS and activates Src/FAK pathway in hepatocellular carcinoma cells. Chem Biol Interact 2025; 405:111269. [PMID: 39426658 DOI: 10.1016/j.cbi.2024.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Aristolochic acid I (AAI) is one of the nephrotoxic and carcinogenic compounds in Aristolochic acids (AAs). Recent studies have reported its promoting effect on hepatocellular carcinoma. However, the underlying mechanisms of AAI for the development of HCC is still unclear. Here, we found that AAI exposure caused alterations in mitochondrial function, which featured with increased ATP level and mitochondrial membrane potential, accumulation of mitochondrial Ca2+ and mitochondrial ROS (MitoROS) in Hepa1-6 and HepG2 cells. The restriction of mitochondrial Ca2+ uptake alleviated these effects. Our results showed that increased MitoROS was associated with AAI-induced migration and invasion in HCC cells. MitoROS/Src/FAK pathway was involved in the AAI-induced migration and invasion of HCC cells. In summary, our study showed that AAI affected mitochondrial metabolism of HCC cells by promoting the accumulation of mitochondrial Ca2+. These effects resulted in the activation of the MitoROS/SRC/FAK pathway in AAI-treated HCC cells, which in turn induced cell migration and invasion.
Collapse
Affiliation(s)
- Yongkang Hu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Qi Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Wenjuan Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Xian Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Xinlong Guo
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Langqun Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Siyu Cheng
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Jiahui Ying
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China
| | - Jing Ye
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China.
| | - Liang Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, PR China.
| |
Collapse
|
4
|
Leonard CE, McIntosh A, Sanyal J, Taneyhill LA. The transcriptional landscape of the developing chick trigeminal ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.604400. [PMID: 39211243 PMCID: PMC11361123 DOI: 10.1101/2024.07.20.604400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance. Avian models have, so far, enabled key insights into craniofacial and peripheral nervous system development. Yet, the molecular mechanisms driving trigeminal ganglion formation and subsequent nerve growth remain elusive. In this study, we performed RNA-sequencing at multiple stages of chick trigeminal ganglion development and generated a novel transcriptomic dataset that has been curated to illustrate temporally dynamic gene expression patterns. This publicly available resource identifies major pathways involved in trigeminal gangliogenesis, particularly with respect to the condensation and maturation of placode-derived neurons, thus inviting new lines of research into the essential processes governing trigeminal ganglion development.
Collapse
|
5
|
Latham ZD, Bermudez A, Hu JK, Lin NYC. Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions. BIOPHYSICS REVIEWS 2024; 5:041301. [PMID: 39416285 PMCID: PMC11479637 DOI: 10.1063/5.0220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging. Although cell jamming and unjamming follow physics principles described by the jamming diagram, they are fundamentally biological processes. In this review, we explore how cellular processes and interactions regulate jamming and unjamming transitions. We begin with an overview of how these transitions control tissue remodeling in epithelial model systems and describe recent findings of the physical principles governing tissue solidification and fluidization. We then explore the mechanistic pathways that modulate the jamming phase diagram axes, focusing on the regulation of cell fluctuations and geometric compatibility. Drawing upon seminal works in cell biology, we discuss the roles of cytoskeleton and cell-cell adhesion in controlling cell motility and geometry. This comprehensive view illustrates the molecular control of cell jamming and unjamming, crucial for tissue remodeling in various biological contexts.
Collapse
Affiliation(s)
- Zoe D. Latham
- Bioengineering Department, UCLA, Los Angeles, California 90095, USA
| | | | - Jimmy K. Hu
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
6
|
Hoving JJA, Harford-Wright E, Wingfield-Digby P, Cattin AL, Campana M, Power A, Morgan T, Torchiaro E, Quereda V, Lloyd AC. N-cadherin directs the collective Schwann cell migration required for nerve regeneration through Slit2/3-mediated contact inhibition of locomotion. eLife 2024; 13:e88872. [PMID: 38591541 PMCID: PMC11052573 DOI: 10.7554/elife.88872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.
