1
|
Aranda RG, Fatima S, Rafid MI, McGill I, Hadwiger JA. Regulatory differences between atypical and typical MAP kinases in Dictyostelium discoideum. Cell Signal 2025; 130:111701. [PMID: 40020888 PMCID: PMC11908898 DOI: 10.1016/j.cellsig.2025.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Within the large family of mitogen activated protein kinases (MAPKs), one outlier group referred to as atypical MAPKs is not regulated by conventional upstream MAPK kinases (MAP2Ks). This includes the Dictyostelium discoideum atypical MAPK Erk2, a protein kinase essential for chemotactic movement and development. The regulation and functional specificity of Erk2 was investigated through phenotypic analysis of chimeric and mutant MAPKs. Chimeric MAPKs containing regions of Erk2 were created using complementary regions of the more typical MAPK Erk1, that provides very different functions in this amoeba. The chimeric MAPKs were not phosphorylated at levels observed for wild-type MAPKs and none rescued wild-type MAPK function to erk1- or erk2- cells. Endogenous Erk1 and Erk2 MAPKs were destabilized in cells expressing chimeric MAPKs containing the same carboxyl terminus. A carboxyl terminal motif conserved among atypical MAPKs was important but not essential for Erk2 regulation and function and the motif did not confer atypical MAPK regulation when present in Erk1. A kinase-dead version of Erk2 was phosphorylated in response to folate or cAMP chemotactic stimulation, suggesting Erk2 is activated in vivo by an upstream protein kinase, contrary to previous predictions of autophosphorylation. This regulation implies a protein kinase distinct from the single conventional MAP2K in Dictyostelium regulates atypical MAPK signaling. A non-activatable form of Erk2 was not capable of rescuing Erk2 function in erk2- cells. These findings suggest that the regulation of atypical and typical MAPKs is substantially different and carried out by distinct upstream protein kinases.
Collapse
Affiliation(s)
- Ramee G Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Md Ikram Rafid
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
2
|
Brimson CA, Baines R, Sams-Dodd E, Stefanescu I, Evans B, Kuwana S, Hashimura H, Sawai S, Thompson CRL. Collective oscillatory signaling in Dictyostelium discoideum acts as a developmental timer initiated by weak coupling of a noisy pulsatile signal. Dev Cell 2025; 60:918-933.e4. [PMID: 39672161 DOI: 10.1016/j.devcel.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/18/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
Oscillatory phenomena play widespread roles in the control of biological systems. In D. discoideum, oscillatory cyclic adenosine monophosphate (cAMP) signaling drives collective behavior and induces a temporal developmental gene expression program. How collective cAMP oscillations emerge or how they encode temporal transcriptional information is still poorly understood. To address this, we identified a transcription factor required for the initiation of collective behavior. Hbx5 activity is cAMP dependent and provides a sensitive single-cell readout for cAMP signaling. Extensive stochastic pulsatile cAMP signaling is found to precede collective oscillations. Stochastic signaling induces Hbx5-dependent transcriptional feedback, which enhances signal sensitivity and cell-cell coupling. This results in the emergence of synchronized collective oscillations, which subsequently activates the GtaC transcription factor and triggers shifts in developmental gene expression. Our results suggest this temporal coordination is encoded by changes in the amplitude of cAMP oscillations and differential sensitivity of these transcription factors to the cAMP-regulated kinase ErkB.
