1
|
Kumari A, Larsen SWR, Bondesen S, Qian Y, Tian HD, Walker SG, Davies BSJ, Remaley AT, Young SG, Konrad RJ, Jørgensen TJD, Ploug M. ANGPTL3/8 is an atypical unfoldase that regulates intravascular lipolysis by catalyzing unfolding of lipoprotein lipase. Proc Natl Acad Sci U S A 2025; 122:e2420721122. [PMID: 40112106 PMCID: PMC11962473 DOI: 10.1073/pnas.2420721122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
Lipoprotein lipase (LPL) carries out the lipolytic processing of triglyceride-rich lipoproteins (TRL) along the luminal surface of capillaries. LPL activity is regulated by the angiopoietin-like proteins (ANGPTL3, ANGPTL4, ANGPTL8), which control the delivery of TRL-derived lipid nutrients to tissues in a temporal and spatial fashion. This regulation of LPL mediates the partitioning of lipid delivery to adipose tissue and striated muscle according to nutritional status. A complex between ANGPTL3 and ANGPTL8 (ANGPTL3/8) inhibits LPL activity in oxidative tissues, but its mode of action has remained unknown. Here, we used biophysical techniques to define how ANGPTL3/8 and ANGPTL3 interact with LPL and how they drive LPL inactivation. We demonstrate, by mass photometry, that ANGPTL3/8 is a heterotrimer with a 2:1 ANGPTL3:ANGPTL8 stoichiometry and that ANGPTL3 is a homotrimer. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies revealed that ANGPTL3/8 and ANGPTL3 use the proximal portion of their N-terminal α-helices to interact with sequences surrounding the catalytic pocket in LPL. That binding event triggers unfolding of LPL's α/β-hydrolase domain and irreversible loss of LPL catalytic activity. The binding of LPL to its endothelial transporter protein (GPIHBP1) or to heparan-sulfate proteoglycans protects LPL from unfolding and inactivation, particularly against the unfolding triggered by ANGPTL3. Pulse-labeling HDX-MS studies revealed that ANGPTL3/8 and ANGPTL3 catalyze LPL unfolding in an ATP-independent fashion, which categorizes these LPL inhibitors as atypical unfoldases. The catalytic nature of LPL unfolding by ANGPTL3/8 explains why low plasma concentrations of ANGPTL3/8 are effective in inhibiting a molar excess of LPL in capillaries.
Collapse
Affiliation(s)
- Anni Kumari
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen NDK–2200, Denmark
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
| | - Sanne W. R. Larsen
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense MDK–5320, Denmark
| | - Signe Bondesen
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense MDK–5320, Denmark
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Hao D. Tian
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20814
| | - Sydney G. Walker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA52242
| | - Brandon S. J. Davies
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa, IA52242
| | - Alan T. Remaley
- Laboratory of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20814
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, University of California, Los Angeles, CA90095
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense MDK–5320, Denmark
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen NDK–2200, Denmark
- Finsen Laboratory, Biotechnology Research and Innovation Centre, University of Copenhagen, Copenhagen NDK-2200, Denmark
| |
Collapse
|
2
|
Perera SD, Wang J, McIntyre AD, Hegele RA. Lipoprotein Lipase: Structure, Function, and Genetic Variation. Genes (Basel) 2025; 16:55. [PMID: 39858602 PMCID: PMC11764694 DOI: 10.3390/genes16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Biallelic rare pathogenic loss-of-function (LOF) variants in lipoprotein lipase (LPL) cause familial chylomicronemia syndrome (FCS). Heterozygosity for these same variants is associated with a highly variable plasma triglyceride (TG) phenotype ranging from normal to severe hypertriglyceridemia (HTG), with longitudinal variation in phenotype severity seen often in a given carrier. Here, we provide an updated overview of genetic variation in LPL in the context of HTG, with a focus on disease-causing and/or disease-associated variants. We provide a curated list of 300 disease-causing variants discovered in LPL, as well as an exon-by-exon breakdown of the LPL gene and protein, highlighting the impact of variants and the various functional residues of domains of the LPL protein. We also provide a curated list of variants of unknown or uncertain significance, many of which may be upgraded to pathogenic/likely pathogenic classification should an additional case and/or segregation data be reported. Finally, we also review the association between benign/likely benign variants in LPL, many of which are common polymorphisms, and the TG phenotype.
Collapse
Affiliation(s)
- Shehan D. Perera
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Adam D. McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
| | - Robert A. Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada; (S.D.P.); (J.W.); (A.D.M.)
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, ON N6A 5B7, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Qian Z, Sun L, Wang R, Dong X, Sun J, Dong C, Qu D, Gu X, Zhao C. High-Fidelity Spatiotemporal Recognition of Golgi ALP through an Initial-Accumulation and Postactivation Strategy. Anal Chem 2024; 96:9737-9743. [PMID: 38825763 DOI: 10.1021/acs.analchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.
Collapse
Affiliation(s)
- Zehua Qian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dahui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Castello-Serrano I, Heberle FA, Diaz-Rohrer B, Ippolito R, Shurer CR, Lujan P, Campelo F, Levental KR, Levental I. Partitioning to ordered membrane domains regulates the kinetics of secretory traffic. eLife 2024; 12:RP89306. [PMID: 38837189 PMCID: PMC11152573 DOI: 10.7554/elife.89306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting the Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.
Collapse
Affiliation(s)
- Ivan Castello-Serrano
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | | | | | - Rossana Ippolito
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Carolyn R Shurer
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
5
|
Van Biervliet S, Vande Velde S, De Bruyne P, Callewaert B, Verloo P, De Bruyne R. Familial chylomicronemia syndrome: a novel mutation in the lipoprotein lipase gene. Acta Gastroenterol Belg 2024; 87:326-328. [PMID: 39210765 DOI: 10.51821/87.2.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Familial chylomicronemia syndrome (FCS) (OMIM: 238600) is a rare autosomal recessive disease caused by a biallelic loss-of-function mutation in the lipoprotein lipase (LPL) complex which includes LPL and its co-factors. Patients with FCS have severe hypertiglyceridemia (> 2000 mg/dL). We describe a 15-month-old boy with repeated pancreatitis episodes caused by severe hypertriglyceridemia. Genetic analysis revealed a novel homozygous mutation in the LPL gene, i.e. c.626T>G; p.(Leu209*). The mutation, carried by both parents, has been classified as a type 4 mutation which is likely pathogenic. Treatment aims at decreasing hypertriglyceridaemia by a low-fat diet (< 20g/day) eventually supplemented with medium chain triglyceride (MCT) fat to ensure caloric intake. In 2019, volanesorsen was approved by the European Medicines Agency (EMA) as adjunct treatment for adult patients with genetically proven FCS and persisting episodes of pancreatitis despite the diet.
