1
|
Emili E, Pérez-Posada A, Vanni V, Salamanca-Díaz D, Ródriguez-Fernández D, Christodoulou MD, Solana J. Allometry of cell types in planarians by single-cell transcriptomics. SCIENCE ADVANCES 2025; 11:eadm7042. [PMID: 40333969 PMCID: PMC12057665 DOI: 10.1126/sciadv.adm7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Allometry explores the relationship between an organism's body size and its various components, offering insights into ecology, physiology, metabolism, and disease. The cell is the basic unit of biological systems, and yet the study of cell-type allometry remains relatively unexplored. Single-cell RNA sequencing (scRNA-seq) provides a promising tool for investigating cell-type allometry. Planarians, capable of growing and degrowing following allometric scaling rules, serve as an excellent model for these studies. We used scRNA-seq to examine cell-type allometry in asexual planarians of different sizes, revealing that they consist of the same basic cell types but in varying proportions. Notably, the gut basal cells are the most responsive to changes in size, suggesting a role in energy storage. We capture the regulated gene modules of distinct cell types in response to body size. This research sheds light on the molecular and cellular aspects of cell-type allometry in planarians and underscores the utility of scRNA-seq in these investigations.
Collapse
Affiliation(s)
- Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Virginia Vanni
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - David Salamanca-Díaz
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
2
|
Gąsiorowski L. Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms. J Mol Evol 2025; 93:124-135. [PMID: 39825915 DOI: 10.1007/s00239-024-10226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/06/2024] [Indexed: 01/20/2025]
Abstract
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense). Phylogenetic analysis of Fox genes from this expanded set of species provided evidence for multiple independent expansions of Fox gene families within flatworms. Notably, FoxG, a panbilaterian brain-patterning gene, appears to be the least susceptible to duplication, while FoxJ1, a conserved ciliogenesis factor, has undergone extensive expansion in various flatworm lineages. Analysis of the single-cell atlas of S. brevipharyngium, combined with RNA in situ hybridization, elucidated the tissue-specific expression of the selected Fox genes: FoxG is expressed in the brain, three of the Fox genes (FoxN2/3-2, FoxO4 and FoxP1) are expressed in the pharyngeal cells of likely glandular function, while one of the FoxQD paralogs is specifically expressed in the protonephridium. Overall, the evolution of Fox genes in flatworms appears to be characterized by an early contraction of the gene complement, followed by lineage-specific expansions that have enabled the co-option of newly evolved paralogs into novel physiological and developmental functions.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Lee JR, Boothe T, Mauksch C, Thommen A, Rink JC. Epidermal turnover in the planarian Schmidtea mediterranea involves basal cell extrusion and intestinal digestion. Cell Rep 2024; 43:114305. [PMID: 38906148 DOI: 10.1016/j.celrep.2024.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 05/15/2024] [Indexed: 06/23/2024] Open
Abstract
Planarian flatworms undergo continuous internal turnover, wherein old cells are replaced by the division progeny of adult pluripotent stem cells (neoblasts). How cell turnover is carried out at the organismal level remains an intriguing question in planarians and other systems. While previous studies have predominantly focused on neoblast proliferation, little is known about the processes that mediate cell loss during tissue homeostasis. Here, we use the planarian epidermis as a model to study the mechanisms of cell removal. We established a covalent dye-labeling assay and image analysis pipeline to quantify the cell turnover rate in the planarian epidermis. Our findings indicate that the ventral epidermis is highly dynamic and epidermal cells undergo internalization via basal extrusion, followed by a relocation toward the intestine and ultimately digestion by intestinal phagocytes. Overall, our study reveals a complex homeostatic process of cell clearance that may generally allow planarians to catabolize their own cells.
Collapse
Affiliation(s)
- Jun-Ru Lee
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | - Tobias Boothe
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Clemens Mauksch
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Albert Thommen
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
4
|
Alamoudi E, Schälte Y, Müller R, Starruß J, Bundgaard N, Graw F, Brusch L, Hasenauer J. FitMultiCell: simulating and parameterizing computational models of multi-scale and multi-cellular processes. Bioinformatics 2023; 39:btad674. [PMID: 37947308 PMCID: PMC10666203 DOI: 10.1093/bioinformatics/btad674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
MOTIVATION Biological tissues are dynamic and highly organized. Multi-scale models are helpful tools to analyse and understand the processes determining tissue dynamics. These models usually depend on parameters that need to be inferred from experimental data to achieve a quantitative understanding, to predict the response to perturbations, and to evaluate competing hypotheses. However, even advanced inference approaches such as approximate Bayesian computation (ABC) are difficult to apply due to the computational complexity of the simulation of multi-scale models. Thus, there is a need for a scalable pipeline for modeling, simulating, and parameterizing multi-scale models of multi-cellular processes. RESULTS Here, we present FitMultiCell, a computationally efficient and user-friendly open-source pipeline that can handle the full workflow of modeling, simulating, and parameterizing for multi-scale models of multi-cellular processes. The pipeline is modular and integrates the modeling and simulation tool Morpheus and the statistical inference tool pyABC. The easy integration of high-performance infrastructure allows to scale to computationally expensive problems. The introduction of a novel standard for the formulation of parameter inference problems for multi-scale models additionally ensures reproducibility and reusability. By applying the pipeline to multiple biological problems, we demonstrate its broad applicability, which will benefit in particular image-based systems biology. AVAILABILITY AND IMPLEMENTATION FitMultiCell is available open-source at https://gitlab.com/fitmulticell/fit.