Collapse
Affiliation(s)
- Christopher A Brimson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Elisabeth Sams-Dodd
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Ioanina Stefanescu
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Bethany Evans
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Satoshi Kuwana
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Hidenori Hashimura
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, Japan
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Iwamoto K, Matsuoka S, Ueda M. Excitable Ras dynamics-based screens reveal RasGEFX is required for macropinocytosis and random cell migration. Nat Commun 2025; 16:117. [PMID: 39746985 PMCID: PMC11696275 DOI: 10.1038/s41467-024-55389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
Excitable systems of eukaryotic chemotaxis can generate asymmetric signals of Ras-GTP-enriched domains spontaneously to drive random cell migration without guidance cues. However, the molecules responsible for the spontaneous signal generation remain elusive. Here, we characterized RasGEFs encoded in Dictyostelium discoideum by live-cell imaging of the spatiotemporal dynamics of Ras-GTP and hierarchical clustering, finding that RasGEFX is primarily required for the spontaneous generation of Ras-GTP-enriched domains and is essential for random migration in combination with RasGEFB/M/U in starved cells, and they are dispensable for chemotaxis to chemoattractant cAMP. RasGEFX and RasGEFB that co-localize with Ras-GTP regulate the temporal periods and spatial sizes of the oscillatory Ras-GTP waves propagating along the membrane, respectively, and thus control the protrusions of motile cells differently, while RasGEFU and RasGEFM regulate adhesion and migration speed, respectively. Remarkably, RasGEFX is also important for Ras/PIP3-driven macropinocytosis in proliferating cells, but RasGEFB/M/U are not. These findings illustrate a specific and coordinated control of the cytoskeletal dynamics by multiple RasGEFs for spontaneous motility and macropinocytosis.
Collapse
Affiliation(s)
- Koji Iwamoto
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satomi Matsuoka
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- PRESTO, JST, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masahiro Ueda
- Laboratory of Single Molecule Biology, Graduate School of Science and Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Nasher F, Wren BW. Unravelling mechanisms of bacterial recognition by Acanthamoeba: insights into microbial ecology and immune responses. Front Microbiol 2024; 15:1405133. [PMID: 39247694 PMCID: PMC11377244 DOI: 10.3389/fmicb.2024.1405133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acanthamoeba, are ubiquitous eukaryotic microorganisms, that play a pivotal role in recognizing and engulfing various microbes during predation, offering insights into microbial dynamics and immune responses. An intriguing observation lies in the apparent preference of Acanthamoeba for Gram-negative over Gram-positive bacteria, suggesting potential differences in the recognition and response mechanisms to bacterial prey. Here, we comprehensively review pattern recognition receptors (PRRs) and microbe associated molecular patterns (MAMPs) that influence Acanthamoeba interactions with bacteria. We analyze the molecular mechanisms underlying these interactions, and the key finding of this review is that Acanthamoeba exhibits an affinity for bacterial cell surface appendages that are decorated with carbohydrates. Notably, this parallels warm-blooded immune cells, underscoring a conserved evolutionary strategy in microbial recognition. This review aims to serve as a foundation for exploring PRRs and MAMPs. These insights enhance our understanding of ecological and evolutionary dynamics in microbial interactions and shed light on fundamental principles governing immune responses. Leveraging Acanthamoeba as a model organism, provides a bridge between ecological interactions and immunology, offering valuable perspectives for future research.
Collapse
Affiliation(s)
- Fauzy Nasher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Ikeda A, Iijima M, Sesaki H. Systemic phospho-defective and phospho-mimetic Drp1 mice exhibit normal growth and development with altered anxiety-like behavior. iScience 2024; 27:109874. [PMID: 38784001 PMCID: PMC11112374 DOI: 10.1016/j.isci.2024.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondrial division controls the size, distribution, and turnover of this essential organelle. A dynamin-related GTPase, Drp1, drives membrane division as a force-generating mechano-chemical enzyme. Drp1 is regulated by multiple mechanisms, including phosphorylation at two primary sites: serine 579 and serine 600. While previous studies in cell culture systems have shown that Drp1 S579 phosphorylation promotes mitochondrial division, its physiological functions remained unclear. Here, we generated phospho-mimetic Drp1 S579D and phospho-defective Drp1 S579R mice using the CRISPR-Cas system. Both mouse models exhibited normal growth, development, and breeding. We found that Drp1 is highly phosphorylated at S579 in brain neurons. Notably, the Drp1 S579D mice showed decreased anxiety-like behaviors, whereas the Drp1 S579R mice displayed increased anxiety-like behaviors. These findings suggest a critical role for Drp1 S579 phosphorylation in brain function. The Drp1 S579D and S579R mice thus offer valuable in vivo models for specific analysis of Drp1 S579 phosphorylation.
