1
|
Rao R, Yang H, Qiu K, Xu M, Liu H, Shen J, Wang W, Nie R, Chen H, Jiang H. Mechanical confinement triggers spreading and migration of immobile cells by deforming nucleus. Biomaterials 2025; 320:123209. [PMID: 40049023 DOI: 10.1016/j.biomaterials.2025.123209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/18/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
Cells in vivo are often subject to the challenge of spatial confinement from neighboring cells and extracellular matrix (ECM) that are usually adhesive and deformable. Here, we showed that confinement makes initially quiescent round cells on soft adhesive substrates spread and migrate, exhibiting a phenotype similar to that of cells on unconfined stiff substrates. Interestingly, the confinement-induced cell spreading and migration exist widely in many cell types, and depend on formins, cell contractility and endonuclear YAP-TEAD interaction. Finally, we demonstrated the nucleus is a mechanosensor independent of ECM rigidity, and its flattening alone is sufficient to trigger YAP nuclear translocation, assembly of focal adhesions and stress fibers, cell spreading and migration. Thus, our findings revealed a new inside-out mechanism through which the nucleus directly detects and responds to external mechanical confinement, and could have important implications for cell migration in crowded micro-environments during cancer metastasis, wound healing and embryonic development.
Collapse
Affiliation(s)
- Ran Rao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China; Current Address: Department of Pathology, the First Affilliated Hospital of Anhui Medical University, Hefei, 230001, Anhui, China
| | - Haoxiang Yang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kailong Qiu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Min Xu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hao Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Jinghao Shen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weihao Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Runjie Nie
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Huan Chen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hongyuan Jiang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China; CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
2
|
Kerdegari S, Passeri AA, Morena F, Ciccone G, Bazzurro V, Canepa P, Lagomarsino A, Martino S, Mattarelli M, Vassalli M, Diaspro A, Caponi S, Canale C. Contact-free characterization of nuclear mechanics using correlative Brillouin-Raman Micro-Spectroscopy in living cells. Acta Biomater 2025; 198:291-301. [PMID: 40189116 DOI: 10.1016/j.actbio.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Nuclear mechanics is a key parameter in regulating cell physiology, affecting chromatin accessibility and transcriptional regulation. The most established method to characterize the mechanics of biological materials at the sub-micrometer scale is based on atomic force microscopy (AFM). However, its contact-based nature limits the direct access to the nucleus. While some indirect methods have been proposed to measure nuclear mechanics in living cells, the readout is influenced by the overlaying cytoskeleton. For this reason, mechanical measurements on isolated nuclei are a common strategy to overcome this issue. However, the impact of the invasive preparation procedure on the measured properties is still unclear. To address this issue, we studied the mechanical properties of skin fibroblasts probing the nuclear region and of extracted nuclei using AFM and correlative Brillouin-Raman Micro-Spectroscopy (BRMS). The latter technique is a non-invasive method to image living systems in 3D, obtaining correlative information on the mechanical and chemical properties of the sample at specific points of interest. Using this approach, we demonstrated that extracted nuclei are significantly softer than intact ones. Moreover, we demonstrated the ability of BRMS to highlight mechanical features within living cells that were masked by the convolution with the cytosol in conventional AFM measurements. Overall, this study shows the importance of evaluating nuclear mechanics within the native environment where cellular homeostasis is preserved. We, therefore, suggest that BRMS offers a much deeper insight into nuclear mechanics compared to AFM, and it should be adopted as a reference tool to study nuclear mechanobiology. STATEMENT OF SIGNIFICANCE: The cell nucleus, the largest eukaryotic organelle, is crucial for cellular function and genetic material storage. Its mechanical properties, often altered in disease, influence key processes like chromatin accessibility. Although atomic force microscopy (AFM) is a standard method for studying nuclear mechanics, isolating nuclear stiffness in living cells is challenging due to interference from the cytoskeleton and plasma membrane. We demonstrate that correlative Brillouin-Raman Micro-Spectroscopy (BRMS) enables non-contact, high-resolution measurement of nuclear mechanics, capturing sub-micron details. We compare the results from BRMS with that obtained on the same samples with AFM. BRMS enhances our understanding of nuclear stiffness in physiological conditions, offering valuable insights for researchers in the field of mechanobiology, biotechnology, medicine, and bioengineering.
Collapse
Affiliation(s)
- S Kerdegari
- Department of Physics, University of Genova, Genova, Italy; Istituto Italiano di Tecnologia, Genova, Italy
| | - A A Passeri
- Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - F Morena
- Department of Chemistry, Biology, and Biotechnology, Perugia, Italy
| | - G Ciccone
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - V Bazzurro
- Department of Physics, University of Genova, Genova, Italy
| | - P Canepa
- Department of Physics, University of Genova, Genova, Italy
| | - A Lagomarsino
- Department of Physics, University of Genova, Genova, Italy
| | - S Martino
- Department of Chemistry, Biology, and Biotechnology, Perugia, Italy
| | - M Mattarelli
- Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - M Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - A Diaspro
- Department of Physics, University of Genova, Genova, Italy; Istituto Italiano di Tecnologia, Genova, Italy
| | - S Caponi
- Istituto Officina dei Materiali del CNR, (CNR-IOM) unità di Perugia, Italy.
| | - C Canale
- Department of Physics, University of Genova, Genova, Italy.
| |
Collapse
|
3
|
Schoenborn S, Yuan M, Fell CA, Liu C, Fletcher DF, Priola S, Chan HF, Woodruff M, Li Z, Toh YC, Allenby MC. Simulating big mechanically-active culture systems (BigMACS) using paired biomechanics-histology FEA modelling to derive mechanobiology design relationships. Biofabrication 2025; 17:035006. [PMID: 40239681 DOI: 10.1088/1758-5090/adcd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Big mechanically-active culture systems (BigMACS) are promising to stimulate, control, and pattern cell and tissue behaviours with less soluble factor requirements. However, it remains challenging to predict if and how distributed mechanical forces impact single-cell behaviours to pattern tissue. In this study, we introduce a tissue-scale finite element analysis framework able to correlate sub-cellular quantitative histology with centimetre-scale biomechanics. Our framework is relevant to diverse BigMACS, including media perfusion, tensile-stress, magnetic, and pneumatic tissue culture platforms. We apply our framework to understand how the design and operation of a multi-axial soft robotic bioreactor can spatially control mesenchymal stem cell (MSC) proliferation, orientation, differentiation to smooth muscle, and extracellular vascular matrix deposition. We find MSC proliferation and matrix deposition to positively correlate with mechanical stimulation but cannot be locally patterned by soft robot mechanical stimulation within a centimetre scale tissue. In contrast, local stress distribution was able to locally pattern MSC orientation and differentiation to smooth muscle phenotypes, where MSCs aligned perpendicular to principal stress direction and expressed increased α-SMA with increasing 3D Von Mises Stresses from 0 to 15 kPa. Altogether, our new biomechanical-histological simulation framework is a promising technique to derive the future mechanical design equations to control cell behaviours and engineer patterned tissue.
Collapse
Affiliation(s)
- Sabrina Schoenborn
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Mingyang Yuan
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Cody A Fell
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Chuanhai Liu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China, People's Republic of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, People's Republic of China
| | - David F Fletcher
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2006, Australia
| | - Selene Priola
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China, People's Republic of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Mia Woodruff
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Zhiyong Li
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Yi-Chin Toh
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Mark C Allenby
- BioMimetic Systems Engineering (BMSE) Lab, School of Chemical Engineering, University of Queensland (UQ), St Lucia QLD 4072, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
4
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
5
|
De Rosa CA, Wright CJ, Xiong Y, Del Giudice F, Zhao F. Graded porous scaffold mediates internal fluidic environment for 3D in vitro mechanobiology. Comput Biol Med 2025; 186:109674. [PMID: 39809085 DOI: 10.1016/j.compbiomed.2025.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/13/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Most cell types are mechanosensitive, their activities such as differentiation, proliferation and apoptosis, can be influenced by the mechanical environment through mechanical stimulation. In three dimensional (3D) mechanobiological in vitro studies, the porous structure of scaffold controls the local mechanical environment that applied to cells. Many previous studies have focused on the topological design of homogeneous scaffold struts. However, the impact of scaffold inhomogeneity on the mechanical environment, which is essential in mechanobiological application (e.g. for multi-cells co-culture), remains elusive. In this study, we use a computational fluid dynamics (CFD) approach together with data analysis to study the influence of a porosity gradient (10 %-30 % porosity difference) on the local and global mechanical environment (wall shear stress - WSS) within the commonly used structures of triple periodic minimal surfaces (TPMS). In addition, the anisotropy of internal WSS and scaffold permeability caused by the porosity gradient is investigated. It is found that the influence of anisotropy on the average WSS and permeability is up to 11 % and 31 %, respectively. These results, as theoretical references will be useful to tissue engineers and mechanobiologists for scaffold design and in vitro experiment planning such as integrated use of graded scaffold and bioreactors for specific cell types.