Collapse
Affiliation(s)
- Julian JA Hoving
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Elizabeth Harford-Wright
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Patrick Wingfield-Digby
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Anne-Laure Cattin
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Mariana Campana
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Alex Power
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Toby Morgan
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Erica Torchiaro
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Victor Quereda
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| |
Collapse
|
7
|
Lu YW, Hou XL, Koo HM, Chao WT. Dasatinib suppresses collective cell migration through the coordination of focal adhesion and E-cadherin in colon cancer cells. Heliyon 2024; 10:e23501. [PMID: 38187289 PMCID: PMC10770570 DOI: 10.1016/j.heliyon.2023.e23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Collective cell migration is an important process in cancer metastasis. Unlike single-cell migration, collective cell migration requires E-cadherin expression in the cell cohort. However, the mechanisms underlying cellular contact and focal adhesions remain unclear. In this study, Src was hypothesized to coordinate focal adhesion and Rab11-mediated E-cadherin distribution during collective cell migration. This study primarily used confocal microscopy to visualize the 3D structure of cell-cell contacts with associated molecules. These results demonstrate that the clinical Src inhibitor dasatinib was less toxic to HT-29 colon cancer cells; instead, the cells aggregated. 3D immunofluorescence imaging showed that Rab11 was localized with E-cadherin at the adherens junctions of the apical cell-cell contacts. In the transwell assay, Rab11 colocalized with a broad range of E-cadherin proteins in collectively migrated cells, and dasatinib treatment significantly suppressed collective cell migration. Transmission electron microscopy demonstrated that dasatinib treatment increased cell membrane protrusion contacts and generated spaces between cells, which may allow epidermal growth factor receptor activity at the cell-cell contacts. This study suggests that dasatinib treatment does not inhibit cell survival but targets Src at different cellular compartments in the coordination of focal adhesions and cell-cell contacts in collective cell migration through E-cadherin dynamics in colon cancer cells.
Collapse
Affiliation(s)
- Yi-Wen Lu
- Department of Life Science, Tunghai University, 1727. 4 Sec. Taiwan Blvd., Taichung, Taiwan 407
| | - Xiang-Ling Hou
- Department of Life Science, Tunghai University, 1727. 4 Sec. Taiwan Blvd., Taichung, Taiwan 407
| | - Hui-Min Koo
- Department of Life Science, Tunghai University, 1727. 4 Sec. Taiwan Blvd., Taichung, Taiwan 407
| | - Wei-Ting Chao
- Department of Life Science, Tunghai University, 1727. 4 Sec. Taiwan Blvd., Taichung, Taiwan 407
| |
Collapse
|
8
|
Messer CL, McDonald JA. Expect the unexpected: conventional and unconventional roles for cadherins in collective cell migration. Biochem Soc Trans 2023; 51:1495-1504. [PMID: 37387360 DOI: 10.1042/bst20221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration. Besides keeping migrating cell collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, transfer information about front-rear polarity among the cohort, sense and respond to changes in the tissue environment, and promote intracellular signaling, in addition to other cellular behaviors. In this review, we highlight recent studies that reveal diverse but critical roles for both classical and atypical cadherins in collective cell migration, specifically focusing on four in vivo model systems in development: the Drosophila border cells, zebrafish mesendodermal cells, Drosophila follicle rotation, and Xenopus neural crest cells.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| |
Collapse
|
9
|
Yuan G, Yang ST, Yang S. Regulator of G protein signaling 12 drives inflammatory arthritis by activating synovial fibroblasts through MYCBP2/KIF2A signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:197-210. [PMID: 36700049 PMCID: PMC9843488 DOI: 10.1016/j.omtn.2022.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Synovial fibroblasts are the active and aggressive drivers in the progression of arthritis, but the cellular and molecular mechanisms remain unknown. Here, our results showed that regulator of G protein signaling 12 (RGS12) maintained ciliogenesis in synovial fibroblasts, which is critical for the development of inflammatory arthritis. Deletion of RGS12 led to a significant decrease in ciliogenesis, adhesion, migration, and secretion of synovial fibroblasts. Mechanistically, RGS12 overexpression in synovial fibroblasts increased the length and number of cilia but decreased the protein level of kinesin family member 2A (KIF2A). The results of LC-MS analyses showed that RGS12 interacted with MYC binding protein 2 to enhance its ubiquitination activity, through which the KIF2A protein was degraded in synovial