1
|
Cheng HH, Roggeveen JV, Wang H, Stone HA, Shi Z, Brangwynne CP. Micropipette aspiration reveals differential RNA-dependent viscoelasticity of nucleolar subcompartments. Proc Natl Acad Sci U S A 2025; 122:e2407423122. [PMID: 40434645 DOI: 10.1073/pnas.2407423122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/08/2025] [Indexed: 05/29/2025] Open
Abstract
The nucleolus is a multiphasic biomolecular condensate that facilitates ribosome biogenesis, a complex process involving hundreds of proteins and RNAs. The proper execution of ribosome biogenesis likely depends on the material properties of the nucleolus. However, these material properties remain poorly understood due to the challenges of in vivo measurements. Here, we use micropipette aspiration (MPA) to directly characterize the viscoelasticity and interfacial tensions of nucleoli within transcriptionally active Xenopus laevis oocytes. We examine the major nucleolar subphases, the outer granular component (GC) and the inner dense fibrillar component (DFC), which itself contains a third small phase known as the fibrillar center (FC). We show that the behavior of the GC is more liquid-like, while the behavior of the DFC/FC is consistent with that of a partially viscoelastic solid. To determine the role of ribosomal RNA in nucleolar material properties, we degrade RNA using RNase A, which causes the DFC/FC to become more fluid-like and alters interfacial tension. Together, our findings suggest that RNA underlies the partially solid-like properties of the DFC/FC and provide insights into how material properties of nucleoli in a near-native environment are related to their RNA-dependent function.
Collapse
Affiliation(s)
- Holly H Cheng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - James V Roggeveen
- Department of Mechanical and Aerospace Engineering, Princeton, NJ 08544
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton, NJ 08544
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854
| | - Clifford P Brangwynne
- Princeton Materials Institute, Princeton University, Princeton, NJ 08544
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton NJ 08544
- HHMI, Chevy Chase, MD 21044
| |
Collapse
|
2
|
Amari C, Simon D, Pasquier E, Bellon T, Plamont MA, Souquere S, Pierron G, Salvaing J, Thiam AR, Gueroui Z. Controlling lipid droplet dynamics via tether condensates. Nat Chem Biol 2025:10.1038/s41589-025-01915-2. [PMID: 40399584 DOI: 10.1038/s41589-025-01915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 04/18/2025] [Indexed: 05/23/2025]
Abstract
Lipid droplets (LDs) are dynamic cellular organelles that regulate lipid metabolism and various cellular processes. Their functionality relies on a dynamic proteome and precise spatiotemporal interactions with other organelles, making LD biology highly complex. Tools that enable the sequestration and release of LDs within their intracellular environment could synchronize their behavior, providing deeper insights into their functions. To address this need, we developed Controlled Trapping of LDs (ControLD), a new method for manipulating LD dynamics. This approach uses engineered condensates to reversibly sequester LDs, temporarily halting their activity. Upon release, the LDs resume their normal functions. ControLD effectively disrupts LD remobilization during metabolic demands and prevents the formation of LD-mitochondria contact sites, which are re-established upon condensate dissociation. ControLD represents a powerful tool for advancing the study of LD biology and opens avenues for investigating and manipulating other cellular organelles.
Collapse
Affiliation(s)
- Chems Amari
- CPCV, Department of Chemistry, ENS, PSL University, Sorbonne Université, CNRS, Paris, France
- LPCV, Université Grenoble-Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Damien Simon
- CPCV, Department of Chemistry, ENS, PSL University, Sorbonne Université, CNRS, Paris, France
- Department of Physics, ENS, PSL University, Sorbonne Université, CNRS, Université Paris Cité, Paris, France
| | - Emma Pasquier
- CPCV, Department of Chemistry, ENS, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Theodore Bellon
- CPCV, Department of Chemistry, ENS, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marie-Aude Plamont
- CPCV, Department of Chemistry, ENS, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Sylvie Souquere
- AMMICA UMS-3655, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Gérard Pierron
- CNRS UMR-9196, Institut Gustave Roussy, Villejuif, France
| | | | - Abdou Rachid Thiam
- Department of Physics, ENS, PSL University, Sorbonne Université, CNRS, Université Paris Cité, Paris, France.