Collapse
Affiliation(s)
- Chiara Angela De Rosa
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom; Zienkiewicz Institute for Modelling Data and AI, Swansea University, Swansea, United Kingdom
| | - Christopher J Wright
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Francesco Del Giudice
- Complex Fluid Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Feihu Zhao
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom; Zienkiewicz Institute for Modelling Data and AI, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
6
|
Huang D, Liu J, Yang J, Liang J, Zhang J, Han Q, Yu J, Yang T, Meng Q, Steinberg T, Li C, Chang Z. Restoration of Pregnancy Function Using a GT/PCL Biofilm in a Rabbit Model of Uterine Injury. Tissue Eng Part A 2025; 31:29-44. [PMID: 38526390 DOI: 10.1089/ten.tea.2023.0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Biomaterial scaffolds have been used successfully to promote the regenerative repair of small endometrial lesions in small rodents, providing partial restoration of gestational function. The use of rabbits in this study allowed us to investigate a larger endometrial tissue defect and myometrial injury model. A gelatin/polycaprolactone (GT/PCL) gradient-layer biofilm was sutured at the defect to guide the reconstruction of the original tissue structure. Twenty-eight days postimplantation, the uterine cavity had been restored to its original morphology, endometrial growth was accompanied by the formation of glands and blood vessels, and the fragmented myofibers of the uterine smooth muscle had begun to resemble the normal structure of the lagomorph uterine cavity, arranging in a circular luminal pattern and a longitudinal serosal pattern. In addition, the repair site supported both embryonic implantation into the placenta and normal embryonic development. Four-dimensional label-free proteomic analysis identified the cell adhesion molecules, phagosome, ferroptosis, rap1 signaling pathways, hematopoietic cell lineage, complement and coagulation cascades, tricarboxylic acid cycle, carbon metabolism, and hypoxia inducible factor (HIF)-1 signaling pathways as important in the endogenous repair process of uterine tissue injury, and acetylation of protein modification sites upregulated these signaling pathways.
Collapse
Affiliation(s)
- Di Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Jing Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, P. R. China
| | - Jie Yang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, P. R. China
| | - Junhui Liang
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P. R. China
| | - Jing Zhang
- Shandong First Medical University, Tai'an, P. R. China
| | - Qinyu Han
- Shandong First Medical University, Jinan, P. R. China
| | - Jianlong Yu
- Rizhao People's Hospital, Rizhao, P. R. China
| | - Tingting Yang
- Tai'an Maternal and Child Health Hospital, Tai'an, P. R. China
| | - Qi Meng
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, P. R. China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, P. R. China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, P. R. China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, P. R. China
| | - Zhongle Chang
- Shandong Agriculture University, Tai'an, P. R. China
| |
Collapse
|
7
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Basement membranes are crucial for proper olfactory placode shape, position and boundary with the brain, and for olfactory axon development. eLife 2024; 12:RP92004. [PMID: 39713923 DOI: 10.7554/elife.92004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.
Collapse
Affiliation(s)
- Pénélope Tignard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Karen Pottin
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Audrey Geeverding
- Imaging Facility, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Mohamed Doulazmi
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8256), Institut de Biologie Paris-Seine (IBPS), Adaptation Biologique et Vieillissement, Paris, France
| | - Mélody Cabrera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Coralie Fouquet
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Mathilde Liffran
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Jonathan Fouchard
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
| | - Marion Rosello
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Alain Trembleau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR8246), Inserm U1130, Institut de Biologie Paris-Seine (IBPS), Neuroscience Paris Seine (NPS), Paris, France
| | - Marie Anne Breau
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS UMR7622), Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
8
|
Radermacher C, Craveiro RB, Jahnen-Dechent W, Beier JP, Bülow A, Wolf M, Neuss S. Impact of compression forces on different mesenchymal stem cell types regarding orthodontic indication. Stem Cells Transl Med 2024; 13:1028-1039. [PMID: 39181541 PMCID: PMC11465164 DOI: 10.1093/stcltm/szae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/29/2024] [Indexed: 08/27/2024] Open
Abstract
The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.
Collapse
Affiliation(s)
- Chloé Radermacher
- Department of Orthodontics, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Wilhelm Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Justus P Beier
- Department for Plastic Surgery, Hand, and Burn Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Astrid Bülow
- Department for Plastic Surgery, Hand, and Burn Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sabine Neuss
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
9
|
Rijns L, Hagelaars MJ, van der Tol JJB, Loerakker S, Bouten CVC, Dankers PYW. The Importance of Effective Ligand Concentration to Direct Epithelial Cell Polarity in Dynamic Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300873. [PMID: 37264535 DOI: 10.1002/adma.202300873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Epithelial cysts and organoids are multicellular hollow structures formed by correctly polarized epithelial cells. Important in steering these cysts from single cells is the dynamic regulation of extracellular matrix presented ligands, and matrix dynamics. Here, control over the effective ligand concentration is introduced, decoupled from bulk and local mechanical properties, in synthetic dynamic supramolecular hydrogels formed through noncovalent crosslinking of supramolecular fibers. Control over the effective ligand concentration is realized by 1) keeping the ligand concentration constant, but changing the concentration of nonfunctionalized molecules or by 2) varying the ligand concentration, while keeping the concentration of non-functionalized molecules constant. The results show that in 2D, the effective ligand concentration within the supramolecular fibers rather than gel stiffness (from 0.1 to 8 kPa) regulates epithelial polarity. In 3D, increasing the effective ligand concentration from 0.5 × 10-3 to 2 × 10-3 m strengthens the effect of increased gel stiffness from 0.1 to 2 kPa, to synergistically yield more correctly polarized cysts. Through integrin manipulation, it is shown that epithelial polarity is regulated by tension-based homeostasis between cells and matrix. The results reveal the effective ligand concentration as influential factor in regulating epithelial polarity and provide insights on engineering of synthetic biomaterials for cell and organoid culture.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Maria J Hagelaars
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Sandra Loerakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Gandin A, Torresan V, Panciera T, Brusatin G. A Scalable Method to Fabricate 2D Hydrogel Substrates for Mechanobiology Studies with Independent Tuning of Adhesiveness and Stiffness. Methods Protoc 2024; 7:75. [PMID: 39452789 PMCID: PMC11510107 DOI: 10.3390/mps7050075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Mechanical signals from the extracellular matrix are crucial in guiding cellular behavior. Two-dimensional hydrogel substrates for cell cultures serve as exceptional tools for mechanobiology studies because they mimic the biomechanical and adhesive characteristics of natural environments. However, the interdisciplinary knowledge required to synthetize and manipulate these biomaterials typically restricts their widespread use in biological laboratories, which may not have the material science expertise or specialized instrumentation. To address this, we propose a scalable method that requires minimal setup to produce 2D hydrogel substrates with independent modulation of the rigidity and adhesiveness within the range typical of natural tissues. In this method, norbornene-terminated 8-arm polyethylene glycol is stoichiometrically functionalized with RGD peptides and crosslinked with a di-cysteine terminated peptide via a thiol-ene click reaction. Since the synthesis process significantly influences the final properties of the hydrogels, we provide a detailed description of the chemical procedure to ensure reproducibility and high throughput results. We demonstrate examples of cell mechanosignaling by monitoring the activation state of the mechanoeffector proteins YAP/TAZ. This method effectively dissects the influence of biophysical and adhesive cues on cell behavior. We believe that our procedure will be easily adopted by other cell biology laboratories, improving its accessibility and practical application.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Veronica Torresan
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, PD, Italy;
| | - Giovanna Brusatin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy; (A.G.); (V.T.)