Collapse
Affiliation(s)
- Emad Alamoudi
- Life and Medical Sciences Institute, University of Bonn, Bonn 53113, Germany
| | - Yannik Schälte
- Life and Medical Sciences Institute, University of Bonn, Bonn 53113, Germany
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching 85748, Germany
| | - Robert Müller
- Center of Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden 01062, Germany
| | - Jörn Starruß
- Center of Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden 01062, Germany
| | - Nils Bundgaard
- BioQuant—Center for Quantitative Biology, Heidelberg University, Heidelberg 69120, Germany
| | - Frederik Graw
- BioQuant—Center for Quantitative Biology, Heidelberg University, Heidelberg 69120, Germany
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg 69120, Germany
- Department of Medicine 5, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Lutz Brusch
- Center of Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden 01062, Germany
| | - Jan Hasenauer
- Life and Medical Sciences Institute, University of Bonn, Bonn 53113, Germany
- Institute of Computational Biology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg 85764, Germany
- Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, Technische Universität München, Garching 85748, Germany
| |
Collapse
|
5
|
Structure of the planar cell polarity cadherins Fat4 and Dachsous1. Nat Commun 2023; 14:891. [PMID: 36797229 PMCID: PMC9935876 DOI: 10.1038/s41467-023-36435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.
Collapse
|
6
|
Gittin DI, Petersen CP. A Wnt11 and Dishevelled signaling pathway acts prior to injury to control wound polarization for the onset of planarian regeneration. Curr Biol 2022; 32:5262-5273.e2. [PMID: 36495871 PMCID: PMC9901562 DOI: 10.1016/j.cub.2022.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022]
Abstract
Regeneration is initiated by wounding, but it is unclear how injury-induced signals precisely convey the identity of the tissues requiring replacement. In the planarian Schmidtea mediterranea, the first event in head regeneration is the asymmetric activation of the Wnt inhibitor notum in longitudinal body-wall muscle cells, preferentially at anterior-facing versus posterior-facing wound sites. However, the mechanism driving this early symmetry-breaking event is unknown. We identify a noncanonical Wnt11 and Dishevelled pathway regulating notum polarization, which opposes injury-induced notum-activating Wnt/β-catenin signals and regulates muscle orientation. Using expression analysis and experiments to define a critical time of action, we demonstrate that Wnt11 and Dishevelled signals act prior to injury and in a growth-dependent manner to orient the polarization of notum induced by wounding. In turn, injury-induced notum dictates polarization used in the next round of regeneration. These results identify a self-reinforcing feedback system driving the polarization of blastema outgrowth and indicate that regeneration uses pre-existing tissue information to determine the outcome of wound-induced signals.
Collapse
Affiliation(s)
- David I Gittin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
7
|
Ge XY, Han X, Zhao YL, Cui GS, Yang YG. An insight into planarian regeneration. Cell Prolif 2022; 55:e13276. [PMID: 35811385 PMCID: PMC9436907 DOI: 10.1111/cpr.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Planarian has attracted increasing attentions in the regeneration field for its usefulness as an important biological model organism attributing to its strong regeneration ability. Both the complexity of multiple regulatory networks and their coordinate functions contribute to the maintenance of normal cellular homeostasis and the process of regeneration in planarian. The polarity, size, location and number of regeneration tissues are regulated by diverse mechanisms. In this review we summarize the recent advances about the importance genetic and molecular mechanisms for regeneration control on various tissues in planarian. Methods A comprehensive literature search of original articles published in recent years was performed in regards to the molecular mechanism of each cell types during the planarian regeneration, including neoblast, nerve system, eye spot, excretory system and epidermal. Results Available molecular mechanisms gave us an overview of regeneration process in every tissue. The sense of injuries and initiation of regeneration is regulated by diverse genes like follistatin and ERK signaling. The Neoblasts differentiate into tissue progenitors under the regulation of genes such as egfr‐3. The regeneration polarity is controlled by Wnt pathway, BMP pathway and bioelectric signals. The neoblast within the blastema differentiate into desired cell types and regenerate the missing tissues. Those tissue specific genes regulate the tissue progenitor cells to differentiate into desired cell types to complete the regeneration process. Conclusion All tissue types in planarian participate in the regeneration process regulated by distinct molecular factors and cellular signaling pathways. The neoblasts play vital roles in tissue regeneration and morphology maintenance. These studies provide new insights into the molecular mechanisms for regulating planarian regeneration.