fibroblasts. Moreover, overexpression of KIF2A blocked the increases in cilia length and number. Mice with RGS12 deficiency or treatment of RGS12 shRNA nanoparticles significantly decreased the clinical score, paw swelling, synovitis, and cartilage destruction during inflammatory arthritis by inhibiting the activation of synovial fibroblasts. Therefore, this study provides evidence that RGS12 activates synovial fibroblasts' pathological function via promoting MCYBP2-mediated degradation of KIF2A and ciliogenesis. Our data suggest that RGS12 may be a potential drug target for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shu-ting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Canales Coutiño B, Mayor R. Neural crest mechanosensors: Seeing old proteins in a new light. Dev Cell 2022; 57:1792-1801. [PMID: 35901790 DOI: 10.1016/j.devcel.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Mechanical forces exerted on neural crest cells control their collective migration and differentiation. This perspective discusses our current understanding of neural crest mechanotransduction during cell migration and differentiation. Additionally, we describe proteins that have mechanosensitive functions in other systems, such as mechanosensitive G-protein-coupled receptors, mechanosensitive ion channels, cell-cell adhesion, and cell-matrix-interacting proteins, and highlight that these same proteins have in the past been studied in neural crest development from a purely signaling point of view. We propose that future studies elucidate the mechanosensitive functions these receptors may play in neural crest development and integrate this with their known molecular role.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Mechanosignaling in vertebrate development. Dev Biol 2022; 488:54-67. [DOI: 10.1016/j.ydbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022]
|
12
|
Roberto GM, Emery G. Directing with restraint: Mechanisms of protrusion restriction in collective cell migrations. Semin Cell Dev Biol 2022; 129:75-81. [PMID: 35397972 DOI: 10.1016/j.semcdb.2022.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023]
Abstract
Cell migration is necessary for morphogenesis, tissue homeostasis, wound healing and immune response. It is also involved in diseases. In particular, cell migration is inherent in metastasis. Cells can migrate individually or in groups. To migrate efficiently, cells need to be able to organize into a leading front that protrudes by forming membrane extensions and a trailing edge that contracts. This organization is scaled up at the group level during collective cell movements. If a cell or a group of cells is unable to limit its leading edge and hence to restrict the formation of protrusions to the front, directional movements are impaired or abrogated. Here we summarize our current understanding of the mechanisms restricting protrusion formation in collective cell migration. We focus on three in vivo examples: the neural crest cell migration, the rotatory migration of follicle cells around the Drosophila egg chamber and the border cell migration during oogenesis.
Collapse
Affiliation(s)
- Gabriela Molinari Roberto
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, Québec H3C 3J7, Canada
| | - Gregory Emery
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, Québec H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
13
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
14
|
Gu W, Zhang L, Zhang X, Wang B, Shi X, Hu K, Ye Y, Liu G. MiR-15p-5p Mediates the Coordination of ICAM-1 and FAK to Promote Endothelial Cell Proliferation and Migration. Inflammation 2022; 45:1402-1417. [PMID: 35079920 DOI: 10.1007/s10753-022-01630-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) in endothelial cells is critical for neutrophil adhesion and transmigration across the endothelium. Focal adhesion kinase (FAK), which controls the turnover of focal adhesion to regulate cell adhesion and migration, plays a role in the resolution of inflammation. However, the coordinated involvement of ICAM-1 and FAK during endothelial inflammation has yet to be elucidated. This study reports that, as part of an inflammatory response, ICAM-1 controls FAK expression in endothelial cells via the microRNA miR-15b-5p. Induction of lung injury by lipopolysaccharide (LPS) resulted in higher levels of FAK expression in inflammatory tissues, while in ICAM-1 knockout mice, FAK expression was reduced in the lungs. FAK expression was also reduced in endothelial cells following ICAM-1 siRNA downregulation. Furthermore, ICAM-1 inhibited miR-15b-5p expression while increasing FAK mRNA and protein expression via binding of miR-15b-5p to the 3' untranslated region (UTR) of FAK. ICAM-1 inhibited miR-15b-5p promoter activity and hence reduced miR-15b-5p expression. FAK increased endothelial cell proliferation and migration, whereas miR-15b-5p inhibited cell proliferation and migration. These findings indicate that the inflammatory molecule ICAM-1 regulates FAK expression via miR-15b-5p levels, which in turn controls endothelial cell proliferation and migration.