- Consorzio INSTM, Padova RU, Via Marzolo 9, 35131 Padova, PD, Italy
| |
Collapse
|
11
|
Lan M, Liu Y, Liu J, Zhang J, Haider MA, Zhang Y, Zhang Q. Matrix Viscoelasticity Tunes the Mechanobiological Behavior of Chondrocytes. Cell Biochem Funct 2024; 42:e4126. [PMID: 39324844 DOI: 10.1002/cbf.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
In articular cartilage, the pericellular matrix acting as a specialized mechanical microenvironment modulates environmental signals to chondrocytes through mechanotransduction. Matrix viscoelastic alterations during cartilage development and osteoarthritis (OA) degeneration play an important role in regulating chondrocyte fate and cartilage matrix homeostasis. In recent years, scientists are gradually realizing the importance of matrix viscoelasticity in regulating chondrocyte function and phenotype. Notably, this is an emerging field, and this review summarizes the existing literatures to the best of our knowledge. This review provides an overview of the viscoelastic properties of hydrogels and the role of matrix viscoelasticity in directing chondrocyte behavior. In this review, we elaborated the mechanotransuction mechanisms by which cells sense and respond to the viscoelastic environment and also discussed the underlying signaling pathways. Moreover, emerging insights into the role of matrix viscoelasticity in regulating chondrocyte function and cartilage formation shed light into designing cell-instructive biomaterial. We also describe the potential use of viscoelastic biomaterials in cartilage tissue engineering and regenerative medicine. Future perspectives on mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses, and biomaterial design are highlighted. Finally, this review also highlights recent strategies utilizing viscoelastic hydrogels for designing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Minhua Lan
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanli Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Junjiang Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jing Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Muhammad Adnan Haider
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanjun Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Quanyou Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
12
|
Tignard P, Pottin K, Geeverding A, Doulazmi M, Cabrera M, Fouquet C, Liffran M, Fouchard J, Rosello M, Albadri S, Del Bene F, Trembleau A, Breau MA. Laminin γ1-dependent basement membranes are instrumental to ensure proper olfactory placode shape, position and boundary with the brain, as well as olfactory axon development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.29.547040. [PMID: 39253416 PMCID: PMC11383033 DOI: 10.1101/2023.06.29.547040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo .
Collapse
|
13
|
Rudolph EL, Chin L. Mechanobiology in Metabolic Dysfunction-Associated Steatotic Liver Disease and Obesity. Curr Issues Mol Biol 2024; 46:7134-7146. [PMID: 39057066 PMCID: PMC11276231 DOI: 10.3390/cimb46070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
With the ongoing obesity epidemic, the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is expected to rise and necessitates a greater understanding of how the disease proceeds from benign excess lipid in hepatocytes to liver fibrosis and eventually to liver cancer. MASLD is caused, at least in part, by hepatocytes' storage of free fatty acids (FAs) that dysfunctional adipocytes are no longer able to store, and therefore, MASLD is a disease that involves both the liver and adipose tissues. The disease progression is not only facilitated by biochemical signals, but also by mechanical cues such as the increase in stiffness often seen with fibrotic fatty livers. The change in stiffness and accumulation of excess lipid droplets impact the ability of a cell to mechanosense and mechanotranduce, which perpetuates the disease. A mechanosensitive protein that is largely unexplored and could serve as a potential therapeutic target is the intermediate filament vimentin. In this review, we briefly summarize the recent research on hepatocyte and adipocyte mechanobiology and provide a synopsis of studies on the varied, and sometimes contradictory, roles of vimentin. This review is intended to benefit and encourage future studies on hepatocyte and adipocyte mechanobiology in the context of MASLD and obesity.
Collapse
Affiliation(s)
| | - LiKang Chin
- Department of Biomedical Engineering, Widener University, Chester, PA 19013, USA;
| |
Collapse
|
14
|
Bae HJ, Shin SJ, Jo SB, Li CJ, Lee DJ, Lee JH, Lee HH, Kim HW, Lee JH. Cyclic stretch induced epigenetic activation of periodontal ligament cells. Mater Today Bio 2024; 26:101050. [PMID: 38654935 PMCID: PMC11035113 DOI: 10.1016/j.mtbio.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Periodontal ligament (PDL) cells play a crucial role in maintaining periodontal integrity and function by providing cell sources for ligament regeneration. While biophysical stimulation is known to regulate cell behaviors and functions, its impact on epigenetics of PDL cells has not yet been elucidated. Here, we aimed to investigate the cytoskeletal changes, epigenetic modifications, and lineage commitment of PDL cells following the application of stretch stimuli to PDL. PDL cells were subjected to stretching (0.1 Hz, 10 %). Subsequently, changes in focal adhesion, tubulin, and histone modification were observed. The survival ability in inflammatory conditions was also evaluated. Furthermore, using a rat hypo-occlusion model, we verified whether these phenomena are observed in vivo. Stretched PDL cells showed maximal histone 3 acetylation (H3Ace) at 2 h, aligning perpendicularly to the stretch direction. RNA sequencing revealed stretching altered gene sets related to mechanotransduction, histone modification, reactive oxygen species (ROS) metabolism, and differentiation. We further found that anchorage, cell elongation, and actin/microtubule acetylation were highly upregulated with mechanosensitive chromatin remodelers such as H3Ace and histone H3 trimethyl lysine 9 (H3K9me3) adopting euchromatin status. Inhibitor studies showed mechanotransduction-mediated chromatin modification alters PDL cells behaviors. Stretched PDL cells displayed enhanced survival against bacterial toxin (C12-HSL) or ROS (H2O2) attack. Furthermore, cyclic stretch priming enhanced the osteoclast and osteoblast differentiation potential of PDL cells, as evidenced by upregulation of lineage-specific genes. In vivo, PDL cells from normally loaded teeth displayed an elongated morphology and higher levels of H3Ace compared to PDL cells with hypo-occlusion, where mechanical stimulus is removed. Overall, these data strongly link external physical forces to subsequent mechanotransduction and epigenetic changes, impacting gene expression and multiple cellular behaviors, providing important implications in cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Han-Jin Bae
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong-Joon Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Oral Histology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun-Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
15
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
16
|
Jain S, Belkadi H, Michaut A, Sart S, Gros J, Genet M, Baroud CN. Using a micro-device with a deformable ceiling to probe stiffness heterogeneities within 3D cell aggregates. Biofabrication 2024; 16:035010. [PMID: 38447213 DOI: 10.1088/1758-5090/ad30c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in the field of mechanobiology have led to the development of methods to characterise single-cell or monolayer mechanical properties and link them to their functional behaviour. However, there remains a strong need to establish this link for three-dimensional (3D) multicellular aggregates, which better mimic tissue function. Here we present a platform to actuate and observe many such aggregates within one deformable micro-device. The platform consists of a single polydimethylsiloxane piece cast on a 3D-printed mould and bonded to a glass slide or coverslip. It consists of a chamber containing cell spheroids, which is adjacent to air cavities that are fluidically independent. Controlling the air pressure in these air cavities leads to a vertical displacement of the chamber's ceiling. The device can be used in static or dynamic modes over time scales of seconds to hours, with displacement amplitudes from a fewµm to several tens of microns. Further, we show how the compression protocols can be used to obtain measurements of stiffness heterogeneities within individual co-culture spheroids, by comparing image correlations of spheroids at different levels of compression with finite element simulations. The labelling of the cells and their cytoskeleton is combined with image correlation methods to relate the structure of the co-culture spheroid with its mechanical properties at different locations. The device is compatible with various microscopy techniques, including confocal microscopy, which can be used to observe the displacements and rearrangements of single cells and neighbourhoods within the aggregate. The complete experimental and imaging platform can now be used to provide multi-scale measurements that link single-cell behaviour with the global mechanical response of the aggregates.