Collapse
Affiliation(s)
- S Van Biervliet
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| | - S Vande Velde
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| | - P De Bruyne
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| | - B Callewaert
- Center for medical genetics, Ghent University Hospital, Ghent, Belgium
| | - P Verloo
- Center for metabolic diseases, Ghent University Hospital, Ghent, Belgium
| | - R De Bruyne
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Castello-Serrano I, Heberle FA, Diaz-Rohrer B, Ippolito R, Shurer CR, Lujan P, Campelo F, Levental KR, Levental I. Partitioning to ordered membrane domains regulates the kinetics of secretory traffic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.18.537395. [PMID: 37131599 PMCID: PMC10153169 DOI: 10.1101/2023.04.18.537395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The organelles of eukaryotic cells maintain distinct protein and lipid compositions required for their specific functions. The mechanisms by which many of these components are sorted to their specific locations remain unknown. While some motifs mediating subcellular protein localization have been identified, many membrane proteins and most membrane lipids lack known sorting determinants. A putative mechanism for sorting of membrane components is based on membrane domains known as lipid rafts, which are laterally segregated nanoscopic assemblies of specific lipids and proteins. To assess the role of such domains in the secretory pathway, we applied a robust tool for synchronized secretory protein traffic (RUSH, Retention Using Selective Hooks) to protein constructs with defined affinity for raft phases. These constructs consist solely of single-pass transmembrane domains (TMDs) and, lacking other sorting determinants, constitute probes for membrane domain-mediated trafficking. We find that while raft affinity can be sufficient for steady-state PM localization, it is not sufficient for rapid exit from the endoplasmic reticulum (ER), which is instead mediated by a short cytosolic peptide motif. In contrast, we find that Golgi exit kinetics are highly dependent on raft affinity, with raft preferring probes exiting Golgi ~2.5-fold faster than probes with minimal raft affinity. We rationalize these observations with a kinetic model of secretory trafficking, wherein Golgi export can be facilitated by protein association with raft domains. These observations support a role for raft-like membrane domains in the secretory pathway and establish an experimental paradigm for dissecting its underlying machinery.
Collapse
|
7
|
Wheless A, Gunn KH, Neher SB. Macromolecular Interactions of Lipoprotein Lipase (LPL). Subcell Biochem 2024; 104:139-179. [PMID: 38963487 DOI: 10.1007/978-3-031-58843-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Lipoprotein lipase (LPL) is a critical enzyme in humans that provides fuel to peripheral tissues. LPL hydrolyzes triglycerides from the cores of lipoproteins that are circulating in plasma and interacts with receptors to mediate lipoprotein uptake, thus directing lipid distribution via catalytic and non-catalytic functions. Functional losses in LPL or any of its myriad of regulators alter lipid homeostasis and potentially affect the risk of developing cardiovascular disease-either increasing or decreasing the risk depending on the mutated protein. The extensive LPL regulatory network tunes LPL activity to allocate fatty acids according to the energetic needs of the organism and thus is nutritionally responsive and tissue dependent. Multiple pharmaceuticals in development manipulate or mimic these regulators, demonstrating their translational importance. Another facet of LPL biology is that the oligomeric state of the enzyme is also central to its regulation. Recent structural studies have solidified the idea that LPL is regulated not only by interactions with other binding partners but also by self-associations. Here, we review the complexities of the protein-protein and protein-lipid interactions that govern LPL structure and function.
Collapse
Affiliation(s)
- Anna Wheless
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn H Gunn
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Stony Brook University, Stony Brook, USA
| | - Saskia B Neher
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Shang R, Lee CS, Wang H, Dyer R, Noll C, Carpentier A, Sultan I, Alitalo K, Boushel R, Hussein B, Rodrigues B. Reduction in Insulin Uncovers a Novel Effect of VEGFB on Cardiac Substrate Utilization. Arterioscler Thromb Vasc Biol 2024; 44:177-191. [PMID: 38150518 DOI: 10.1161/atvbaha.123.319972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Hualin Wang
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Roger Dyer
- Department of Pediatrics (R.D.), University of British Columbia, Vancouver
| | - Christophe Noll
- Department of Medicine, Université de Sherbrooke, QC, Canada (C.N., A.C.)
| | - André Carpentier
- Department of Medicine, Université de Sherbrooke, QC, Canada (C.N., A.C.)
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (I.S., K.A.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (I.S., K.A.)
| | - Robert Boushel
- School of Kinesiology (R.B.), University of British Columbia, Vancouver
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| |
Collapse
|
9
|
Jiang S, Ren Z, Yang Y, Liu Q, Zhou S, Xiao Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed Pharmacother 2023; 169:115874. [PMID: 37951027 DOI: 10.1016/j.biopha.2023.115874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
GPIHBP1 is a protein found in the endothelial cells of capillaries that is anchored by glycosylphosphatidylinositol and binds to high-density lipoproteins. GPIHBP1 attaches to lipoprotein lipase (LPL), subsequently carrying the enzyme and anchoring it to the capillary lumen. Enabling lipid metabolism is essential for the marginalization of lipoproteins alongside capillaries. Studies underscore the significance of GPIHBP1 in transporting, stabilizing, and aiding in the marginalization of LPL. The intricate interplay between GPIHBP1 and LPL has provided novel insights into chylomicronemia in recent years. Mutations hindering the formation or reducing the efficiency of the GPIHBP1-LPL complex are central to the onset of chylomicronemia. This review delves into the structural nuances of the GPIHBP1-LPL interaction, the consequences of mutations in the complex leading to chylomicronemia, and cutting-edge advancements in chylomicronemia treatment.