Collapse
Affiliation(s)
- Arisa Ikeda
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21212, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21212, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21212, USA
| |
Collapse
|
6
|
Hao Y, Yang Y, Tu H, Guo Z, Chen P, Chao X, Yuan Y, Wang Z, Miao X, Zou S, Li D, Yang Y, Wu C, Li B, Li L, Cai H. A transcription factor complex in Dictyostelium enables adaptive changes in macropinocytosis during the growth-to-development transition. Dev Cell 2024; 59:645-660.e8. [PMID: 38325371 DOI: 10.1016/j.devcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Yazhou Hao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Tu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pengcheng Chen
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Yuan
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimeng Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilin Miao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Congying Wu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Jaiswal P, Meena NP, Chang FS, Liao XH, Kim L, Kimmel AR. An integrated, cross-regulation pathway model involving activating/adaptive and feed-forward/feed-back loops for directed oscillatory cAMP signal-relay/response during the development of Dictyostelium. Front Cell Dev Biol 2024; 11:1263316. [PMID: 38357530 PMCID: PMC10865387 DOI: 10.3389/fcell.2023.1263316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024] Open
Abstract
Self-organized and excitable signaling activities play important roles in a wide range of cellular functions in eukaryotic and prokaryotic cells. Cells require signaling networks to communicate amongst themselves, but also for response to environmental cues. Such signals involve complex spatial and temporal loops that may propagate as oscillations or waves. When Dictyostelium become starved for nutrients, cells within a localized space begin to secrete cAMP. Starved cells also become chemotactic to cAMP. cAMP signals propagate as outwardly moving waves that oscillate at ∼6 min intervals, which creates a focused territorial region for centralized cell aggregation. Proximal cells move inwardly toward the cAMP source and relay cAMP outwardly to recruit additional cells. To ensure directed inward movement and outward cAMP relay, cells go through adapted and de-adapted states for both cAMP synthesis/degradation and for directional cell movement. Although many immediate components that regulate cAMP signaling (including receptors, G proteins, an adenylyl cyclase, phosphodiesterases, and protein kinases) are known, others are only inferred. Here, using biochemical experiments coupled with gene inactivation studies, we model an integrated large, multi-component kinetic pathway involving activation, inactivation (adaptation), re-activation (re-sensitization), feed-forward, and feed-back controls to generate developmental cAMP oscillations.
Collapse
Affiliation(s)
- Pundrik Jaiswal
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Netra Pal Meena
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Fu-Sheng Chang
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Xin-Hua Liao
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| | - Lou Kim
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Alan R. Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
9
|
Nałęcz-Jawecki P, Gagliardi PA, Kochańczyk M, Dessauges C, Pertz O, Lipniacki T. The MAPK/ERK channel capacity exceeds 6 bit/hour. PLoS Comput Biol 2023; 19:e1011155. [PMID: 37216347 PMCID: PMC10237675 DOI: 10.1371/journal.pcbi.1011155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/02/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Living cells utilize signaling pathways to sense, transduce, and process information. As the extracellular stimulation often has rich temporal characteristics which may govern dynamic cellular responses, it is important to quantify the rate of information flow through the signaling pathways. In this study, we used an epithelial cell line expressing a light-activatable FGF receptor and an ERK activity reporter to assess the ability of the MAPK/ERK pathway to transduce signal encoded in a sequence of pulses. By stimulating the cells with random light pulse trains, we demonstrated that the MAPK/ERK channel capacity is at least 6 bits per hour. The input reconstruction algorithm detects the light pulses with 1-min accuracy 5 min after their occurrence. The high information transmission rate may enable the pathway to coordinate multiple processes including cell movement and respond to rapidly varying stimuli such as chemoattracting gradients created by other cells.