| | - Zoher Gueroui
- CPCV, Department of Chemistry, ENS, PSL University, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
3
|
Liang Y, Zhu Z, Lu Y, Ma C, Li J, Yu K, Wu J, Che X, Liu X, Huang X, Li P, Chen FJ. Cytoskeleton regulates lipid droplet fusion and lipid storage by controlling lipid droplet movement. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159610. [PMID: 40189192 DOI: 10.1016/j.bbalip.2025.159610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/13/2025]
Abstract
Lipid droplets (LDs) are highly dynamic organelles that maintain cellular lipid homeostasis through size and number control. In adipose tissue, CIDEC plays a crucial role in LD fusion and lipid homeostasis. However, the regulatory factors and mechanisms of LD fusion remain largely unknown. Here, we established a high-throughput LD phenotypic screen on a compound library consisting of 2010 small molecules, and identified 11 cytoskeleton inhibitors that negatively regulate LD size. Using specific inhibitors against each of the three types of cytoskeleton, our data showed that the disruption of microtubules and microfilaments but not intermediate filaments limits CIDEC-mediated LD fusion and growth by reducing LD movement and LD-LD contact. The collective effect of microtubule inhibitors results in a small LD phenotype which favors lipolysis upon activation of cAMP-PKA pathway in adipocytes. Our findings demonstrate that cytoskeleton is involved in the process of LD fusion and growth, indicating their role in lipid storage metabolism. One-Sentence Summary: Cytoskeleton regulates lipid droplet fusion and lipid storage.
Collapse
Affiliation(s)
- Yan Liang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zanzan Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Yiming Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chengxin Ma
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jiacheng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Kuan Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Jin Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xinmeng Che
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xu Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiaoxiao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Qi Zhi Institute, Shanghai 200030, China.
| |
Collapse
|
4
|
Li Q, Zhou X, Zhang X, Zhang C, Zhang SO. Nuclear receptor signaling regulates compartmentalized phosphatidylcholine remodeling to facilitate thermosensitive lipid droplet fusion. Nat Commun 2025; 16:3955. [PMID: 40289189 PMCID: PMC12034805 DOI: 10.1038/s41467-025-59256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Lipid droplet (LD) fusion plays a key role in cellular fat storage. How the phospholipid monolayer membrane of LD functions in fusion, however, is poorly understood. In Caenorhabditis elegans, loss of cytochrome P450 protein CYP-37A1 causes de-repression of nuclear receptor DAF-12, promoting thermosensitive LD fusion. Here, we report that in cyp-37A1 mutants, DAF-12 up-regulates the transcription and LD localization of seven fatty acid desaturases (FAT-1 to FAT-7) and a lysophosphatidylcholine acyltransferase 3 (LPCAT3) homolog MBOA-6. LD-targeting of these enzymes increases phosphatidylcholine (PC) containing ω-3 C20 polyunsaturated fatty acids, which are essential for thermosensitive fusion. ω-3 C20-PC increase LD membrane fluidity, as does high ambient temperature. Lowering LD membrane fluidity by a chemical membrane rigidifier attenuates thermosensitive fusion; ectopic targeting of ω3 desaturase FAT-1 or MBOA-6 to LDs increases fusion kinetics and thermosensitivity. Furthermore, human LPCAT3 localizes to LDs, positively regulates LD size in human cells and facilitates thermosensitive fusion in C. elegans. These results demonstrate that DAF-12 signaling regulates compartmentalized membrane remodeling and fluidization to facilitate conserved thermosensitive LD fusion.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaofang Zhou
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaocong Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Chuqi Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China
| | - Shaobing O Zhang
- Laboratory of Metabolic Genetics, College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
5
|
Lu Y, Zhu Z, Wang J, Lyu X, Li P, Chen FJ. Protocol for in vitro phase separation of N terminus of CIDEC proteins. STAR Protoc 2025; 6:103779. [PMID: 40232936 PMCID: PMC12022687 DOI: 10.1016/j.xpro.2025.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/22/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025] Open
Abstract
Cell death-inducing DFF45-like effector C (CIDEC) condensation through N-terminal phase separation is a prerequisite for CIDEC-mediated lipid droplet (LD) fusion and lipid storage promotion. Here, we present a protocol for in vitro phase separation of the N terminus of CIDEC (CIDEC-N) proteins. We describe steps for plasmid construction, protein expression, and purification. We then detail procedures for concentration detection and in vitro phase separation. This protocol provides a framework to investigate CIDEC-N phase separation properties, laying the foundation for further exploration of its role in lipid metabolism and obesity. For complete details on the use and execution of this protocol, please refer to Lyu et al.1.