Collapse
Affiliation(s)
- Shreyansh Jain
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Hiba Belkadi
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Arthur Michaut
- Institut Pasteur, Université Paris Cité, Dynamic Regulation of Morphogenesis, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jérôme Gros
- Institut Pasteur, Université Paris Cité, Dynamic Regulation of Morphogenesis, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Martin Genet
- Laboratoire de Mécanique des Solides, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
- Inria, Palaiseau, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bioengineering, 25-28 Rue du Dr Roux, 75015 Paris, France
- Laboratoire d' Hydrodynamique (LadHyX), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
17
|
Rabiet L, Arakelian L, Jeger-Madiot N, García DR, Larghero J, Aider JL. Acoustic levitation as a tool for cell-driven self-organization of human cell spheroids during long-term 3D culture. Biotechnol Bioeng 2024; 121:1422-1434. [PMID: 38225905 DOI: 10.1002/bit.28651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Acoustic levitation, which allows contactless manipulation of micro-objects with ultrasounds, is a promising technique for spheroids formation and culture. This acoustofluidic technique favors cell-cell interactions, away from the walls of the chip, which leads to the spontaneous self-organization of cells. Using this approach, we generated spheroids of mesenchymal stromal cells, hepatic and endothelial cells, and showed that long-term culture of cells in acoustic levitation is feasible. We also demonstrated that this self-organization and its dynamics depended weakly on the acoustic parameters but were strongly dependent on the levitated cell type. Moreover, spheroid organization was modified by actin cytoskeleton inhibitors or calcium-mediated interaction inhibitors. Our results confirmed that acoustic levitation is a rising technique for fundamental research and biotechnological industrial application in the rapidly growing field of microphysiological systems. It allowed easily obtaining spheroids of specific and predictable shape and size, which could be cultivated over several days, without requiring hydrogels or extracellular matrix.
Collapse
Affiliation(s)
- Lucile Rabiet
- Laboratoire Physique et mécanique des milieux Hétérogènes (PMMH), CNRS, ESPCI, Paris, France
- Inserm U976, CIC-BT CBT501, AP-HP, Université Paris-Cité, Hôpital Saint-Louis, Paris, France
| | - Lousineh Arakelian
- Inserm U976, CIC-BT CBT501, AP-HP, Université Paris-Cité, Hôpital Saint-Louis, Paris, France
| | - Nathan Jeger-Madiot
- Laboratoire Physique et mécanique des milieux Hétérogènes (PMMH), CNRS, ESPCI, Paris, France
| | - Duván Rojas García
- Laboratoire Physique et mécanique des milieux Hétérogènes (PMMH), CNRS, ESPCI, Paris, France
| | - Jérôme Larghero
- Inserm U976, CIC-BT CBT501, AP-HP, Université Paris-Cité, Hôpital Saint-Louis, Paris, France
| | - Jean-Luc Aider
- Laboratoire Physique et mécanique des milieux Hétérogènes (PMMH), CNRS, ESPCI, Paris, France
| |
Collapse
|
18
|
Adine C, Fernando K, Ho NCW, Quah HS, Ho SSW, Wu KZ, Teng KWW, Arcinas C, Li L, Ha K, Chew JWL, Wang C, Too NSH, Yeong JPS, Tan DSW, Tan IBH, Nagadia R, Chia CS, Macalinao D, Bhuvaneswari H, Iyer NG, Fong ELS. Bioengineered hydrogels enhance ex vivo preservation of patient-derived tumor explants for drug evaluation. Biomaterials 2024; 305:122460. [PMID: 38246018 DOI: 10.1016/j.biomaterials.2023.122460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Ex vivo patient-derived tumor slices (PDTS) are currently limited by short-term viability in culture. Here, we show how bioengineered hydrogels enable the identification of key matrix parameters that significantly enhance PDTS viability compared to conventional culture systems. As demonstrated using single-cell RNA sequencing and high-dimensional flow cytometry, hydrogel-embedded PDTS tightly preserved cancer, cancer-associated fibroblast, and various immune cell populations and subpopulations in the corresponding original tumor. Cell-cell communication networks within the tumor microenvironment, including immune checkpoint ligand-receptor interactions, were also maintained. Remarkably, our results from a co-clinical trial suggest hydrogel-embedded PDTS may predict sensitivity to immune checkpoint inhibitors (ICIs) in head and neck cancer patients. Further, we show how these longer term-cultured tumor explants uniquely enable the sampling and detection of temporal evolution in molecular readouts when treated with ICIs. By preserving the compositional heterogeneity and complexity of patient tumors, hydrogel-embedded PDTS provide a valuable tool to facilitate experiments targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Christabella Adine
- The N.1 Institute for Health, National University of Singapore, Singapore
| | - Kanishka Fernando
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Hong Sheng Quah
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | | | - Kenny Zhuoran Wu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Camille Arcinas
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Ling Li
- Translational Medicine Research Centre, MSD, Singapore
| | - Kelly Ha
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Joey Wei Ling Chew
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Chenhui Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | - Joe Poh Sheng Yeong
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | | | | | - Rahul Nagadia
- Department of Head and Neck Surgery, National Cancer Centre Singapore, Singapore; Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | - N Gopalakrishna Iyer
- National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore.
| | - Eliza Li Shan Fong
- The N.1 Institute for Health, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore; Cancer Science Institute, National University of Singapore, Singapore.
| |
Collapse
|
19
|
Wang X, Huang X, Gao X, Xu H, Jin A, Wang X, Sun S, Liu Y, Zhu Y, Liu J, Lu T, Dai Q, Jiang L. Differentiation potential of periodontal Col1+ cells under orthodontic force. MECHANOBIOLOGY IN MEDICINE 2024; 2:100026. [DOI: 10.1016/j.mbm.2023.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Willacy O, Juul N, Taouzlak L, Chamorro CI, Ajallouiean F, Fossum M. A perioperative layered autologous tissue expansion graft for hollow organ repair. Heliyon 2024; 10:e25275. [PMID: 38322882 PMCID: PMC10845913 DOI: 10.1016/j.heliyon.2024.e25275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Tissue engineering has not been widely adopted in clinical settings for several reasons, including technical challenges, high costs, and regulatory complexity. Here, we introduce the Perioperative Layered Autologous Tissue Expansion graft (PLATE graft), a composite biomaterial and collagen-reinforced construct with autologous epithelium on one side and smooth muscle tissue on the other. Designed to mimic the structure and function of natural hollow organs, the PLATE graft is unique in that it can be produced in a standard operating theatre and is cost-effective. In this proof-of-principle study, we test its regenerative performance in eight different organs, present biomechanical and permeability tests, and finally explore its in vivo performance in live rabbits.
Collapse
Affiliation(s)
- Oliver Willacy
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nikolai Juul
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Loai Taouzlak
- Department of Health Technology, Technical University of Denmark, 2800: Kgs, Lyngby, Denmark
| | - Clara I. Chamorro
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Ajallouiean
- Department of Health Technology, Technical University of Denmark, 2800: Kgs, Lyngby, Denmark
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsted Plads, 2800: Kgs, Lyngby, Denmark
| | - Magdalena Fossum
- Laboratory of Tissue Engineering, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Division of Pediatric Surgery, Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Laboratory of Tissue Engineering, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
22
|
Zhou Y, Lv W, Peng X, Cheng Y, Tu Y, Song G, Luo Q. Simulated microgravity attenuates skin wound healing by inhibiting dermal fibroblast migration via F-actin/YAP signaling pathway. J Cell Physiol 2023; 238:2751-2764. [PMID: 37795566 DOI: 10.1002/jcp.31126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Skin and its cell components continuously subject to extrinsic and intrinsic mechanical forces and are mechanical sensitive. Disturbed mechanical homeostasis may lead to changes in skin functions. Gravity is the integral mechanical force on the earth, however, how gravity contributes to the maintenance of skin function and how microgravity in space affects the wound healing are poorly understood. Here, using microgravity analogs, we show that simulated microgravity (SMG) inhibits the healing of cutaneous wound and the accumulation of dermal fibroblasts in the wound bed. In vitro, SMG inhibits the migration of human foreskin fibroblast cells (HFF-1), and decreases the F-actin polymerization and YAP (yes-associated protein) activity. The SMG-inhibited migration can be recovered by activating YAP or F-actin polymerization using lysophosphatidic acid (LPA) or jasplakinolide (Jasp), suggesting the involvement of F-actin/YAP signaling pathway in this process. In SMG rats, LPA treatment improves the cutaneous healing with increased dermal fibroblasts in the wound bed. Together, our results demonstrate that SMG attenuates the cutaneous wound healing by inhibiting dermal fibroblast migration, and propose the crucial role of F-actin/YAP mechano-transduction in the maintenance of skin homeostasis under normal gravity, and YAP as a possible therapeutic target for the skin care of astronauts in space.