Collapse
Affiliation(s)
- Shali Jiang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Zhuoqun Ren
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Yutao Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
10
|
Kim Y, Mavodza G, Senkal CE, Burd CG. Cholesterol-dependent homeostatic regulation of very long chain sphingolipid synthesis. J Cell Biol 2023; 222:e202308055. [PMID: 37787764 PMCID: PMC10547602 DOI: 10.1083/jcb.202308055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Sphingomyelin plays a key role in cellular cholesterol homeostasis by binding to and sequestering cholesterol in the plasma membrane. We discovered that synthesis of very long chain (VLC) sphingomyelins is inversely regulated by cellular cholesterol levels; acute cholesterol depletion elicited a rapid induction of VLC-sphingolipid synthesis, increased trafficking to the Golgi apparatus and plasma membrane, while cholesterol loading reduced VLC-sphingolipid synthesis. This sphingolipid-cholesterol metabolic axis is distinct from the sterol responsive element binding protein pathway as it requires ceramide synthase 2 (CerS2) activity, epidermal growth factor receptor signaling, and was unaffected by inhibition of protein translation. Depletion of VLC-ceramides reduced plasma membrane cholesterol content, reduced plasma membrane lipid packing, and unexpectedly resulted in the accumulation of cholesterol in the cytoplasmic leaflet of the lysosome membrane. This study establishes the existence of a cholesterol-sphingolipid regulatory axis that maintains plasma membrane lipid homeostasis via regulation of sphingomyelin synthesis and trafficking.
Collapse
Affiliation(s)
- Yeongho Kim
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Grace Mavodza
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Can E. Senkal
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | |
Collapse
|
11
|
Lazniewska J, Li KL, Johnson IRD, Sorvina A, Logan JM, Martini C, Moore C, Ung BSY, Karageorgos L, Hickey SM, Prabhakaran S, Heatlie JK, Brooks RD, Huzzell C, Warnock NI, Ward MP, Mohammed B, Tewari P, Martin C, O'Toole S, Edgerton LB, Bates M, Moretti P, Pitson SM, Selemidis S, Butler LM, O'Leary JJ, Brooks DA. Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression. Sci Rep 2023; 13:13489. [PMID: 37596305 PMCID: PMC10439187 DOI: 10.1038/s41598-023-40347-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Prostate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with β3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly β3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa.
Collapse
Affiliation(s)
- Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ben S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| | - Jessica K Heatlie
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Chelsea Huzzell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Bashir Mohammed
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | | | - Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Paul Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lisa M Butler
- South Australian ImmunoGENomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, 5000, Australia
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 8, Ireland
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
12
|
Hepowit NL, Moon B, Ebert AC, Dickson RC, MacGurn JA. Art2 mediates selective endocytosis of methionine transporters during adaptation to sphingolipid depletion. J Cell Sci 2023; 136:jcs260675. [PMID: 37337792 PMCID: PMC10399987 DOI: 10.1242/jcs.260675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
Accumulating evidence in several model organisms indicates that reduced sphingolipid biosynthesis promotes longevity, although underlying mechanisms remain unclear. In yeast, sphingolipid depletion induces a state resembling amino acid restriction, which we hypothesized might be due to altered stability of amino acid transporters at the plasma membrane. To test this, we measured surface abundance for a diverse panel of membrane proteins in the presence of myriocin, a sphingolipid biosynthesis inhibitor, in Saccharomyces cerevisiae. Unexpectedly, we found that surface levels of most proteins examined were either unaffected or increased during myriocin treatment, consistent with an observed decrease in bulk endocytosis. In contrast, sphingolipid depletion triggered selective endocytosis of the methionine transporter Mup1. Unlike methionine-induced Mup1 endocytosis, myriocin triggered Mup1 endocytosis that required the Rsp5 adaptor Art2, C-terminal lysine residues of Mup1 and the formation of K63-linked ubiquitin polymers. These findings reveal cellular adaptation to sphingolipid depletion by ubiquitin-mediated remodeling of nutrient transporter composition at the cell surface.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Bradley Moon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Adam C. Ebert
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
13
|
Aguilera-Romero A, Lucena R, Sabido-Bozo S, Muñiz M. Impact of sphingolipids on protein membrane trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159334. [PMID: 37201864 DOI: 10.1016/j.bbalip.2023.159334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.
Collapse
Affiliation(s)
- Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Rafael Lucena
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
14
|
Gunn KH, Neher SB. Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site. Nat Commun 2023; 14:2569. [PMID: 37142573 PMCID: PMC10160067 DOI: 10.1038/s41467-023-38243-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Lipoprotein lipase (LPL) hydrolyzes triglycerides from circulating lipoproteins, releasing free fatty acids. Active LPL is needed to prevent hypertriglyceridemia, which is a risk factor for cardiovascular disease (CVD). Using cryogenic electron microscopy (cryoEM), we determined the structure of an active LPL dimer at 3.9 Å resolution. This structure reveals an open hydrophobic pore adjacent to the active site residues. Using modeling, we demonstrate that this pore can accommodate an acyl chain from a triglyceride. Known LPL mutations that lead to hypertriglyceridemia localize to the end of the pore and cause defective substrate hydrolysis. The pore may provide additional substrate specificity and/or allow unidirectional acyl chain release from LPL. This structure also revises previous models on how LPL dimerizes, revealing a C-terminal to C-terminal interface. We hypothesize that this active C-terminal to C-terminal conformation is adopted by LPL when associated with lipoproteins in capillaries.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
15
|
Risti R, Gunn KH, Hiis-Hommuk K, Seeba NN, Karimi H, Villo L, Vendelin M, Neher SB, Lõokene A. Combined action of albumin and heparin regulates lipoprotein lipase oligomerization, stability, and ligand interactions. PLoS One 2023; 18:e0283358. [PMID: 37043509 PMCID: PMC10096250 DOI: 10.1371/journal.pone.0283358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
Lipoprotein lipase (LPL), a crucial enzyme in the intravascular hydrolysis of triglyceride-rich lipoproteins, is a potential drug target for the treatment of hypertriglyceridemia. The activity and stability of LPL are influenced by a complex ligand network. Previous studies performed in dilute solutions suggest that LPL can appear in various oligomeric states. However, it was not known how the physiological environment, that is blood plasma, affects the action of LPL. In the current study, we demonstrate that albumin, the major protein component in blood plasma, has a significant impact on LPL stability, oligomerization, and ligand interactions. The effects induced by albumin could not solely be reproduced by the macromolecular crowding effect. Stabilization, isothermal titration calorimetry, and surface plasmon resonance studies revealed that albumin binds to LPL with affinity sufficient to form a complex in both the interstitial space and the capillaries. Negative stain transmission electron microscopy and raster image correlation spectroscopy showed that albumin, like heparin, induced reversible oligomerization of LPL. However, the albumin induced oligomers were structurally different from heparin-induced filament-like LPL oligomers. An intriguing observation was that no oligomers of either type were formed in the simultaneous presence of albumin and heparin. Our data also suggested that the oligomer formation protected LPL from the inactivation by its physiological regulator angiopoietin-like protein 4. The concentration of LPL and its environment could influence whether LPL follows irreversible inactivation and aggregation or reversible LPL oligomer formation, which might affect interactions with various ligands and drugs. In conclusion, the interplay between albumin and heparin could provide a mechanism for ensuring the dissociation of heparan sulfate-bound LPL oligomers into active LPL upon secretion into the interstitial space.