Collapse
Affiliation(s)
- Wei Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai StreetAnhui Province, Bengbu, 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233030, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai StreetAnhui Province, Bengbu, 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233030, China
| | - Xinhua Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Binyu Wang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Xiaoyu Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233030, China
| | - Kang Hu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai StreetAnhui Province, Bengbu, 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233030, China
| | - Yingying Ye
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai StreetAnhui Province, Bengbu, 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233030, China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, 2600 Donghai StreetAnhui Province, Bengbu, 233030, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233030, China.
| |
Collapse
|
15
|
Canales Coutiño B, Mayor R. The mechanosensitive channel Piezo1 cooperates with semaphorins to control neural crest migration. Development 2021; 148:273523. [PMID: 34822717 PMCID: PMC8714065 DOI: 10.1242/dev.200001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Cells are permanently exposed to a multitude of different kinds of signals: however, how cells respond to simultaneous extracellular signals within a complex in vivo environment is poorly understood. Here, we studied the role of the mechanosensitive ion channel Piezo1 on the migration of the neural crest, a multipotent embryonic cell population. We identify that Piezo1 is required for the migration of Xenopus cephalic neural crest. We show that loss of Piezo1 promotes focal adhesion turnover and cytoskeletal dynamics by controlling Rac1 activity, leading to increased speed of migration. Moreover, overactivation of Rac1, due to Piezo1 inhibition, counteracts cell migration inhibitory signals by Semaphorin 3A and Semaphorin 3F, generating aberrant neural crest invasion in vivo. Thus, we find that, for directional migration in vivo, neural crest cells require a tight regulation of Rac1, by semaphorins and Piezo1. We reveal here that a balance between a myriad of signals through Rac1 dictates cell migration in vivo, a mechanism that is likely to be conserved in other cell migration processes. Summary: Neural crest directional and normal migration in vivo requires both chemical and mechanical regulation of Rac1 by Semaphorin 3A and Piezo1, respectively.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
16
|
Bischoff MC, Bogdan S. Collective cell migration driven by filopodia-New insights from the social behavior of myotubes. Bioessays 2021; 43:e2100124. [PMID: 34480489 DOI: 10.1002/bies.202100124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023]
Abstract
Collective migration is a key process that is critical during development, as well as in physiological and pathophysiological processes including tissue repair, wound healing and cancer. Studies in genetic model organisms have made important contributions to our current understanding of the mechanisms that shape cells into different tissues during morphogenesis. Recent advances in high-resolution and live-cell-imaging techniques provided new insights into the social behavior of cells based on careful visual observations within the context of a living tissue. In this review, we will compare Drosophila testis nascent myotube migration with established in vivo model systems, elucidate similarities, new features and principles in collective cell migration.