Collapse
Affiliation(s)
- Yiming Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Zanzan Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Jianqin Wang
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuchao Lyu
- insitro inc., South San Francisco, CA, USA
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China; State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, State Key Laboratory of Genetics and Development of Complex Phenotypes, Institute of Metabolism and Integrative Biology, School of Life Sciences, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| |
Collapse
|
6
|
Chen H, Han Z, Wang S, Zhu M, Wang L, Lin Y, Wang X, Zhang Y, Wang W, Li M, Liu X, Mann S, Huang X. Droplet-supported liquid-liquid lateral phase separation as a step to floating protein heterostructures. Nat Commun 2025; 16:1897. [PMID: 39988593 PMCID: PMC11847946 DOI: 10.1038/s41467-025-57141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025] Open
Abstract
Liquid-liquid phase separation plays an important role in many natural and technological processes. Herein, we implement lateral microphase separation at the surface of oil micro-droplets suspended in water to prepare a range of discrete floating protein/polymer continuous two-dimensional (2D) heterostructures with variable interfacial domain structures and dynamics. We show that gel-like domains of bovine serum albumin (BSA) co-exist with fluid-like polyvinyl alcohol (PVA) regions at the oil droplet surface to produce floating heterostructures comprising a 2D phase-separated protein mesh or an array of discrete mobile protein rafts depending on the conditions employed. Enzymes are embedded in the discontinuous BSA domains to produce droplet-supported microphase-separated 2D reaction scaffolds that can be tuned for interfacial catalysis. Taken together, our work has general implications for the structural and functional augmentation of oil droplet interfaces and contributes to the surface engineering and functionality of droplet-based micro-reactors.
Collapse
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Mei Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yide Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Urban Water Resource and Environments, Harbin Institute of Technology, Harbin, China
| | - Mei Li
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Stephen Mann
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
7
|
Zhu Q, Luo D, Li Y, Yu L, Zhang Z, Ouyang F, Li L, Lu M, Hu C, Dong Y, Ma C, Liang Y, Zhao TJ, Chen FJ, Li P, Yang TS. CIDEC/FSP27 exacerbates obesity-related abdominal aortic aneurysm by promoting perivascular adipose tissue inflammation. LIFE METABOLISM 2025; 4:loae035. [PMID: 39872985 PMCID: PMC11770823 DOI: 10.1093/lifemeta/loae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 01/30/2025]
Abstract
Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive. Here, we show that FSP27 exacerbates obesity and angiotensin Ⅱ (Ang Ⅱ)-induced AAA progression. FSP27 deficiency in mice inhibited high-fat diet-induced PVAT expansion and inflammation. Both global and adipose tissue-specific FSP27 ablation significantly decreased obesity-related AAA incidence. Deficiency of FSP27 in adipocytes abrogated matrix metalloproteinase-12 (MMP12) expression in aortic tissues. Infiltrated macrophages, which partially colocalize with MMP12, were significantly decreased in the FSP27-deficient aorta. Mechanistically, knockdown of Fsp27 in 3T3-L1 adipocytes inhibited C-C motif chemokine ligand 2 (CCL2) expression and secretion through a c-Jun N-terminal kinase (JNK)-dependent pathway, thereby leading to reduced induction of macrophage migration, while Cidec overexpression rescued this effect. Overall, our study demonstrates that CIDEC/FSP27 in adipose tissue contributes to obesity-related AAA formation, at least in part, by enhancing PVAT inflammation and macrophage infiltration, thus shedding light on its significance as a key regulator in the context of obesity-related AAA.
Collapse
Affiliation(s)
- Qing Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Da Luo
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Yining Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Liyang Yu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100086, China
| | - Zixuan Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Feng Ouyang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Liangkui Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100086, China
| | - Manxi Lu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Changyong Hu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yinuo Dong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Chengxin Ma
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Yan Liang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100086, China
- School of Life Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tian-Shu Yang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
9
|
Kong L, Bai Q, Li C, Wang Q, Wang Y, Shao X, Wei Y, Sun J, Yu Z, Yin J, Shi B, Fang H, Chen X, Chen Q. Molecular probes for tracking lipid droplet membrane dynamics. Nat Commun 2024; 15:9413. [PMID: 39482302 PMCID: PMC11528070 DOI: 10.1038/s41467-024-53667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Lipid droplets (LDs) feature a unique monolayer lipid membrane that has not been extensively studied due to the lack of suitable molecular probes that are able to distinguish this membrane from the LD lipid core. In this work, we present a three-pronged molecular probe design strategy that combines lipophilicity-based organelle targeting with microenvironment-dependent activation and design an LD membrane labeling pro-probe called LDM. Upon activation by the HClO/ClO- microenvironment that surrounds LDs, LDM pro-probe releases LDM-OH probe that binds to LD membrane proteins thus enabling visualization of the ring-like LD membrane. By utilizing LDM, we identify the dynamic mechanism of LD membrane contacts and their protein accumulation parameters. Taken together, LDM represents the first molecular probe for imaging LD membranes in live cells to the best of our knowledge, and represents an attractive tool for further investigations into the specific regulatory mechanisms with LD-related metabolism diseases and drug screening.