Collapse
Affiliation(s)
- Paweł Nałęcz-Jawecki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Islam S, Bhowmik DR, Roy S, Rahman Shuvo MS, Begum R, Hasan M, Amin MT, Ud Daula AFMS, Hossain MS. Musa acuminate seed extract attenuates the risk of obesity and associated inflammation in obese mice via suppression of PPARγ and MCP-1. Heliyon 2022; 9:e12737. [PMID: 36685474 PMCID: PMC9849961 DOI: 10.1016/j.heliyon.2022.e12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Obesity is a severe public health burden and a major component of metabolic syndrome. It is critical to identify treatment medicines for obesity and associated inflammation. We examined the anti-obesity and anti-inflammatory properties of Musa acuminate seeds methanol extract in high-fat diet-induced obesity. Changes in body weight, Lee index, fat mass accumulation, serum cholesterol, and serum triglyceride were monitored. Alteration in the expression of PPARγ, GLUT4, and MCP-1 at the transcript level in adipose tissue was also studied. After tabulation of our data, a significant reduction (p < 0.05) was recorded for body weight gain, and fat mass accumulation followed by significant changes (p < 0.05) in serum cholesterol, and serum triglyceride levels by the extract. In agreement with the biochemical data, the extract was capable enough (p < 0.05) to reduce the mRNA expression of PPARγ, and MCP-1, confirming the ability of the extract to ameliorate the risk of obesity and obesity-associated inflammation. Moreover, an in-silico study showed the high binding affinity of the reported compounds from M. acuminate like Delphinidin, Umbelliferon with COX-2, PPARγ, and MCP-1, supporting the notion of the risk-reducing potential of M.acuminate for obesity and obesity mediated inflammatory.
Collapse
Affiliation(s)
- Sajedul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Dipty Rani Bhowmik
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sourav Roy
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md. Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rahima Begum
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Maruful Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Tohidul Amin
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - AFM Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh,Corresponding author. Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
11
|
Singh SP, Paschke P, Tweedy L, Insall RH. AKT and SGK kinases regulate cell migration by altering Scar/WAVE complex activation and Arp2/3 complex recruitment. Front Mol Biosci 2022; 9:965921. [PMID: 36106016 PMCID: PMC9466652 DOI: 10.3389/fmolb.2022.965921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Cell polarity and cell migration both depend on pseudopodia and lamellipodia formation. These are regulated by coordinated signaling acting through G-protein coupled receptors and kinases such as PKB/AKT and SGK, as well as the actin cytoskeletal machinery. Here we show that both Dictyostelium PKB and SGK kinases (encoded by pkbA and pkgB) are dispensable for chemotaxis towards folate. However, both are involved in the regulation of pseudopod formation and thus cell motility. Cells lacking pkbA and pkgB showed a substantial drop in cell speed. Actin polymerization is perturbed in pkbA- and reduced in pkgB- and pkbA-/pkgB- mutants. The Scar/WAVE complex, key catalyst of pseudopod formation, is recruited normally to the fronts of all mutant cells (pkbA-, pkgB- and pkbA-/pkgB-), but is unexpectedly unable to recruit the Arp2/3 complex in cells lacking SGK. Consequently, loss of SGK causes a near-complete loss of normal actin pseudopodia, though this can be rescued by overexpression of PKB. Hence both PKB and SGK are required for correct assembly of F-actin and recruitment of the Arp2/3 complex by the Scar/WAVE complex during pseudopodia formation.