Collapse
Affiliation(s)
- Xin-Yang Ge
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Guan-Shen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| |
Collapse
|
8
|
Grodstein J, Levin M. A Computational Approach to Explaining Bioelectrically Induced Persistent, Stochastic Changes of Axial Polarity in Planarian Regeneration. Bioelectricity 2022; 4:18-30. [PMID: 39372228 PMCID: PMC11450330 DOI: 10.1089/bioe.2021.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Morphogenesis results when cells cooperate to construct a specific anatomical structure. The behavior of such cell swarms exhibits not only robustness but also plasticity with respect to what specific anatomies will be built. Important aspects of evolutionary biology, regenerative medicine, and cancer are impacted by the algorithms by which instructive information guides invariant or stochastic outcomes of such collective activity. Planarian flatworms are an important model system in this field, as flatworms reliably regenerate a primary body axis after diverse kinds of injury. Importantly, the number of heads to which they regenerate is not determined genetically: lines of worms can be produced, which, with no further manipulation, regenerate as two-headed (2H) worms, or as "Cryptic" worms. When cut into pieces, Cryptic worms produce one-headed (1H) and 2H regenerates stochastically. Neural and bioelectric mechanisms have been proposed to explain aspects of the regenerative dataset. However, these models have not been unified and do not explain all of the Cryptic worm data. In this study, we propose a model in which two separate systems (a bioelectric circuit and a neural polarity mechanism) compete to determine the anatomical structure of a regenerate. We show how our model accounts for existing data and provides a consistent synthesis of mechanisms that explain both the robustness of planarian regeneration and its remarkable re-writability toward novel stable and stochastic anatomical states.
Collapse
Affiliation(s)
- Joel Grodstein
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
10
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
Bischof J, Day ME, Miller KA, LaPalme JV, Levin M. Nervous system and tissue polarity dynamically adapt to new morphologies in planaria. Dev Biol 2020; 467:51-65. [PMID: 32882234 PMCID: PMC10474925 DOI: 10.1016/j.ydbio.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/05/2023]
Abstract
The coordination of tissue-level polarity with organism-level polarity is crucial in development, disease, and regeneration. Here, we characterize a new example of large-scale control of dynamic remodeling of body polarity. Exploiting the flexibility of the body plan in regenerating planarians, we used mirror duplication of the primary axis to show how established tissue-level polarity adapts to new organism-level polarity. Characterization of epithelial planar cell polarity revealed a remarkable reorientation of tissue polarity in double-headed planarians. This reorientation of cilia occurs even following irradiation-induced loss of all stem cells, suggesting independence of the polarity change from the formation of new cells. The presence of the two heads plays an important role in regulating the rate of change in overall polarity. We further present data that suggest that the nervous system itself adapts its polarity to match the new organismal anatomy as revealed by changes in nerve transport driving distinct regenerative outcomes. Thus, in planaria tissue-level polarity can dynamically reorient to match the organism-level anatomical configuration.
Collapse
Affiliation(s)
- Johanna Bischof
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 01915, USA
| | - Margot E Day
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 01915, USA
| | - Kelsie A Miller
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 01915, USA
| | - Jennifer V LaPalme
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 01915, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 01915, USA.
| |
Collapse
|
12
|
Li Y, Guo F, Jing Q, Zhu X, Yan X. Characterisation of centriole biogenesis during multiciliation in planarians. Biol Cell 2020; 112:398-408. [PMID: 32776587 DOI: 10.1111/boc.202000045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION Dense multicilia in protozoa and metazoa generate a strong force important for locomotion and extracellular fluid flow. During ciliogenesis, multiciliated cells produce hundreds of centrioles to serve as basal bodies through various pathways including deuterosome-dependent (DD), hyper-activated mother centriole-dependent (MCD) and basal bodydependent (BBD) pathways. The centrosome-free planarian Schmidtea mediterranea is widely used for regeneration studies because its neoblasts are capable of regenerating any body part after injury. However, it is currently unclear how the flatworms generate massive centrioles for multiciliated cells in the pharynx and body epidermis when their cells are initially centriole-free. RESULTS In this study, we investigate the progress of centriole amplification during the pharynx regeneration. We observe that the planarian pharyngeal epithelial cells generate their centrioles asynchronously through a de novo pathway. Most of the de novo centrioles are formed individually, whereas the remaining ones are assembled in pairs, possibly by sharing a cartwheel, or in small clusters lacking a nucleation center. Further RNAi experiments show that the known key factors of centriole duplication, including Cep152, Plk4 and Sas6, are crucial for the centriole amplification. CONCLUSIONS AND SIGNIFICANCE Our study demonstrates the distinct process of massive centriole biogenesis in S. mediterranea and helps to understand the diversity of centriole biogenesis during evolution.
Collapse
Affiliation(s)
- Yaping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fanghao Guo
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qing Jing
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiumin Yan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Basquin C, Ershov D, Gaudin N, Vu HTK, Louis B, Papon JF, Orfila AM, Mansour S, Rink JC, Azimzadeh J. Emergence of a Bilaterally Symmetric Pattern from Chiral Components in the Planarian Epidermis. Dev Cell 2019; 51:516-525.e5. [DOI: 10.1016/j.devcel.2019.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023]
|