Collapse
Affiliation(s)
- Yuhao Zhou
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Wenjun Lv
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Xiufen Peng
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Yansiwei Cheng
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Yun Tu
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Jhunjhunwala M, Yu LS, Kuo PC, Li CY, Chen CS. Tumor-Derived Membrane Vesicles Restrain Migration in Gliomas By Altering Collective Polarization. ACS APPLIED BIO MATERIALS 2023; 6:4764-4774. [PMID: 37862244 DOI: 10.1021/acsabm.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanobiology is a cornerstone in physiology. However, its role in biomedical applications remains considerably undermined. In this study, we employed cell membrane vesicles (CMVs), which are currently being used as nanodrug carriers, as tactile cues for mechano-regulation of collective cell behaviors. Gliomas, which are among the most resilient brain tumors and have a low patient survival rate, were used as the cell model. We observed that mechanical responses due to the application of glioma- or microglia-derived CMVs resulted in the doubling of the traction stress of glioma cell collectives with a 10-fold increase in the CMV concentration. Glioma-CMVs constrained cell protrusions and hindered their collective migration, with the migration speed of such cells declining by almost 40% compared to the untreated cells. We speculated that the alteration of collective polarization leads to migration speed changes, and this phenomenon was elucidated using the cellular Potts model. In addition to intracellular force modulation and cytoskeletal reorganization, glioma-CMVs altered drug diffusion within glioma spheroids by downregulating the mechano-signaling protein YAP-1 while also marginally enhancing the associated apoptotic events. Our results suggest that glioma-CMVs can be applied as an adjuvant to current treatment approaches to restrict tumor invasion and enhance the penetration of reagents within tumors. Considering the broad impact of mechano-transduction on cell functions, the regulation of cell mechanics through CMVs can provide a foundation for alternative therapeutic strategies.
Collapse
Affiliation(s)
| | - Lin-Sheng Yu
- National Tsing Hua University, Hsinchu 300044, Republic of China
| | - Ping-Chen Kuo
- National Tsing Hua University, Hsinchu 300044, Republic of China
| | - Chia-Yang Li
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Republic of China
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Republic of China
| | - Chi-Shuo Chen
- National Tsing Hua University, Hsinchu 300044, Republic of China
| |
Collapse
|
24
|
Bril M, Saberi A, Jorba I, van Turnhout MC, Sahlgren CM, Bouten CV, Schenning AP, Kurniawan NA. Shape-Morphing Photoresponsive Hydrogels Reveal Dynamic Topographical Conditioning of Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303136. [PMID: 37740666 PMCID: PMC10625123 DOI: 10.1002/advs.202303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Indexed: 09/25/2023]
Abstract
The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.
Collapse
Affiliation(s)
- Maaike Bril
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Aref Saberi
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Ignasi Jorba
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Mark C. van Turnhout
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Cecilia M. Sahlgren
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Carlijn V.C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Albert P.H.J. Schenning
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of Chemical Engineering & ChemistryEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
25
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
Hagelaars MJ, Rijns L, Dankers PYW, Loerakker S, Bouten CVC. Engineering Strategies to Move from Understanding to Steering Renal Tubulogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:203-216. [PMID: 36173101 DOI: 10.1089/ten.teb.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rebuilding the kidney in the context of tissue engineering offers a major challenge as the organ is structurally complex and has a high variety of specific functions. Recreation of kidney function is inherently connected to the formation of tubules since the functional subunit of the kidney, the nephron, is based on tubular structures. In vivo, tubulogenesis culminates in a perfectly shaped, patterned, and functional renal tubule via different morphogenic processes that depend on delicately orchestrated chemical, physical, and mechanical interactions between cells and between cells and their microenvironment. This review summarizes the current understanding of the role of the microenvironment in the morphogenic processes involved in in vivo renal tubulogenesis. We highlight the current state-of-the-art of renal tubular engineering and provide a view on the design elements that can be extracted from these studies. Next, we discuss how computational modeling can aid in specifying and identifying design parameters and provide directions on how these design parameters can be incorporated in biomaterials for the purpose of engineering renal tubulogenesis. Finally, we propose that a step-by-step reciprocal interaction between understanding and engineering is necessary to effectively guide renal tubulogenesis. Impact statement Tubular tissue engineering lies at the foundation of regenerating kidney tissue function, as the functional subunit of the kidney, the nephron, is based on tubular structures. Guiding renal tubulogenesis toward functional renal tubules requires in-depth knowledge of the developmental processes that lead to the formation of native tubules as well as engineering approaches to steer these processes. In this study, we review the role of the microenvironment in the developmental processes that lead to functional renal tubules and give directions how this knowledge can be harnessed for biomaterial-based tubular engineering using computational models.
Collapse
Affiliation(s)
- Maria J Hagelaars
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Laura Rijns
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven, The Netherlands
| |
Collapse
|
27
|
Huo C, Zhang X, Gu Y, Wang D, Zhang S, Liu T, Li Y, He W. Organoids: Construction and Application in Gastric Cancer. Biomolecules 2023; 13:biom13050875. [PMID: 37238742 DOI: 10.3390/biom13050875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric organoids are biological models constructed in vitro using stem cell culture and 3D cell culture techniques, which are the latest research hotspots. The proliferation of stem cells in vitro is the key to gastric organoid models, making the cell subsets within the models more similar to in vivo tissues. Meanwhile, the 3D culture technology also provides a more suitable microenvironment for the cells. Therefore, the gastric organoid models can largely restore the growth condition of cells in terms of morphology and function in vivo. As the most classic organoid models, patient-derived organoids use the patient's own tissues for in vitro culture. This kind of model is responsive to the 'disease information' of a specific patient and has great effect on evaluating the strategies of individualized treatment. Herein, we review the current literature on the establishment of organoid cultures, and also explore organoid translational applications.
Collapse
Affiliation(s)
- Chengdong Huo
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaoxia Zhang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanmei Gu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Daijun Wang
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Tao Liu
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Yumin Li
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| | - Wenting He
- Department of the Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
28
|
Adam G, Ulliac G, Clevy C, Cappelleri DJ. 3D printed vision-based micro-force sensors for microrobotic applications. JOURNAL OF MICRO-BIO ROBOTICS 2023. [DOI: 10.1007/s12213-023-00152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
29
|
Carrisoza-Gaytan R, Kroll KT, Hiratsuka K, Gupta NR, Morizane R, Lewis JA, Satlin LM. Functional maturation of kidney organoid tubules: PIEZO1-mediated Ca 2+ signaling. Am J Physiol Cell Physiol 2023; 324:C757-C768. [PMID: 36745528 PMCID: PMC10027089 DOI: 10.1152/ajpcell.00288.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/07/2023]
Abstract
Kidney organoids cultured on adherent matrices in the presence of superfusate flow generate vascular networks and exhibit more mature podocyte and tubular compartments compared with static controls (Homan KA, Gupta N, Kroll KT, Kolesky DB, Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T, Bonventre JV, Lewis JA, Morizane R. Nat Methods 16: 255-262, 2019; Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Nature 526: 564-568, 2015.). However, their physiological function has yet to be systematically investigated. Here, we measured mechano-induced changes in intracellular Ca2+ concentration ([Ca2+]i) in tubules isolated from organoids cultured for 21-64 days, microperfused in vitro or affixed to the base of a specimen chamber, and loaded with fura-2 to measure [Ca2+]i. A rapid >2.5-fold increase in [Ca2+]i from a baseline of 195.0 ± 22.1 nM (n = 9; P ≤ 0.001) was observed when microperfused tubules from organoids >40 days in culture were subjected to luminal flow. In contrast, no response was detected in tubules isolated from organoids <30 days in culture. Nonperfused tubules (41 days) subjected to a 10-fold increase in bath flow rate also exhibited a threefold increase in [Ca2+]i from baseline (P < 0.001). Mechanosensitive PIEZO1 channels contribute to the flow-induced [Ca2+]i response in mouse distal tubule (Carrisoza-Gaytan R, Dalghi MG, Apodaca GL, Kleyman TR, Satlin LM. The FASEB J 33: 824.25, 2019.). Immunodetectable apical and basolateral PIEZO1 was identified in tubular structures by 21 days in culture. Basolateral PIEZO1 appeared to be functional as basolateral exposure of nonperfused tubules to the PIEZO1 activator Yoda 1 increased [Ca2+]i (P ≤ 0.001) in segments from organoids cultured for >30 days, with peak [Ca2+]i increasing with advancing days in culture. These results are consistent with a maturational increase in number and/or activity of flow/stretch-sensitive Ca2+ channels, including PIEZO1, in tubules of static organoids in culture.