Collapse
Affiliation(s)
- Maik C Bischoff
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
17
|
Intercellular communication and the organization of simple multicellular animals. Cells Dev 2021; 169:203726. [PMID: 34450344 DOI: 10.1016/j.cdev.2021.203726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Animal cells are amazing examples of decentralized systems: By interchanging information about their position and internal state, cells coordinate their behavior and organize themselves in time and space. Examples of this behavior are the development of an embryo or of an organoid. In this work we have asked which are the "rules of intercellular relationship" that allow the organization of an abstract cell collective into structures similar to simple metazoans, without being specific about the (molecular, cellular or physical) nature of the processes involved. To do so, we have used a computational modeling approach following a modified version of the "Swarmalator" concept introduced by O'Keeffe, Hong and Strogatz (2017): a collection of interacting particles ("swarmalators"), each of which defined by a position in space and an internal state (a phase). The key feature is that swarmalators are coupled, so that their position and internal state are both affected by the position and state of all other swarmalators. This model can be easily analogized to biological systems, with "cells" being the swarmalators, and their phase the cell's internal state or "cell type". With this model we explore the conditions (represented by the coupling parameters) that would allow the organization of a multicellular "bioswarmer" and its dynamics along a sort of life cycle. Originally developed in 2D, we implement the model in 3D as well. We describe how changing the strength of intercellular communication can alter the structure and differentiation state of the bioswarmer, how internal polarization can arise and trigger collective directed migration, or how partly erasing the cellular memory of cell state is critical to allow bioswarmers to transit through different states. In addition, we show that the size of a multicellular ensemble might control the differentiation of its constituent cells without changing its rules of relationship.
Collapse
|
18
|
Rules of contact inhibition of locomotion for cells on suspended nanofibers. Proc Natl Acad Sci U S A 2021; 118:2011815118. [PMID: 33737392 DOI: 10.1073/pnas.2011815118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue-the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell-cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed-cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell-cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell-cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix-the geometry of the fiber can generate entirely new behaviors.
Collapse
|
19
|
Bischoff MC, Lieb S, Renkawitz-Pohl R, Bogdan S. Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. Nat Commun 2021; 12:791. [PMID: 33542237 PMCID: PMC7862658 DOI: 10.1038/s41467-020-20362-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cells migrate collectively to form tissues and organs during morphogenesis. Contact inhibition of locomotion (CIL) drives collective migration by inhibiting lamellipodial protrusions at cell-cell contacts and promoting polarization at the leading edge. Here, we report a CIL-related collective cell behavior of myotubes that lack lamellipodial protrusions, but instead use filopodia to move as a cohesive cluster in a formin-dependent manner. We perform genetic, pharmacological and mechanical perturbation analyses to reveal the essential roles of Rac2, Cdc42 and Rho1 in myotube migration. These factors differentially control protrusion dynamics and cell-matrix adhesion formation. We also show that active Rho1 GTPase localizes at retracting free edge filopodia and that Rok-dependent actomyosin contractility does not mediate a contraction of protrusions at cell-cell contacts, but likely plays an important role in the constriction of supracellular actin cables. Based on these findings, we propose that contact-dependent asymmetry of cell-matrix adhesion drives directional movement, whereas contractile actin cables contribute to the integrity of the migrating cell cluster.
Collapse
Affiliation(s)
- Maik C Bischoff
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University, Marburg, Germany
| | - Sebastian Lieb
- Computer Graphics and Multimedia Programming, Philipps-University, Marburg, Germany
| | | | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University, Marburg, Germany.
| |
Collapse
|
20
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
21
|
Shellard A, Mayor R. Rules of collective migration: from the wildebeest to the neural crest. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190387. [PMID: 32713298 PMCID: PMC7423382 DOI: 10.1098/rstb.2019.0387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
22
|
Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Curr Opin Cell Biol 2020; 66:43-50. [PMID: 32531659 DOI: 10.1016/j.ceb.2020.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration.