Collapse
Affiliation(s)
- Shashi Prakash Singh
- CRUK Beatson Institute, Glasgow, United Kingdom
- School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Shashi Prakash Singh,
| | | | - Luke Tweedy
- CRUK Beatson Institute, Glasgow, United Kingdom
| | - Robert H. Insall
- CRUK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Hadwiger JA, Cai H, Aranda RG, Fatima S. An atypical MAPK regulates translocation of a GATA transcription factor in response to chemoattractant stimulation. J Cell Sci 2022; 135:jcs260148. [PMID: 35916164 PMCID: PMC9481928 DOI: 10.1242/jcs.260148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The Dictyostelium atypical mitogen-activated protein kinase (MAPK) Erk2 is required for chemotactic responses to cAMP as amoeba undergo multicellular development. In this study, Erk2 was found to be essential for the cAMP-stimulated translocation of the GATA transcription factor GtaC as indicated by the distribution of a GFP-GtaC reporter. Erk2 was also found to be essential for the translocation of GtaC in response to external folate, a foraging signal that directs the chemotaxis of amoeba to bacteria. Erk1, the only other Dictyostelium MAPK, was not required for the GtaC translocation to either chemoattractant, indicating that GFP-GtaC is a kinase translocation reporter specific for atypical MAPKs. The translocation of GFP-GtaC in response to folate was absent in mutants lacking the folate receptor Far1 or the coupled G-protein subunit Gα4. Loss of GtaC function resulted in enhanced chemotactic movement to folate, suggesting that GtaC suppresses responses to folate. The alteration of four Erk2-preferred phosphorylation sites in GtaC impacted the translocation of GFP-GtaC in response to folate and the GFP-GtaC-mediated rescue of aggregation and development of gtaC- cells. The ability of different chemoattractants to stimulate Erk2-regulated GtaC translocation suggests that atypical MAPK-mediated regulation of transcription factors can contribute to different cell fates.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
13
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
14
|
Heidorn-Czarna M, Heidorn HM, Fernando S, Sanislav O, Jarmuszkiewicz W, Mutzel R, Fisher PR. Chronic Activation of AMPK Induces Mitochondrial Biogenesis through Differential Phosphorylation and Abundance of Mitochondrial Proteins in Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms222111675. [PMID: 34769115 PMCID: PMC8584165 DOI: 10.3390/ijms222111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Malgorzata Heidorn-Czarna
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-375-62-73
| | - Herbert-Michael Heidorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
| | - Sanjanie Fernando
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| | - Oana Sanislav
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Rupert Mutzel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| |
Collapse
|
15
|
Adhikari N, McGill IN, Hadwiger JA. MAPK docking motif in the Dictyostelium Gα2 subunit is required for aggregation and transcription factor translocation. Cell Signal 2021; 87:110117. [PMID: 34418534 DOI: 10.1016/j.cellsig.2021.110117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/05/2023]
Abstract
Some G protein alpha subunits contain a mitogen-activated protein kinase (MAPK) docking motif (D-motif) near the amino terminus that can impact cellular responses to external signals. The Dictyostelium Gα2 G protein subunit is required for chemotaxis to cAMP during the onset of multicellular development and this subunit contains a putative D-motif near the amino terminus. The Gα2 subunit D-motif was altered to examine its potential role in chemotaxis and multicellular development. In gα2- cells the expression of the D-motif mutant (Gα2D-) or wild-type subunit from high copy number vectors rescued cell aggregation but blocked the transition of mounds into slugs. This phenotype was also observed in parental strains with a wild-type gα2 locus indicating that the heterologous Gα2 subunit expression interferes with multicellular morphogenesis. Expression of the Gα2D- subunit from a low copy number vectors in gα2- cells did not rescue aggregation whereas the wild-type Gα2 subunit rescued aggregation efficiently and allowed wild-type morphological development. The Gα2D- and Gα2 subunit were both capable of restoring comparable levels of cAMP stimulated motility and the ability to co-aggregate with wild-type cells implying that the aggregation defect of Gα2D- expressing cells is due to insufficient intercellular signaling. Expression of the Gα2 subunit but not the Gα2D- subunit fully restored the ability of cAMP to stimulate the translocation of the GtaC transcription factor suggesting the D-motif is important for transcription factor regulation. These results suggest that the D-motif of Gα2 plays a role in aggregation and other developmental responses involved with cAMP signaling.
Collapse
Affiliation(s)
- Nirakar Adhikari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Imani N McGill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, United States of America.
| |
Collapse
|
16
|
Kamimura Y, Ueda M. Different Heterotrimeric G Protein Dynamics for Wide-Range Chemotaxis in Eukaryotic Cells. Front Cell Dev Biol 2021; 9:724797. [PMID: 34414196 PMCID: PMC8369479 DOI: 10.3389/fcell.2021.724797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotaxis describes directional motility along ambient chemical gradients and has important roles in human physiology and pathology. Typical chemotactic cells, such as neutrophils and Dictyostelium cells, can detect spatial differences in chemical gradients over a background concentration of a 105 scale. Studies of Dictyostelium cells have elucidated the molecular mechanisms of gradient sensing involving G protein coupled receptor (GPCR) signaling. GPCR transduces spatial information through its cognate heterotrimeric G protein as a guanine nucleotide change factor (GEF). More recently, studies have revealed unconventional regulation of heterotrimeric G protein in the gradient sensing. In this review, we explain how multiple mechanisms of GPCR signaling ensure the broad range sensing of chemical gradients in Dictyostelium cells as a model for eukaryotic chemotaxis.