Collapse
Affiliation(s)
- Robert Risti
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kathryn H. Gunn
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristofer Hiis-Hommuk
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Natjan-Naatan Seeba
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Hamed Karimi
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Ly Villo
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Saskia B. Neher
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aivar Lõokene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
16
|
Gunn KH, Neher SB. Structure of Dimeric Lipoprotein Lipase Reveals a Pore for Hydrolysis of Acyl Chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533650. [PMID: 36993689 PMCID: PMC10055231 DOI: 10.1101/2023.03.21.533650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Lipoprotein lipase (LPL) hydrolyzes triglycerides from circulating lipoproteins, releasing free fatty acids. Active LPL is needed to prevent hypertriglyceridemia, which is a risk factor for cardiovascular disease (CVD). Using cryogenic electron microscopy (cryoEM), we determined the structure of an active LPL dimer at 3.9 Ã… resolution. This is the first structure of a mammalian lipase with an open, hydrophobic pore adjacent to the active site. We demonstrate that the pore can accommodate an acyl chain from a triglyceride. Previously, it was thought that an open lipase conformation was defined by a displaced lid peptide, exposing the hydrophobic pocket surrounding the active site. With these previous models after the lid opened, the substrate would enter the active site, be hydrolyzed and then released in a bidirectional manner. It was assumed that the hydrophobic pocket provided the only ligand selectivity. Based on our structure, we propose a new model for lipid hydrolysis, in which the free fatty acid product travels unidirectionally through the active site pore, entering and exiting opposite sides of the protein. By this new model, the hydrophobic pore provides additional substrate specificity and provides insight into how LPL mutations in the active site pore may negatively impact LPL activity, leading to chylomicronemia. Structural similarity of LPL to other human lipases suggests that this unidirectional mechanism could be conserved but has not been observed due to the difficulty of studying lipase structure in the presence of an activating substrate. We hypothesize that the air/water interface formed during creation of samples for cryoEM triggered interfacial activation, allowing us to capture, for the first time, a fully open state of a mammalian lipase. Our new structure also revises previous models on how LPL dimerizes, revealing an unexpected C-terminal to C-terminal interface. The elucidation of a dimeric LPL structure highlights the oligomeric diversity of LPL, as now LPL homodimer, heterodimer, and helical filament structures have been elucidated. This diversity of oligomerization may provide a form of regulation as LPL travels from secretory vesicles in the cell, to the capillary, and eventually to the liver for lipoprotein remnant uptake. We hypothesize that LPL dimerizes in this active C-terminal to C-terminal conformation when associated with mobile lipoproteins in the capillary.
Collapse
|
17
|
Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh) 2022; 6:e2200093. [PMID: 35676229 DOI: 10.1002/adbi.202200093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Indexed: 01/28/2023]
Abstract
Triacylglycerol (TG) metabolism is tightly regulated to maintain a pool of TG within circulating lipoproteins that can be hydrolyzed in a tissue-specific manner by lipoprotein lipase (LPL) to enable the delivery of fatty acids to adipose or oxidative tissues as needed. Elevated serum TG concentrations, which result from a deficiency of LPL activity or, more commonly, an imbalance in the regulation of tissue-specific LPL activities, have been associated with an increased risk of atherosclerotic cardiovascular disease through multiple studies. Among the most critical LPL regulators are the angiopoietin-like (ANGPTL) proteins ANGPTL3, ANGPTL4, and ANGPTL8, and a number of different apolipoproteins including apolipoprotein A5 (ApoA5), apolipoprotein C2 (ApoC2), and apolipoprotein C3 (ApoC3). These ANGPTLs and apolipoproteins work together to orchestrate LPL activity and therefore play pivotal roles in TG partitioning, hydrolysis, and utilization. This review summarizes the mechanisms of action, epidemiological findings, and genetic data most relevant to these ANGPTLs and apolipoproteins. The interplay between these important regulators of TG metabolism in both fasted and fed states is highlighted with a holistic view toward understanding key concepts and interactions. Strategies for developing safe and effective therapeutics to reduce circulating TG by selectively targeting these ANGPTLs and apolipoproteins are also discussed.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
18
|
Ford C, Burd CG. GOPC facilitates the sorting of syndecan-1 in polarized epithelial cells. Mol Biol Cell 2022; 33:ar86. [PMID: 35830596 PMCID: PMC9582621 DOI: 10.1091/mbc.e22-05-0165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
The trans-Golgi network must coordinate sorting and secretion of proteins and lipids to intracellular organelles and the plasma membrane. During polarization of epithelial cells, changes in the lipidome and the expression and distribution of proteins contribute to the formation of apical and basolateral plasma membrane domains. Previous studies using HeLa cells show that the syndecan-1 transmembrane domain confers sorting within sphingomyelin-rich vesicles in a sphingomyelin secretion pathway. In polarized Madin-Darby canine kidney cells, we reveal differences in the sorting of syndecan-1, whereupon the correct trafficking of the protein is not dependent on its transmembrane domain and changes in sphingomyelin content of cells during polarization. Instead, we reveal that correct basolateral targeting of syndecan-1 requires a full-length PDZ motif in syndecan-1 and the PDZ domain golgin protein GOPC. Moreover, we reveal changes in Golgi morphology elicited by GOPC overexpression. These results suggest that the role of GOPC in sorting syndecan-1 is indirect and likely due to GOPC effects on Golgi organization.