Collapse
Affiliation(s)
- Rolando Carrisoza-Gaytan
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Katharina T Kroll
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
| | - Ken Hiratsuka
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Navin R Gupta
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Ryuji Morizane
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
| | - Jennifer A Lewis
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
30
|
Matejčić M, Trepat X. Mechanobiological approaches to synthetic morphogenesis: learning by building. Trends Cell Biol 2023; 33:95-111. [PMID: 35879149 DOI: 10.1016/j.tcb.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.
Collapse
Affiliation(s)
- Marija Matejčić
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
31
|
Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PY, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. NATURE REVIEWS. METHODS PRIMERS 2022; 2:98. [PMID: 37461429 PMCID: PMC7614763 DOI: 10.1038/s43586-022-00179-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 07/20/2023]
Abstract
Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology and Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Leipzig, Germany
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Laura Rijns
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
- Department of Material Science and Engineering, University of Delaware, DE, USA
| | - Jess G. Snedeker
- University Hospital Balgrist and ETH Zurich, Zurich, Switzerland
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
32
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Boquet-Pujadas A, Feaugas T, Petracchini A, Grassart A, Mary H, Manich M, Gobaa S, Olivo-Marin JC, Sauvonnet N, Labruyère E. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. SCIENCE ADVANCES 2022; 8:eabo5767. [PMID: 36269830 PMCID: PMC9586479 DOI: 10.1126/sciadv.abo5767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
Physical forces are essential to biological function, but their impact at the tissue level is not fully understood. The gut is under continuous mechanical stress because of peristalsis. To assess the influence of mechanical cues on enteropathogen invasion, we combine computational imaging with a mechanically active gut-on-a-chip. After infecting the device with either of two microbes, we image their behavior in real time while mapping the mechanical stress within the tissue. This is achieved by reconstructing three-dimensional videos of the ongoing invasion and leveraging on-manifold inverse problems together with viscoelastic rheology. Our results show that peristalsis accelerates the destruction and invasion of intestinal tissue by Entamoeba histolytica and colonization by Shigella flexneri. Local tension facilitates parasite penetration and activates virulence genes in the bacteria. Overall, our work highlights the fundamental role of physical cues during host-pathogen interactions and introduces a framework that opens the door to study mechanobiology on deformable tissues.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
- Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Thomas Feaugas
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Alba Petracchini
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alexandre Grassart
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
- Unit of Bioengineering and Microbiology, Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean-Christophe Olivo-Marin
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nathalie Sauvonnet
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Paris, France
| | - Elisabeth Labruyère
- Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Intracellular Trafficking and Tissue Homeostasis Group, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
34
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
35
|
Lefebvre O, Pinto S, Lahlil K, Peretti J, Smadja C, Randriamampita C, Lambert M, Fabbri F. Light‐tunable optical cell manipulation via photoactive azobenzene‐containing thin film bio‐substrate. NANO SELECT 2022. [DOI: 10.1002/nano.202200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Sandra Pinto
- Université Paris‐Saclay CNRS C2N Palaiseau France
- Université Paris‐Cité Institut Cochin Inserm CNRS Paris France
| | - Khalid Lahlil
- Laboratoire de Physique de la Matière Condensée Ecole Polytechnique / CNRS Palaiseau France
| | - Jacques Peretti
- Laboratoire de Physique de la Matière Condensée Ecole Polytechnique / CNRS Palaiseau France
| | - Claire Smadja
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Châtenay‐Malabry France
| | | | | | | |
Collapse
|
36
|
Missirlis D, Heckmann L, Haraszti T, Spatz JP. Fibronectin anchoring to viscoelastic poly(dimethylsiloxane) elastomers controls fibroblast mechanosensing and directional motility. Biomaterials 2022; 287:121646. [PMID: 35785752 DOI: 10.1016/j.biomaterials.2022.121646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022]
Abstract
The established link between deregulated tissue mechanics and various pathological states calls for the elucidation of the processes through which cells interrogate and interpret the mechanical properties of their microenvironment. In this work, we demonstrate that changes in the presentation of the extracellular matrix protein fibronectin on the surface of viscoelastic silicone elastomers have an overarching effect on cell mechanosensing, that is independent of bulk mechanics. Reduction of surface hydrophilicity resulted in altered fibronectin adsorption strength as monitored using atomic force microscopy imaging and pulling experiments. Consequently, primary human fibroblasts were able to remodel the fibronectin coating, adopt a polarized phenotype and migrate directionally even on soft elastomers, that otherwise were not able to resist the applied traction forces. The findings presented here provide valuable insight on how cellular forces are regulated by ligand presentation and used by cells to probe their mechanical environment, and have implications on biomaterial design for cell guidance.
Collapse
Affiliation(s)
- Dimitris Missirlis
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany.
| | - Lara Heckmann
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, Postal Address: Forkenbeckstr. 50, D-52056, Aachen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Postal Address: Jahnstr. 29, D-69120, Heidelberg, Germany; Department of Biophysical Chemistry, Physical Chemistry Institute, Heidelberg University, Postal Address: INF 253, D-69120, Heidelberg, Germany
| |
Collapse
|
37
|
Zhang D, Feng M, Liu W, Yu J, Wei X, Yang K, Zhan J, Peng W, Luo M, Han T, Jin Z, Yin H, Sun K, Yin X, Zhu L. From Mechanobiology to Mechanical Repair Strategies: A Bibliometric Analysis of Biomechanical Studies of Intervertebral Discs. J Pain Res 2022; 15:2105-2122. [PMID: 35923841 PMCID: PMC9342884 DOI: 10.2147/jpr.s361938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Neck pain and low back pain are major challenges in public health, and intervertebral disc (IVD) biomechanics is an important multidisciplinary field. To date, no bibliometric literature review of the relevant literature has been performed, so we explored the emerging trends, landmark studies, and major contributors to IVD biomechanics research. We searched the Web of Science core collection (1900–2022) using keywords mainly composed of “biomechanics” and “intervertebral disc” to conduct a bibliometric analysis of original papers and their references, focusing on citations, authors, journals, and countries/regions. A co-citation analysis and clustering of the references were also completed. A total of 3189 records met the inclusion criteria. In the co-citation network, cluster #0, labeled as “annulus fibrosus tissue engineering”, and cluster #1, labeled as “micromechanical environment”, were the biggest clusters. References by MacLean et al and Holzapfel et al were positioned exactly between them and had high betweenness centrality. There existed a research topic evolution between mechanobiology and mechanical repair strategies of IVDs, and the latter had been identified as an emerging trend in IVD biomechanics. Numerous landmark studies had contributed to several fields, including mechanical testing of normal and pathological IVDs, mechanical evaluation of new repair strategies and development of finite element model. Adams MA was the author most cited by IVD biomechanics papers. Spine, the European Spine Journal, and the Journal of Biomechanics were the three journals where the most original articles and their references have been published. The United States has contributed most to the literature (n = 1277 papers); however, the research output of China is increasing. In conclusion, the present study suggests that IVD repair is an emerging trend in IVD biomechanics.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Minshan Feng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Liu
- Department of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jie Yu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xu Wei
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kexin Yang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jiawen Zhan
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Peng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Mingyi Luo
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tao Han
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhefeng Jin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - He Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kai Sun
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xunlu Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Xunlu Yin; Liguo Zhu, Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, People’s Republic of China, Email ;
| | - Liguo Zhu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
38
|
Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything You Always Wanted to Know About Organoid-Based Models (and Never Dared to Ask). Cell Mol Gastroenterol Hepatol 2022; 14:311-331. [PMID: 35643188 PMCID: PMC9233279 DOI: 10.1016/j.jcmgh.2022.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Diana Papp
- Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom; Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom.