Collapse
Affiliation(s)
- Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Japan.,Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
17
|
Xu X, Pan M, Jin T. How Phagocytes Acquired the Capability of Hunting and Removing Pathogens From a Human Body: Lessons Learned From Chemotaxis and Phagocytosis of Dictyostelium discoideum (Review). Front Cell Dev Biol 2021; 9:724940. [PMID: 34490271 PMCID: PMC8417749 DOI: 10.3389/fcell.2021.724940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/15/2021] [Indexed: 12/01/2022] Open
Abstract
How phagocytes find invading microorganisms and eliminate pathogenic ones from human bodies is a fundamental question in the study of infectious diseases. About 2.5 billion years ago, eukaryotic unicellular organisms-protozoans-appeared and started to interact with various bacteria. Less than 1 billion years ago, multicellular animals-metazoans-appeared and acquired the ability to distinguish self from non-self and to remove harmful organisms from their bodies. Since then, animals have developed innate immunity in which specialized white-blood cells phagocytes- patrol the body to kill pathogenic bacteria. The social amoebae Dictyostelium discoideum are prototypical phagocytes that chase various bacteria via chemotaxis and consume them as food via phagocytosis. Studies of this genetically amendable organism have revealed evolutionarily conserved mechanisms underlying chemotaxis and phagocytosis and shed light on studies of phagocytes in mammals. In this review, we briefly summarize important studies that contribute to our current understanding of how phagocytes effectively find and kill pathogens via chemotaxis and phagocytosis.
Collapse
Affiliation(s)
| | | | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, NIAID, NIH, Rockville, MD, United States
| |
Collapse
|
18
|
Kay RR. Macropinocytosis: Biology and mechanisms. Cells Dev 2021; 168:203713. [PMID: 34175511 DOI: 10.1016/j.cdev.2021.203713] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
Macropinocytosis is a form of endocytosis performed by ruffles and cups of the plasma membrane. These close to entrap droplets of medium into micron-sized vesicles, which are trafficked through the endocytic system, their contents digested and useful products absorbed. Macropinocytosis is constitutive in certain immune cells and stimulated in many other cells by growth factors. It occurs across the animal kingdom and in amoebae, implying a deep evolutionary history. Its scientific history goes back 100 years, but increasingly work is focused on its medical importance in the immune system, cancer cell feeding, and as a backdoor into cells for viruses and drugs. Macropinocytosis is driven by the actin cytoskeleton whose dynamics can be appreciated with lattice light sheet microscopy: this reveals a surprising variety of routes for forming macropinosomes. In Dictyostelium amoebae, macropinocytic cups are organized around domains of PIP3 and active Ras and Rac in the plasma membrane. These attract activators of the Arp2/3 complex to their periphery, creating rings of actin polymerization that shape the cups. The size of PIP3 domains is controlled by RasGAPs, such as NF1, and the lipid phosphatase, PTEN. It is likely that domain dynamics determine the shape, evolution and closing of macropinocytic structures.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Zhou G, Zha XM. GPR68 Contributes to Persistent Acidosis-Induced Activation of AGC Kinases and Tyrosine Phosphorylation in Organotypic Hippocampal Slices. Front Neurosci 2021; 15:692217. [PMID: 34113235 PMCID: PMC8185064 DOI: 10.3389/fnins.2021.692217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
Persistent acidosis occurs in ischemia and multiple neurological diseases. In previous studies, acidic stimulation leads to rapid increase in intracellular calcium in neurons. However, it remains largely unclear how a prolonged acidosis alters neuronal signaling. In our previous study, we found that GPR68-mediated PKC activities are protective against acidosis-induced injury in cortical slices. Here, we first asked whether the same principle holds true in organotypic hippocampal slices. Our data showed that 1-h pH 6 induced PKC phosphorylation in a GPR68-dependent manner. Go6983, a PKC inhibitor worsened acidosis-induced neuronal injury in wild type (WT) but had no effect in GPR68−/− slices. Next, to gain greater insights into acid signaling in brain tissue, we treated organotypic hippocampal slices with pH 6 for 1-h