Collapse
Affiliation(s)
- Charlotte Ford
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | |
Collapse
|
19
|
Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells. Mol Cell Proteomics 2022; 21:100278. [PMID: 35934186 PMCID: PMC9562429 DOI: 10.1016/j.mcpro.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/18/2023] Open
Abstract
Most of the recombinant biotherapeutics employed today to combat severe illnesses, for example, various types of cancer or autoimmune diseases, are produced by Chinese hamster ovary (CHO) cells. To meet the growing demand of these pharmaceuticals, CHO cells are under constant development in order to enhance their stability and productivity. The last decades saw a shift from empirical cell line optimization toward rational cell engineering using a growing number of large omics datasets to alter cell physiology on various levels. Especially proteomics workflows reached new levels in proteome coverage and data quality because of advances in high-resolution mass spectrometry instrumentation. One type of workflow concentrates on spatial proteomics by usage of subcellular fractionation of organelles with subsequent shotgun mass spectrometry proteomics and machine learning algorithms to determine the subcellular localization of large portions of the cellular proteome at a certain time point. Here, we present the first subcellular spatial proteome of a CHO-K1 cell line producing high titers of recombinant antibody in comparison to the spatial proteome of an antibody-producing plasma cell-derived myeloma cell line. Both cell lines show colocalization of immunoglobulin G chains with chaperones and proteins associated in protein glycosylation within the endoplasmic reticulum compartment. However, we report differences in the localization of proteins associated to vesicle-mediated transport, transcription, and translation, which may affect antibody production in both cell lines. Furthermore, pairing subcellular localization data with protein expression data revealed elevated protein masses for organelles in the secretory pathway in plasma cell-derived MPC-11 (Merwin plasma cell tumor-11) cells. Our study highlights the potential of subcellular spatial proteomics combined with protein expression as potent workflow to identify characteristics of highly efficient recombinant protein-expressing cell lines. Data are available via ProteomeXchange with identifier PXD029115.
Collapse
|
20
|
Wang N, Gu Y, Li L, Chi J, Liu X, Xiong Y, Zhong C. Development and Validation of a Prognostic Classifier Based on Lipid Metabolism-Related Genes for Breast Cancer. J Inflamm Res 2022; 15:3477-3499. [PMID: 35726216 PMCID: PMC9206459 DOI: 10.2147/jir.s357144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background The changes of lipid metabolism have been implicated in the development of many tumors, but its role in breast invasive carcinoma (BRCA) remains to be fully established. Here, we attempted to ascertain the prognostic value of lipid metabolism-related genes in BRCA. Methods We obtained RNA expression data and clinical information for BRCA and normal samples from public databases and downloaded a lipid metabolism-related gene set. Ingenuity Pathway Analysis (IPA) was applied to identify the potential pathways and functions of Differentially Expressed Genes (DEGs) related to lipid metabolism. Subsequently, univariate and multivariate Cox regression analyses were utilized to construct the prognostic gene signature. Functional enrichment analysis of prognostic genes was achieved by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Kaplan-Meier analysis, Receiver Operating Characteristic (ROC) curves, clinical follow-up results were employed to assess the prognostic potency. Potential compounds targeting prognostic genes were screened by Connectivity Map (CMap) database and a prognostic gene-drug interaction network was constructed using Comparative Toxicogenomics Database (CTD). Furthermore, we separately validated the selected marker genes in BRCA samples and human breast cancer cell lines (MCF-7, MDA-MB-231). Results IPA and functional enrichment analysis demonstrated that the 162 lipid metabolism-related DEGs we obtained were involved in many lipid metabolism and BRCA pathological signatures. The prognostic classifier we constructed comprising SDC1 and SORBS1 can serve as an independent prognostic marker for BRCA. CMap filtered 37 potential compounds against prognostic genes, of which 16 compounds could target both two prognostic genes were identified by CTD. The functions of the two prognostic genes in breast cancer cells were verified by cell function experiments. Conclusion Within this study, we identified a novel prognostic classifier based on two lipid metabolism-related genes: SDC1 and SORBS1. This result highlighted a new perspective on the metabolic exploration of BRCA.
Collapse
Affiliation(s)
- Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanting Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiangrui Chi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xinwei Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Youyi Xiong
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chaochao Zhong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Lipoprotein lipase (LPL) is the rate-limiting enzyme for intravascular processing of circulating triglyceride-rich lipoproteins (TRLs). One emerging strategy for therapeutic lowering of plasma triglyceride levels aims at increasing the longevity of LPL activity by attenuating its inhibition from angiopoietin-like proteins (ANGPTL) 3, 4 and 8. This mini-review focuses on recent insights into the molecular mechanisms underpinning the regulation of LPL activity in the intravascular unit by ANGPTLs with special emphasis on ANGPTL4. RECENT FINDINGS Our knowledge on the molecular interplays between LPL, its endothelial transporter GPIHBP1, and its inhibitor(s) ANGPTL4, ANGPTL3 and ANGPTL8 have advanced considerably in the last 2 years and provides an outlined on how these proteins regulate the activity and compartmentalization of LPL. A decisive determinant instigating this control is the inherent protein instability of LPL at normal body temperature, a property that is reciprocally impacted by the binding of GPIHBP1 and ANGPTLs. Additional layers in this complex LPL regulation is provided by the different modulation of ANGPTL4 and ANGPTL3 activities by ANGPTL8 and the inhibition of ANGPTL3/8 complexes by apolipoprotein A5 (APOA5). SUMMARY Posttranslational regulation of LPL activity in the intravascular space is essential for the differential partitioning of TRLs across tissues and their lipolytic processing in response to nutritional cues.
Collapse
Affiliation(s)
- Michael Ploug
- Finsen Laboratory, Rigshospitalet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
A SURF4-to-proteoglycan relay mechanism that mediates the sorting and secretion of a tagged variant of sonic hedgehog. Proc Natl Acad Sci U S A 2022; 119:e2113991119. [PMID: 35271396 PMCID: PMC8931250 DOI: 10.1073/pnas.2113991119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SignificanceSonic Hedgehog (Shh) is a key signaling molecule that plays important roles in embryonic patterning, cell differentiation, and organ development. Although fundamentally important, the molecular mechanisms that regulate secretion of newly synthesized Shh are still unclear. Our study reveals a role for the cargo receptor, SURF4, in facilitating export of Shh from the endoplasmic reticulum (ER) via a ER export signal. In addition, our study provides evidence suggesting that proteoglycans promote the dissociation of SURF4 from Shh at the Golgi, suggesting a SURF4-to-proteoglycan relay mechanism. These analyses provide insight into an important question in cell biology: how do cargo receptors capture their clients in one compartment, then disengage at their destination?