| |
Collapse
|
39
|
Translational organoid technology – the convergence of chemical, mechanical, and computational biology. Trends Biotechnol 2022; 40:1121-1135. [DOI: 10.1016/j.tibtech.2022.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 01/08/2023]
|
40
|
Vignes H, Vagena-Pantoula C, Vermot J. Mechanical control of tissue shape: Cell-extrinsic and -intrinsic mechanisms join forces to regulate morphogenesis. Semin Cell Dev Biol 2022; 130:45-55. [PMID: 35367121 DOI: 10.1016/j.semcdb.2022.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
During vertebrate development, cells must proliferate, move, and differentiate to form complex shapes. Elucidating the mechanisms underlying the molecular and cellular processes involved in tissue morphogenesis is essential to understanding developmental programmes. Mechanical stimuli act as a major contributor of morphogenetic processes and impact on cell behaviours to regulate tissue shape and size. Specifically, cell extrinsic physical forces are translated into biochemical signals within cells, through the process of mechanotransduction, activating multiple mechanosensitive pathways and defining cell behaviours. Physical forces generated by tissue mechanics and the extracellular matrix are crucial to orchestrate tissue patterning and cell fate specification. At the cell scale, the actomyosin network generates the cellular tension behind the tissue mechanics involved in building tissue. Thus, understanding the role of physical forces during morphogenetic processes requires the consideration of the contribution of cell intrinsic and cell extrinsic influences. The recent development of multidisciplinary approaches, as well as major advances in genetics, microscopy, and force-probing tools, have been key to push this field forward. With this review, we aim to discuss recent work on how tissue shape can be controlled by mechanical forces by focusing specifically on vertebrate organogenesis. We consider the influences of mechanical forces by discussing the cell-intrinsic forces (such as cell tension and proliferation) and cell-extrinsic forces (such as substrate stiffness and flow forces). We review recently described processes supporting the role of intratissue force generation and propagation in the context of shape emergence. Lastly, we discuss the emerging role of tissue-scale changes in tissue material properties, extrinsic forces, and shear stress on shape establishment.
Collapse
Affiliation(s)
- Hélène Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France
| | | | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258 and Université de Strasbourg, Illkirch, France; Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
41
|
Esfahani AM, Minnick G, Rosenbohm J, Zhai H, Jin X, Tajvidi Safa B, Brooks J, Yang R. Microfabricated platforms to investigate cell mechanical properties. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PH. Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioact Mater 2022; 9:316-331. [PMID: 34820573 PMCID: PMC8586441 DOI: 10.1016/j.bioactmat.2021.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/24/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) matrix models using hydrogels are powerful tools to understand and predict cell behavior. The interactions between the cell and its matrix, however is highly complex: the matrix has a profound effect on basic cell functions but simultaneously, cells are able to actively manipulate the matrix properties. This (mechano)reciprocity between cells and the extracellular matrix (ECM) is central in regulating tissue functions and it is fundamentally important to broadly consider the biomechanical properties of the in vivo ECM when designing in vitro matrix models. This manuscript discusses two commonly used biopolymer networks, i.e. collagen and fibrin gels, and one synthetic polymer network, polyisocyanide gel (PIC), which all possess the characteristic nonlinear mechanics in the biological stress regime. We start from the structure of the materials, then address the uses, advantages, and limitations of each material, to provide a guideline for tissue engineers and biophysicists in utilizing current materials and also designing new materials for 3D cell culture purposes.
Collapse
Affiliation(s)
- Kaizheng Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maury Wiendels
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, PR China
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Paul H.J. Kouwer
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
43
|
Zhang M, Meng N, Wang X, Chen W, Zhang Q. TRPV4 and PIEZO Channels Mediate the Mechanosensing of Chondrocytes to the Biomechanical Microenvironment. MEMBRANES 2022; 12:membranes12020237. [PMID: 35207158 PMCID: PMC8874592 DOI: 10.3390/membranes12020237] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023]
Abstract
Articular cartilage and their chondrocytes are physiologically submitted to diverse types of mechanical cues. Chondrocytes produce and maintain the cartilage by sensing and responding to changing mechanical loads. TRPV4 and PIEZOs, activated by mechanical cues, are important mechanosensing molecules of chondrocytes and have pivotal roles in articular cartilage during health and disease. The objective of this review is to introduce the recent progress indicating that the mechanosensitive ion channels, TRPV4 and PIEZOs, are involved in the chondrocyte sensing of mechanical and inflammatory cues. We present a focus on the important role of TRPV4 and PIEZOs in the mechanotransduction regulating diverse chondrocyte functions in the biomechanical microenvironment. The review synthesizes the most recent advances in our understanding of how mechanical stimuli affect various cellular behaviors and functions through differentially activating TRPV4 and PIEZO ion channels in chondrocyte. Advances in understanding the complex roles of TRPV4/PIEZO-mediated mechanosignaling mechanisms have the potential to recapitulate physiological biomechanical microenvironments and design cell-instructive biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Min Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (M.Z.); (N.M.); (X.W.)
| | - Nan Meng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (M.Z.); (N.M.); (X.W.)
| | - Xiaoxiao Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (M.Z.); (N.M.); (X.W.)
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (M.Z.); (N.M.); (X.W.)
- Correspondence: (W.C.); (Q.Z.); Tel.: +86-15364710252 (W.C.); +86-13700500252 (Q.Z.); Fax: +86-0351-3176651 (Q.Z.)
| | - Quanyou Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (M.Z.); (N.M.); (X.W.)
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan 030001, China
- Correspondence: (W.C.); (Q.Z.); Tel.: +86-15364710252 (W.C.); +86-13700500252 (Q.Z.); Fax: +86-0351-3176651 (Q.Z.)
| |
Collapse
|
44
|
Guo Y, Calve S, Tepole AB. Multiscale mechanobiology: Coupling models of adhesion kinetics and nonlinear tissue mechanics. Biophys J 2022; 121:525-539. [PMID: 35074393 PMCID: PMC8874030 DOI: 10.1016/j.bpj.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues, such as fiber alignment and stiffness, as well as exert active stresses needed for wound closure. Here, we develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate that this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette,Paul M. Rady Department of Mechanical Engineering, University of Colorado - Boulder, Boulder
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette; Weldon School of Biomedical Engineering, Purdue University, West Lafayette.
| |
Collapse
|
45
|
Gandin A, Torresan V, Ulliana L, Panciera T, Contessotto P, Citron A, Zanconato F, Cordenonsi M, Piccolo S, Brusatin G. Broadly Applicable Hydrogel Fabrication Procedures Guided by YAP/TAZ-Activity Reveal Stiffness, Adhesiveness, and Nuclear Projected Area as Checkpoints for Mechanosensing. Adv Healthc Mater 2022; 11:e2102276. [PMID: 34825526 DOI: 10.1002/adhm.202102276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Indexed: 11/12/2022]
Abstract
Mechanical signals are pivotal ingredients in how cells perceive and respond to their microenvironments, and to synthetic biomaterials that mimic them. In spite of increasing interest in mechanobiology, probing the effects of physical cues on cell behavior remains challenging for a cell biology laboratory without experience in fabrication of biocompatible materials. Hydrogels are ideal biomaterials recapitulating the physical cues that natural extracellular matrices (ECM) deliver to cells. Here, protocols are streamlined for the synthesis and functionalization of cell adhesive polyacrylamide-based (PAA-OH) and fully-defined polyethyleneglycol-based (PEG-RGD) hydrogels tuned at various rigidities for mechanobiology experiments, from 0.3 to >10 kPa. The mechanosignaling properties of these hydrogels are investigated in distinct cell types by monitoring the activation state of YAP/TAZ. By independently modulating substrate stiffness and adhesiveness, it is found that although ECM stiffness represents an overarching mechanical signal, the density of adhesive sites does impact on cellular mechanosignaling at least at intermediate rigidity values, corresponding to normal and pathological states of living tissues. Using these tools, it is found that YAP/TAZ nuclear accumulation occurs when the projected area of the nucleus surpasses a critical threshold of approximatively 150 µm2 . This work suggests the existence of distinct checkpoints for cellular mechanosensing.