Collapse
|
23
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
24
|
Imamoto A, Ki S, Li L, Iwamoto K, Maruthamuthu V, Devany J, Lu O, Kanazawa T, Zhang S, Yamada T, Hirayama A, Fukuda S, Suzuki Y, Okada M. Essential role of the Crk family-dosage in DiGeorge-like anomaly and metabolic homeostasis. Life Sci Alliance 2020; 3:3/2/e201900635. [PMID: 32041892 PMCID: PMC7010317 DOI: 10.26508/lsa.201900635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
CRK and CRKL (CRK-like) encode adapter proteins with similar biochemical properties. Here, we show that a 50% reduction of the family-combined dosage generates developmental defects, including aspects of DiGeorge/del22q11 syndrome in mice. Like the mouse homologs of two 22q11.21 genes CRKL and TBX1, Crk and Tbx1 also genetically interact, thus suggesting that pathways shared by the three genes participate in organogenesis affected in the syndrome. We also show that Crk and Crkl are required during mesoderm development, and Crk/Crkl deficiency results in small cell size and abnormal mesenchyme behavior in primary embryonic fibroblasts. Our systems-wide analyses reveal impaired glycolysis, associated with low Hif1a protein levels as well as reduced histone H3K27 acetylation in several key glycolysis genes. Furthermore, Crk/Crkl deficiency sensitizes MEFs to 2-deoxy-D-glucose, a competitive inhibitor of glycolysis, to induce cell blebbing. Activated Rapgef1, a Crk/Crkl-downstream effector, rescues several aspects of the cell phenotype, including proliferation, cell size, focal adhesions, and phosphorylation of p70 S6k1 and ribosomal protein S6. Our investigations demonstrate that Crk/Crkl-shared pathways orchestrate metabolic homeostasis and cell behavior through widespread epigenetic controls.
Collapse
Affiliation(s)
- Akira Imamoto
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Sewon Ki
- RIKEN Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Leiming Li
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Kazunari Iwamoto
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Venkat Maruthamuthu
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Ocean Lu
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Tomomi Kanazawa
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Suxiang Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takuji Yamada
- Department of Life Science and Technology, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.,Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Mariko Okada
- RIKEN Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan .,Institute for Protein Research, Osaka University, Suita, Osaka, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
25
|
Giniūnaitė R, Baker RE, Kulesa PM, Maini PK. Modelling collective cell migration: neural crest as a model paradigm. J Math Biol 2020; 80:481-504. [PMID: 31587096 PMCID: PMC7012984 DOI: 10.1007/s00285-019-01436-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/09/2019] [Indexed: 12/01/2022]
Abstract
A huge variety of mathematical models have been used to investigate collective cell migration. The aim of this brief review is twofold: to present a number of modelling approaches that incorporate the key factors affecting cell migration, including cell-cell and cell-tissue interactions, as well as domain growth, and to showcase their application to model the migration of neural crest cells. We discuss the complementary strengths of microscale and macroscale models, and identify why it can be important to understand how these modelling approaches are related. We consider neural crest cell migration as a model paradigm to illustrate how the application of different mathematical modelling techniques, combined with experimental results, can provide new biological insights. We conclude by highlighting a number of future challenges for the mathematical modelling of neural crest cell migration.
Collapse
Affiliation(s)
- Rasa Giniūnaitė
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
26
|
Hu C, Zhou H, Liu Y, Huang J, Liu W, Zhang Q, Tang Q, Sheng F, Li G, Zhang R. ROCK1 promotes migration and invasion of non‑small‑cell lung cancer cells through the PTEN/PI3K/FAK pathway. Int J Oncol 2019; 55:833-844. [PMID: 31485605 PMCID: PMC6741846 DOI: 10.3892/ijo.2019.4864] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Rho-associated protein kinase 1 (ROCK1), a member of the ROCK family, serves an important function in cell migration and invasion in neoplasms. ROCK1 has been found to be overexpressed in several types of cancers. However, the role of ROCK1 in non-small-cell lung cancer (NSCLC) is poorly understood. In the present study, ROCK1 was found to be overexpressed in NSCLC cells and tissues, and it was associated with poor survival of NSCLC patients. Subsequently, ROCK1 knockdown NSCLC cell lines were established using shRNA. ROCK1 knockdown significantly reduced the migration and invasion ability in the cell monolayer scratching and Transwell assays. ROCK1 knockdown was also found to markedly inhibit cell adhesion ability. Moreover, the phosphorylation of focal adhesion kinase (FAK) was inhibited by ROCK1 knockdown, reducing NSCLC cell migration and invasion ability. This mechanistic study revealed that ROCK1 significantly enhanced cell migration and invasion by inhibiting the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/FAK pathway. More importantly, the interruption of the PTEN/PI3K/FAK pathway markedly rescued the inhibition of cell migration and invasion mediated by ROCK1 knockdown. Taken together, these results suggest a novel role for ROCK1 in cell migration and invasion by inhibiting cell adhesion ability, and indicate that ROCK1 may be of value as a therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fangfang Sheng