Collapse
|
23
|
Song W, Beigneux AP, Winther AML, Kristensen KK, Grønnemose AL, Yang Y, Tu Y, Munguia P, Morales J, Jung H, de Jong PJ, Jung CJ, Miyashita K, Kimura T, Nakajima K, Murakami M, Birrane G, Jiang H, Tontonoz P, Ploug M, Fong LG, Young SG. Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. J Clin Invest 2022; 132:157500. [PMID: 35229724 PMCID: PMC8884915 DOI: 10.1172/jci157500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.
Collapse
Affiliation(s)
- Wenxin Song
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne-Marie L Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anne L Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Priscilla Munguia
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jazmin Morales
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Cris J Jung
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan.,Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
24
|
Roberts BS, Yang CQ, Neher SB. Characterization of lipoprotein lipase storage vesicles in 3T3-L1 adipocytes. J Cell Sci 2022; 135:jcs258734. [PMID: 34382637 PMCID: PMC8403984 DOI: 10.1242/jcs.258734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Lipoprotein lipase (LPL) is a secreted triglyceride lipase involved in the clearance of very-low-density lipoproteins and chylomicrons from circulation. LPL is expressed primarily in adipose and muscle tissues and transported to the capillary lumen. LPL secretion is regulated by insulin in adipose tissue; however, few studies have examined the regulatory and trafficking steps involved in secretion. Here, we describe the intracellular localization and insulin-dependent trafficking of LPL in 3T3-L1 adipocytes. We compared LPL trafficking to the better characterized trafficking pathways taken by leptin and GLUT4 (also known as SLC2A4). We show that the LPL trafficking pathway shares some characteristics of these other pathways, but that LPL subcellular localization and trafficking are distinct from those of GLUT4 and leptin. LPL secretion occurs slowly in response to insulin and rapidly in response to the Ca2+ ionophore ionomycin. This regulated trafficking is dependent on Golgi protein kinase D and the ADP-ribosylation factor GTPase ARF1. Together, these data give support to a new trafficking pathway for soluble cargo that is active in adipocytes.
Collapse
Affiliation(s)
| | | | - Saskia B. Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Körner C, Fröhlich F. Compartmentation and functions of sphingolipids. Curr Opin Cell Biol 2022; 74:104-111. [DOI: 10.1016/j.ceb.2022.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023]
|
26
|
Lund Winther AM, Kristensen KK, Kumari A, Ploug M. Expression and one-step purification of active lipoprotein lipase contemplated by biophysical considerations. J Lipid Res 2021; 62:100149. [PMID: 34780727 DOI: 10.1016/j.jlr.2021.100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoprotein lipase (LPL) is essential for intravascular lipid metabolism and is of high medical relevance. Since LPL is notoriously unstable, there is an unmet need for a robust expression system producing high quantities of active and pure recombinant human LPL. We showed previously that bovine LPL purified from milk is unstable at body temperature (Tm is 34.8 °C), but in the presence of the endothelial transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) LPL is stabile (Tm increases to 57.6 °C). Building on this information, we now designed an expression system for human LPL using Drosophila S2 cells grown in suspension at high cell density and at an advantageous temperature of 25 °C. We co-transfected S2 cells with human LPL, LMF1 and soluble GPIHBP1 to provide an efficient chaperoning and stabilization of LPL in all compartments during synthesis and after secretion into the conditioned medium. For LPL purification, we used heparin-Sepharose affinity chromatography, which disrupted LPL-GPIHBP1 complexes causing GPIHBP1 to elute with the flow-through of the conditioned media. This one-step purification procedure yielded high quantities of pure and active LPL (4‒28 mg/L). Purification of several human LPL variants (furin-cleavage resistant mutant R297A, active-site mutant S132A, and lipid-binding-deficient mutant W390A-W393A-W394A) as well as murine LPL underscores the versatility and robustness of this protocol. Notably, we were able to produce and purify LPL containing the cognate furin-cleavage site. This method provides an efficient and cost-effective approach to produce large quantities of LPL for biophysical and large-scale drug discovery studies.
Collapse
Affiliation(s)
- Anne-Marie Lund Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
28
|
Ramazanov BR, Tran ML, von Blume J. Sending out molecules from the TGN. Curr Opin Cell Biol 2021; 71:55-62. [PMID: 33706234 PMCID: PMC8328904 DOI: 10.1016/j.ceb.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/20/2023]
Abstract
The sorting of secreted cargo proteins and their export from the trans-Golgi network (TGN) remains an enigma in the field of membrane trafficking; although the sorting mechanisms of many transmembrane proteins have been well described. The sorting of secreted proteins at the TGN is crucial for the release of signaling factors, as well as extracellular matrix proteins. These proteins are required for cell-cell communication and integrity of an organism. Missecretion of these factors can cause diseases such as neurological disorders, autoimmune disease, or cancer. The major open question is how soluble proteins that are not associated with the membrane are packed into TGN derived transport carriers to facilitate their transport to the plasma membrane. Recent investigations have identified novel types of protein and lipid machinery that facilitate the packing of these molecules into a TGN derived vesicle. In addition, novel research has uncovered an exciting link between cargo sorting and export in which TGN structure and dynamics, as well as TGN/endoplasmic reticulum contact sites, play a significant role. Here, we have reviewed the progress made in our understanding of these processes.