Collapse
Affiliation(s)
- Alessandro Gandin
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| | - Veronica Torresan
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| | - Lorenzo Ulliana
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Tito Panciera
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Paolo Contessotto
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Anna Citron
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | - Francesca Zanconato
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
| | | | - Stefano Piccolo
- Department of Molecular Medicine University of Padova via Ugo Bassi 58/B Padova 35131 Italy
- IFOM the FIRC Institute of Molecular Oncology Milan Italy
| | - Giovanna Brusatin
- Department of Industrial Engineering University of Padova and INSTM via Marzolo 9 Padova 35131 Italy
| |
Collapse
|
46
|
Mailand E, Özelçi E, Kim J, Rüegg M, Chaliotis O, Märki J, Bouklas N, Sakar MS. Tissue Engineering with Mechanically Induced Solid-Fluid Transitions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106149. [PMID: 34648197 PMCID: PMC11468955 DOI: 10.1002/adma.202106149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Epithelia are contiguous sheets of cells that stabilize the shape of internal organs and support their structure by covering their surfaces. They acquire diverse morphological forms appropriate for their specific functions during embryonic development, such as the kidney tubules and the complex branching structures found in the lung. The maintenance of epithelial morphogenesis and homeostasis is controlled by their remarkable mechanics-epithelia can become elastic, plastic, and viscous by actively remodeling cell-cell junctions and modulating the distribution of local stresses. Microfabrication, finite element modelling, light-sheet microscopy, and robotic micromanipulation are used to show that collagen gels covered with an epithelial skin serve as shape-programmable soft matter. The process involves solid to fluid transitions induced by mechanical perturbations, generates spatially distributed surface stresses at tissue interfaces, and is amenable to both additive and subtractive manufacturing techniques. The robustness and versatility of this strategy for engineering designer tissues is demonstrated by directing the morphogenesis of a variety of molded, carved, and assembled forms from the base material. The results provide insight into the active mechanical properties of the epithelia and establish methods for engineering tissues with sustainable architectures.
Collapse
Affiliation(s)
- Erik Mailand
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Ece Özelçi
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Matthias Rüegg
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Odysseas Chaliotis
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Jon Märki
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Mahmut Selman Sakar
- Institute of Mechanical EngineeringEcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| |
Collapse
|
47
|
Wu W, Lois N, Prescott AR, Brown AP, Van Gerwen V, Tassignon MJ, Richards SA, Saunter CD, Jarrin M, Quinlan RA. The importance of the epithelial fibre cell interface to lens regeneration in an in vivo rat model and in a human bag-in-the-lens (BiL) sample. Exp Eye Res 2021; 213:108808. [PMID: 34762932 DOI: 10.1016/j.exer.2021.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Human lens regeneration and the Bag-in-the-Lens (BIL) surgical treatment for cataract both depend upon lens capsule closure for their success. Our studies suggest that the first three days after surgery are critical to their long-term outcomes. Using a rat model of lens regeneration, we evidenced lens epithelial cell (LEC) proliferation increased some 50 fold in the first day before rapidly declining to rates observed in the germinative zone of the contra-lateral, un-operated lens. Cell multi-layering at the lens equator occurred on days 1 and 2, but then reorganised into two discrete layers by day 3. E- and N-cadherin expression preceded cell polarity being re-established during the first week. Aquaporin 0 (AQP0) was first detected in the elongated cells at the lens equator at day 7. Cells at the capsulotomy site, however, behaved very differently expressing the epithelial mesenchymal transition (EMT) markers fibronectin and alpha-smooth muscle actin (SMA) from day 3 onwards. The physical interaction between the apical surfaces of the anterior and posterior LECs from day 3 after surgery preceded cell elongation. In the human BIL sample fibre cell formation was confirmed by both histological and proteome analyses, but the cellular response is less ordered and variable culminating in Soemmerring's ring (SR) formation and sometimes Elschnig's pearls. This we evidence for lenses from a single patient. No bow region or recognisable epithelial-fibre cell interface (EFI) was evident and consequently the fibre cells were disorganised. We conclude that lens cells require spatial and cellular cues to initiate, sustain and produce an optically functional tissue in addition to capsule integrity and the EFI.
Collapse
Affiliation(s)
- Weiju Wu
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK.
| | - Alan R Prescott
- Dundee Imaging Facility & Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Adrian P Brown
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Veerle Van Gerwen
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart TAS, Australia
| | | | - Miguel Jarrin
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK
| | - Roy A Quinlan
- Department of Biosciences, South Road, Durham University, Durham, DH1 3LE, England, UK.
| |
Collapse
|
48
|
Matera DL, Lee AT, Hiraki HL, Baker BM. The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cell Mol Bioeng 2021; 14:381-396. [PMID: 34777599 PMCID: PMC8548490 DOI: 10.1007/s12195-021-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Connective tissue repair and mechanosensing are tightly entwined in vivo and occur within a complex three-dimensional (3D), fibrous extracellular matrix (ECM). Typically driven by activated fibroblasts, wound repair involves well-defined steps of cell spreading, migration, proliferation, and fibrous ECM deposition. While the role of Rho GTPases in regulating these processes has been explored extensively in two-dimensional cell culture models, much less is known about their role in more physiologic, 3D environments. METHODS We employed a 3D, fibrous and protease-sensitive hydrogel model of interstitial ECM to study the interplay between Rho GTPases and fibrous matrix cues in fibroblasts during wound healing. RESULTS Modulating fiber density within protease-sensitive hydrogels, we confirmed previous findings that heightened fiber density promotes fibroblast spreading and proliferation. The presence of matrix fibers furthermore corresponded to increased cell migration speeds and macroscopic hydrogel contraction arising from fibroblast generated forces. During fibroblast spreading, Rac1 and RhoA GTPase activity proved crucial for fiber-mediated cell spreading and contact guidance along matrix fibers, while Cdc42 was dispensable. In contrast, interplay between RhoA, Rac1, and Cdc42 contributed to fiber-mediated myofibroblast differentiation and matrix contraction over longer time scales. CONCLUSION These observations may provide insights into tissue repair processes in vivo and motivate the incorporation of cell-adhesive fibers within synthetic hydrogels for material-guided wound repair strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00698-5.
Collapse
Affiliation(s)
- Daniel L. Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexander T. Lee
- Department of Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Harrison L. Hiraki
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Brendon M. Baker
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
49
|
Uslu FE, Davidson CD, Mailand E, Bouklas N, Baker BM, Sakar MS. Engineered Extracellular Matrices with Integrated Wireless Microactuators to Study Mechanobiology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102641. [PMID: 34363246 PMCID: PMC11481068 DOI: 10.1002/adma.202102641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Mechanobiology explores how forces regulate cell behaviors and what molecular machinery are responsible for the sensing, transduction, and modulation of mechanical cues. To this end, probing of cells cultured on planar substrates has served as a primary experimental setting for many decades. However, native extracellular matrices (ECMs) consist of fibrous protein assemblies where the physical properties spanning from the individual fiber to the network architecture can influence the transmission of forces to and from the cells. Here, a robotic manipulation platform that allows wireless, localized, and programmable deformation of an engineered fibrous ECM is introduced. A finite-element-based digital twin of the fiber network calibrated against measured local and global parameters enables the calculation of deformations and stresses generated by different magnetic actuation schemes across a range of network properties. Physiologically relevant mechanical forces are applied to cells cultured on the fiber network, statically or dynamically, revealing insights into the effects of matrix-borne forces and deformations as well as force-mediated matrix remodeling on cell migration and intracellular signaling. These capabilities are not matched by any existing approach, and this versatile platform has the potential to uncover fundamental mechanisms of mechanobiology in settings with greater relevance to living tissues.
Collapse
Affiliation(s)
- Fazil E. Uslu
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | | | - Erik Mailand
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaNY14850USA
| | - Brendon M. Baker
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Mahmut Selman Sakar
- Institute of Mechanical Engineering and Institute of BioengineeringEcole Polytechnique Fédérale de LausanneLausanneCH‐1015Switzerland
| |
Collapse
|
50
|
Zhao F, Xiong Y, Ito K, van Rietbergen B, Hofmann S. Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering. Front Bioeng Biotechnol 2021; 9:736489. [PMID: 34595161 PMCID: PMC8476750 DOI: 10.3389/fbioe.2021.736489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent - assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|