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
27
|
Shellard A, Mayor R. Integrating chemical and mechanical signals in neural crest cell migration. Curr Opin Genet Dev 2019; 57:16-24. [PMID: 31306988 PMCID: PMC6838680 DOI: 10.1016/j.gde.2019.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022]
Abstract
Neural crest cells are a multipotent embryonic stem cell population that migrate large distances to contribute a variety of tissues. The cranial neural crest, which contribute to tissues of the face and skull, undergo collective migration whose movement has been likened to cancer metastasis. Over the last few years, a variety of mechanisms for the guidance of collective cranial neural crest cell migration have been described: mostly chemical, but more recently mechanical. Here we review these different mechanisms and attempt to integrate them to provide a unified model of collective cranial neural crest cell migration.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Shellard A, Mayor R. Supracellular migration - beyond collective cell migration. J Cell Sci 2019; 132:132/8/jcs226142. [PMID: 30988138 DOI: 10.1242/jcs.226142] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective cell migration is a highly complex process in which groups of cells move together. A fundamental question is how cell ensembles can migrate efficiently. In some cases, the group is no more than a collection of individual cells. In others, the group behaves as a supracellular unit, whereby the cell group could be considered as a giant 'supracell', the concept of which was conceived over a century ago. The development of recent tools has provided considerable evidence that cell collectives are highly cooperative, and their migration can better be understood at the tissue level, rather than at the cell level. In this Review, we will define supracellular migration as a type of collective cell migration that operates at a scale higher than the individual cells. We will discuss key concepts of supracellular migration, review recent evidence of collectives exhibiting supracellular features and argue that many seemingly complex collective movements could be better explained by considering the participating cells as supracellular entities.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
29
|
Khalil AA, de Rooij J. Cadherin mechanotransduction in leader-follower cell specification during collective migration. Exp Cell Res 2019; 376:86-91. [PMID: 30633881 DOI: 10.1016/j.yexcr.2019.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
Collective invasion drives the spread of multicellular cancer groups, into the normal tissue surrounding several epithelial tumors. Collective invasion recapitulates various aspects of the multicellular organization and collective migration that take place during normal development and repair. Collective migration starts with the specification of leader cells in which a polarized, migratory phenotype is established. Leader cells initiate and organize the migration of follower cells, to allow the group of cells to move as a cohesive and polarized unit. Leader-follower specification is essential for coordinated and directional collective movement. Forces exerted by cohesive cells represent key signals that dictate multicellular coordination and directionality. Physical forces originate from the contraction of the actomyosin cytoskeleton, which is linked between cells via cadherin-based cell-cell junctions. The cadherin complex senses and transduces fluctuations in forces into biochemical signals that regulate processes like cell proliferation, motility and polarity. With cadherin junctions being maintained in most collective movements the cadherin complex is ideally positioned to integrate mechanical information into the organization of collective cell migration. Here we discuss the potential roles of cadherin mechanotransduction in the diverse aspects of leader versus follower cell specification during collective migration and neoplastic invasion.
Collapse
Affiliation(s)
- Antoine A Khalil
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands
| | - Johan de Rooij
- Dept. Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Stratenum 3.231, Universiteitsweg 100, 3584 CG, Utrecht, the Netherlands.
| |
Collapse
|
30
|
Shellard A, Szabó A, Trepat X, Mayor R. Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. Science 2018; 362:339-343. [PMID: 30337409 DOI: 10.1126/science.aau3301] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. Studying Xenopus and zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
31
|
Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M. The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 2018; 145:dev.164269. [PMID: 30297374 DOI: 10.1242/dev.164269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Collapse
Affiliation(s)
- Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Alice Roycroft
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sylvain Marcellini
- Departamento de Biología Cellular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| |
Collapse
|