Collapse
Affiliation(s)
- Bulat R Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mai Ly Tran
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Kristensen KK, Leth-Espensen KZ, Kumari A, Grønnemose AL, Lund-Winther AM, Young SG, Ploug M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front Cell Dev Biol 2021; 9:702508. [PMID: 34336854 PMCID: PMC8319833 DOI: 10.3389/fcell.2021.702508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intravascular processing of triglyceride-rich lipoproteins (TRLs) is crucial for delivery of dietary lipids fueling energy metabolism in heart and skeletal muscle and for storage in white adipose tissue. During the last decade, mechanisms underlying focal lipolytic processing of TRLs along the luminal surface of capillaries have been clarified by fresh insights into the functions of lipoprotein lipase (LPL); LPL's dedicated transporter protein, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1); and its endogenous inhibitors, angiopoietin-like (ANGPTL) proteins 3, 4, and 8. Key discoveries in LPL biology include solving the crystal structure of LPL, showing LPL is catalytically active as a monomer rather than as a homodimer, and that the borderline stability of LPL's hydrolase domain is crucial for the regulation of LPL activity. Another key discovery was understanding how ANGPTL4 regulates LPL activity. The binding of ANGPTL4 to LPL sequences adjacent to the catalytic cavity triggers cooperative and sequential unfolding of LPL's hydrolase domain resulting in irreversible collapse of the catalytic cavity and loss of LPL activity. Recent studies have highlighted the importance of the ANGPTL3-ANGPTL8 complex for endocrine regulation of LPL activity in oxidative organs (e.g., heart, skeletal muscle, brown adipose tissue), but the molecular mechanisms have not been fully defined. New insights have also been gained into LPL-GPIHBP1 interactions and how GPIHBP1 moves LPL to its site of action in the capillary lumen. GPIHBP1 is an atypical member of the LU (Ly6/uPAR) domain protein superfamily, containing an intrinsically disordered and highly acidic N-terminal extension and a disulfide bond-rich three-fingered LU domain. Both the disordered acidic domain and the folded LU domain are crucial for the stability and transport of LPL, and for modulating its susceptibility to ANGPTL4-mediated unfolding. This review focuses on recent advances in the biology and biochemistry of crucial proteins for intravascular lipolysis.
Collapse
Affiliation(s)
- Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lund-Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021; 9:biomedicines9070782. [PMID: 34356847 PMCID: PMC8301479 DOI: 10.3390/biomedicines9070782] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in regulating LPL activity and recent insights into LPL regulation may elucidate new pharmacological means to address the challenge of hypertriglyceridemia in atherosclerosis development.
Collapse
|
31
|
The PKD-Dependent Biogenesis of TGN-to-Plasma Membrane Transport Carriers. Cells 2021; 10:cells10071618. [PMID: 34203456 PMCID: PMC8303525 DOI: 10.3390/cells10071618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 01/30/2023] Open
Abstract
Membrane trafficking is essential for processing and transport of proteins and lipids and to establish cell compartmentation and tissue organization. Cells respond to their needs and control the quantity and quality of protein secretion accordingly. In this review, we focus on a particular membrane trafficking route from the trans-Golgi network (TGN) to the cell surface: protein kinase D (PKD)-dependent pathway for constitutive secretion mediated by carriers of the TGN to the cell surface (CARTS). Recent findings highlight the importance of lipid signaling by organelle membrane contact sites (MCSs) in this pathway. Finally, we discuss our current understanding of multiple signaling pathways for membrane trafficking regulation mediated by PKD, G protein-coupled receptors (GPCRs), growth factors, metabolites, and mechanosensors.
Collapse
|
32
|
Loving BA, Tang M, Neal MC, Gorkhali S, Murphy R, Eckel RH, Bruce KD. Lipoprotein Lipase Regulates Microglial Lipid Droplet Accumulation. Cells 2021; 10:cells10020198. [PMID: 33498265 PMCID: PMC7909280 DOI: 10.3390/cells10020198] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microglia become increasingly dysfunctional with aging and contribute to the onset of neurodegenerative disease (NDs) through defective phagocytosis, attenuated cholesterol efflux, and excessive secretion of pro-inflammatory cytokines. Dysfunctional microglia also accumulate lipid droplets (LDs); however, the mechanism underlying increased LD load is unknown. We have previously shown that microglia lacking lipoprotein lipase (LPL KD) are polarized to a pro-inflammatory state and have impaired lipid uptake and reduced fatty acid oxidation (FAO). Here, we also show that LPL KD microglia show excessive accumulation of LD-like structures. Moreover, LPL KD microglia display a pro-inflammatory lipidomic profile, increased cholesterol ester (CE) content, and reduced cholesterol efflux at baseline. We also show reduced expression of genes within the canonical cholesterol efflux pathway. Importantly, PPAR agonists (rosiglitazone and bezafibrate) rescued the LD-associated phenotype in LPL KD microglia. These data suggest that microglial-LPL is associated with lipid uptake, which may drive PPAR signaling and cholesterol efflux to prevent inflammatory lipid distribution and LD accumulation. Moreover, PPAR agonists can reverse LD accumulation, and therefore may be beneficial in aging and in the treatment of NDs.
Collapse
Affiliation(s)
- Bailey A. Loving
- Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Royal Oak, MI 48309, USA;
| | - Maoping Tang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Mikaela C. Neal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Sachi Gorkhali
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Robert Murphy
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (M.C.N.); (S.G.); (R.H.E.)
- Correspondence:
| |
Collapse
|
33
|
Wu SA, Kersten S, Qi L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol Metab 2021; 32:48-61. [PMID: 33277156 PMCID: PMC8627828 DOI: 10.1016/j.tem.2020.11.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lipoprotein lipase (LPL) is one of the most important factors in systemic lipid partitioning and metabolism. It mediates intravascular hydrolysis of triglycerides packed in lipoproteins such as chylomicrons and very-low-density lipoprotein (VLDL). Since its initial discovery in the 1940s, its biology and pathophysiological significance have been well characterized. Nonetheless, several studies in the past decade, with recent delineation of LPL crystal structure and the discovery of several new regulators such as angiopoietin-like proteins (ANGPTLs), glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1 (LMF1) and Sel-1 suppressor of Lin-12-like 1 (SEL1L), have completely transformed our understanding of LPL biology.
Collapse
Affiliation(s)
- Shuangcheng Alivia Wu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105, USA.
| | - Sander Kersten
- Nutrition Metabolism and Genomics group, Wageningen University, Wageningen, The Netherlands
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
34
|
Wang HY, Bharti D, Levental I. Membrane Heterogeneity Beyond the Plasma Membrane. Front Cell Dev Biol 2020; 8:580814. [PMID: 33330457 PMCID: PMC7710808 DOI: 10.3389/fcell.2020.580814] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The structure and organization of cellular membranes have received intense interest, particularly in investigations of the raft hypothesis. The vast majority of these investigations have focused on the plasma membrane of mammalian cells, yielding significant progress in understanding membrane heterogeneity in terms of lipid composition, molecular structure, dynamic regulation, and functional relevance. In contrast, investigations on lipid organization in other membrane systems have been comparatively scarce, despite the likely relevance of membrane domains in these contexts. In this review, we summarize recent observations on lipid organization in organellar membranes, including endoplasmic reticulum, Golgi, endo-lysosomes, lipid droplets, and secreted membranes like lung surfactant, milk fat globule membranes, and viral membranes. Across these non-plasma membrane systems, it seems that the biophysical principles underlying lipid self-organization contribute to lateral domains.