and performed a kinome profiling analysis by Western blot. Acidosis had little effect on cyclin-dependent kinase (CDK) or casein kinase 2 activity, two members of the CMGC family, or Ataxia telangiectasia mutated (ATM)/ATM and RAD3-related (ATR) activity, but reduced the phosphorylation of MAPK/CDK substrates. In contrast, acidosis induced the activation of CaMKIIα, PKA, and Akt. Besides these serine/threonine kinases, acidosis also induced tyrosine phosphorylation. Since GPR68 is widely expressed in brain neurons, we asked whether GPR68 contributes to acidosis-induced signaling. Deleting GPR68 had no effect on acidosis-induced CaMKII phosphorylation, attenuated that of phospho-Akt and phospho-PKA substrates, while abolishing acidosis-induced tyrosine phosphorylation. These data demonstrate that prolonged acidosis activates a network of signaling cascades, mediated by AGC kinases, CaMKII, and tyrosine kinases. GPR68 is the primary mediator for acidosis-induced activation of PKC and tyrosine phosphorylation, while both GPR68-dependent and -independent mechanisms contribute to the activation of PKA and Akt.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
20
|
Adhikari N, Kuburich NA, Hadwiger JA. Mitogen-activated protein kinase regulation of the phosphodiesterase RegA in early Dictyostelium development. MICROBIOLOGY-SGM 2020; 166:129-140. [PMID: 31730032 DOI: 10.1099/mic.0.000868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) regulation of cAMP-specific phosphodiesterase function has been demonstrated in mammalian cells and suspected to occur in other eukaryotes. Epistasis analysis in the soil amoeba Dictyostelium discoideum suggests the atypical MAPK Erk2 downregulates the function of the cAMP-specific phosphodiesterase RegA to regulate progression of the developmental life cycle. A putative MAPK docking motif located near a predicted MAPK phosphorylation site was characterized for contributions to RegA function and binding to Erk2 because a similar docking motif has been previously characterized in the mammalian PDE4D phosphodiesterase. The overexpression of RegA with alterations to this docking motif (RegAD-) restored RegA function to regA- cells based on developmental phenotypes, but low-level expression of RegAD- from the endogenous regA promoter failed to rescue wild-type morphogenesis. Co-immunoprecipitation analysis indicated that Erk2 associates with both RegA and RegAD-, suggesting the docking motif is not required for this association. Epistasis analysis between regA and the only other Dictyostelium MAPK, erk1, suggests Erk1 and RegA can function in different pathways but that some erk1- phenotypes may require cAMP signalling. These results imply that MAPK downregulation of RegA in Dictyostelium is accomplished through a different mechanism than MAPK regulation of cAMP-specific phosphodiesterases in mammalian cells and that the regulation in Dictyostelium does not require a proximal MAPK docking motif.
Collapse
Affiliation(s)
- Nirakar Adhikari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Nick A Kuburich
- Present address: Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.,Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
21
|
Senoo H, Wai M, Matsubayashi HT, Sesaki H, Iijima M. Hetero-oligomerization of Rho and Ras GTPases Connects GPCR Activation to mTORC2-AKT Signaling. Cell Rep 2020; 33:108427. [PMID: 33238110 DOI: 10.1016/j.celrep.2020.108427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
The activation of G-protein-coupled receptors (GPCRs) leads to the activation of mTORC2 in cell migration and metabolism. However, the mechanism that links GPCRs to mTORC2 remains unknown. Here, using Dictyostelium cells, we show that GPCR-mediated chemotactic stimulation induces hetero-oligomerization of phosphorylated GDP-bound Rho GTPase and GTP-bound Ras GTPase in directed cell migration. The Rho-Ras hetero-oligomers directly and specifically stimulate mTORC2 activity toward AKT in cells and after biochemical reconstitution using purified proteins in vitro. The Rho-Ras hetero-oligomers do not activate ERK/MAPK, another kinase that functions downstream of GPCRs and Ras. Human KRas4B functionally replace Dictyostelium Ras in mTORC2 activation. In contrast to GDP-Rho, GTP-Rho antagonizes mTORC2-AKT signaling by inhibiting the oligomerization of GDP-Rho with GTP-Ras. These data reveal that GPCR-stimulated hetero-oligomerization of Rho and Ras provides a critical regulatory step that controls mTORC2-AKT signaling.