Collapse
Affiliation(s)
- Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Deepti Bharti
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- National Institute of Technology, Rourkela, India
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
35
|
The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proc Natl Acad Sci U S A 2020; 117:10254-10264. [PMID: 32332168 DOI: 10.1073/pnas.1916555117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipases are enzymes necessary for the proper distribution and utilization of lipids in the human body. Lipoprotein lipase (LPL) is active in capillaries, where it plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides from packaged lipoproteins. Thirty years ago, the existence of a condensed and inactive LPL oligomer was proposed. Although recent work has shed light on the structure of the LPL monomer, the inactive oligomer remained opaque. Here we present a cryo-EM reconstruction of a helical LPL oligomer at 3.8-Å resolution. Helix formation is concentration-dependent, and helices are composed of inactive dihedral LPL dimers. Heparin binding stabilizes LPL helices, and the presence of substrate triggers helix disassembly. Superresolution fluorescent microscopy of endogenous LPL revealed that LPL adopts a filament-like distribution in vesicles. Mutation of one of the helical LPL interaction interfaces causes loss of the filament-like distribution. Taken together, this suggests that LPL is condensed into its inactive helical form for storage in intracellular vesicles.
Collapse
|
36
|
Stalder D, Gershlick DC. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. Semin Cell Dev Biol 2020; 107:112-125. [PMID: 32317144 PMCID: PMC7152905 DOI: 10.1016/j.semcdb.2020.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, protein sorting is a highly regulated mechanism important for many physiological events. After synthesis in the endoplasmic reticulum and trafficking to the Golgi apparatus, proteins sort to many different cellular destinations including the endolysosomal system and the extracellular space. Secreted proteins need to be delivered directly to the cell surface. Sorting of secreted proteins from the Golgi apparatus has been a topic of interest for over thirty years, yet there is still no clear understanding of the machinery that forms the post-Golgi carriers. Most evidence points to these post-Golgi carriers being tubular pleomorphic structures that bud from the trans-face of the Golgi. In this review, we present the background studies and highlight the key components of this pathway, we then discuss the machinery implicated in the formation of these carriers, their translocation across the cytosol, and their fusion at the plasma membrane.
Collapse
Key Words
- ATP, adenosine triphosphate
- BFA, Brefeldin A
- CARTS, CARriers of the TGN to the cell Surface
- CI-MPR, cation-independent mannose-6 phosphate receptor
- Constitutive Secretion
- CtBP3/BARS, C-terminus binding protein 3/BFA adenosine diphosphate–ribosylated substrate
- ER, endoplasmic reticulum
- GPI-anchored proteins, glycosylphosphatidylinositol-anchored proteins
- GlcCer, glucosylceramidetol
- Golgi to plasma membrane sorting
- PAUF, pancreatic adenocarcinoma up-regulated factor
- PKD, Protein Kinase D
- RUSH, retention using selective hooks
- SBP, streptavidin-binding peptide
- SM, sphingomyelin
- SNARE, soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor
- SPCA1, secretory pathway calcium ATPase 1
- Secretion
- TGN, trans-Golgi Network
- TIRF, total internal reflection fluorescence
- VSV, vesicular stomatitis virus
- pleomorphic tubular carriers
- post-Golgi carriers
- ts, temperature sensitive
Collapse
Affiliation(s)
- Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David C Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
37
|
Lipoprotein Lipase Sorting: Sphingomyelin and a Proteoglycan Show the Way. Trends Cell Biol 2020; 30:170-172. [DOI: 10.1016/j.tcb.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
|
38
|
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol 2020; 30:341-353. [PMID: 32302547 DOI: 10.1016/j.tcb.2020.01.009] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
The lipid raft hypothesis postulates that lipid-lipid interactions can laterally organize biological membranes into domains of distinct structures, compositions, and functions. This proposal has in equal measure exhilarated and frustrated membrane research for decades. While the physicochemical principles underlying lipid-driven domains has been explored and is well understood, the existence and relevance of such domains in cells remains elusive, despite decades of research. Here, we review the conceptual underpinnings of the raft hypothesis and critically discuss the supporting and contradicting evidence in cells, focusing on why controversies about the composition, properties, and even the very existence of lipid rafts remain unresolved. Finally, we highlight several recent breakthroughs that may resolve existing controversies and suggest general approaches for moving beyond questions of the existence of rafts and towards understanding their physiological significance.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 33830, USA
| |
Collapse
|
39
|
Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2020; 117:4337-4346. [PMID: 32034094 DOI: 10.1073/pnas.1920202117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydrolysis, resulting in severe hypertriglyceridemia. The activity of LPL in tissues is regulated by angiopoietin-like proteins 3, 4, and 8 (ANGPTL). Dogma has held that these ANGPTLs inactivate LPL by converting LPL homodimers into monomers, rendering them highly susceptible to spontaneous unfolding and loss of enzymatic activity. Here, we show that binding of an LPL-specific monoclonal antibody (5D2) to the tryptophan-rich lipid-binding loop in the carboxyl terminus of LPL prevents homodimer formation and forces LPL into a monomeric state. Of note, 5D2-bound LPL monomers are as stable as LPL homodimers (i.e., they are not more prone to unfolding), but they remain highly susceptible to ANGPTL4-catalyzed unfolding and inactivation. Binding of GPIHBP1 to LPL alone or to 5D2-bound LPL counteracts ANGPTL4-mediated unfolding of LPL. In conclusion, ANGPTL4-mediated inactivation of LPL, accomplished by catalyzing the unfolding of LPL, does not require the conversion of LPL homodimers into monomers. Thus, our findings necessitate changes to long-standing dogma on mechanisms for LPL inactivation by ANGPTL proteins. At the same time, our findings align well with insights into LPL function from the recent crystal structure of the LPL•GPIHBP1 complex.
Collapse
|