Collapse
Affiliation(s)
- Hiroshi Senoo
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - May Wai
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hideaki T Matsubayashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Singh SP, Thomason PA, Lilla S, Schaks M, Tang Q, Goode BL, Machesky LM, Rottner K, Insall RH. Cell-substrate adhesion drives Scar/WAVE activation and phosphorylation by a Ste20-family kinase, which controls pseudopod lifetime. PLoS Biol 2020; 18:e3000774. [PMID: 32745097 PMCID: PMC7425996 DOI: 10.1371/journal.pbio.3000774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023] Open
Abstract
The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.
Collapse
Affiliation(s)
| | | | | | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany & Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Qing Tang
- Brandeis University, Waltham, Massachusetts, United States of America
| | - Bruce L. Goode
- Brandeis University, Waltham, Massachusetts, United States of America
| | | | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany & Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert H. Insall
- CRUK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Perry CJ, Warren EC, Damstra-Oddy JL, Storey C, Francione LM, Annesley SJ, Fisher PR, Müller-Taubenberger A, Williams RSB. A Dictyostelium discoideum mitochondrial fluorescent tagging vector that does not affect respiratory function. Biochem Biophys Rep 2020; 22:100751. [PMID: 32258439 PMCID: PMC7109396 DOI: 10.1016/j.bbrep.2020.100751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/01/2023] Open
Abstract
Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.
Collapse
Affiliation(s)
- Christopher J Perry
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Eleanor C Warren
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Joseph L Damstra-Oddy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Claire Storey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Lisa M Francione
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sarah J Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Paul R Fisher
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
24
|
Kimmel AR. An ERK Phosphoproteome Expands Chemotactic Signaling in Dictyostelium. Dev Cell 2019; 48:421-422. [PMID: 30782408 DOI: 10.1016/j.devcel.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Developmental Cell, Nichols et al. (2019) establish the MAP kinase ErkB as a critical component for chemotaxis signaling in Dictyostelium. Using phosphoproteomics, they identify a chemoattractant-dependent ErkB targeted core set of signal transduction proteins, which collectively suggest an added mechanistic pathway for chemotactic regulation.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Williams TD, Peak-Chew SY, Paschke P, Kay RR. Akt and SGK protein kinases are required for efficient feeding by macropinocytosis. J Cell Sci 2019; 132:jcs.224998. [PMID: 30617109 DOI: 10.1242/jcs.224998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macropinocytosis is an actin-driven process of large-scale and non-specific fluid uptake used for feeding by some cancer cells and the macropinocytosis model organism Dictyostelium discoideum In Dictyostelium, macropinocytic cups are organized by 'macropinocytic patches' in the plasma membrane. These contain activated Ras, Rac and phospholipid PIP3, and direct actin polymerization to their periphery. We show that a Dictyostelium Akt (PkbA) and an SGK (PkbR1) protein kinase act downstream of PIP3 and, together, are nearly essential for fluid uptake. This pathway enables the formation of larger macropinocytic patches and macropinosomes, thereby dramatically increasing fluid uptake. Through phosphoproteomics, we identify a RhoGAP, GacG, as a PkbA and PkbR1 target, and show that it is required for efficient macropinocytosis and expansion of macropinocytic patches. The function of Akt and SGK in cell feeding through control of macropinosome size has implications for cancer cell biology.
Collapse
Affiliation(s)
| | | | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|