Collapse
Affiliation(s)
- Lingxiu Kong
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Qingjie Bai
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Cuicui Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| | - Qiqin Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yanfeng Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Xintian Shao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Neck-Shoulder and Lumbocrural Pain Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Yongchun Wei
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Jiarao Sun
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Zhenjie Yu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Junling Yin
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Bin Shi
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Neck-Shoulder and Lumbocrural Pain Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Hongbao Fang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Qixin Chen
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
10
|
Zhu M, Xu H, Jin Y, Kong X, Xu B, Liu Y, Yu H. Synaptotagmin-1 undergoes phase separation to regulate its calcium-sensitive oligomerization. J Cell Biol 2024; 223:e202311191. [PMID: 38980206 PMCID: PMC11232894 DOI: 10.1083/jcb.202311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yulei Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoxu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Jia L, Zhang W, Luo T, Li Y, Shu J, Strand J, Yue Y, Purup S, Liu J, Shi H. Establishment of goat mammary organoid cultures modeling the mammary gland development and lactation. J Anim Sci Biotechnol 2024; 15:124. [PMID: 39350237 PMCID: PMC11443931 DOI: 10.1186/s40104-024-01084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Although several cell culture systems have been developed to investigate the function of the mammary gland in dairy livestock, they have potential limitations, such as the loss of alveolar structure or genetic and phenotypic differences from their native counterparts. Overcoming these challenges is crucial for lactation research. Development of protocols to establish lactating organoid of livestock represents a promising goal for the future. In this study, we developed a protocol to establish a culture system for mammary organoids in dairy goats to model the mammary gland development and lactation process. RESULTS The organoids cultured within an extracellular matrix gel maintained a bilayer structure that closely resembled the native architecture of mammary tissue. The expansion of mammary organoids was significantly promoted by growth factors containing epidermal growth factor and fibroblast growth factor 2 whereas the proliferative index of the organoids was significantly inhibited by the treatment with WNT inhibitors. Upon stimulation with a lactogenic medium containing prolactin, the mammary organoids exhibited efficient lactation, characterized by the accumulation of lipid droplets in the lumen space. The lactation could be sustained for more than 3 weeks. Importantly, the expression patterns of genes related to fatty acid synthesis and milk proteins in lactating organoids closely mirrored those observed in mammary tissues. These observations were confirmed by data from proteomic analysis that the bulk of milk proteins was produced in the lactating organoids. CONCLUSION This study is the first to establish a mammary organoid culture system modeling the mammary gland development and lactation process in ruminants. The efficient induction of lactation in ruminant mammary organoids holds promises for advancing the field of cell-based milk bio-manufacture in the food industry.
Collapse
Affiliation(s)
- Lei Jia
- Zhejiang Key Laboratory of Cow Genetic Improvement & Milk Quality Research, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenying Zhang
- Zhejiang Key Laboratory of Cow Genetic Improvement & Milk Quality Research, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Luo
- Zhejiang Key Laboratory of Cow Genetic Improvement & Milk Quality Research, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongtao Li
- Zhejiang Key Laboratory of Cow Genetic Improvement & Milk Quality Research, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Julie Strand
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, DK-8830, Denmark
| | - Yuan Yue
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, DK-8830, Denmark
| | - Stig Purup
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, DK-8830, Denmark
| | - Jianxin Liu
- Zhejiang Key Laboratory of Cow Genetic Improvement & Milk Quality Research, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengbo Shi
- Zhejiang Key Laboratory of Cow Genetic Improvement & Milk Quality Research, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
13
|
Heikelä H, Mairinoja L, Ruohonen ST, Rytkönen KT, de Brot S, Laiho A, Koskinen S, Suomi T, Elo LL, Strauss L, Poutanen M. Disruption of HSD17B12 in mouse hepatocytes leads to reduced body weight and defect in the lipid droplet expansion associated with microvesicular steatosis. FASEB J 2024; 38:e70034. [PMID: 39248019 DOI: 10.1096/fj.202400333rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
The function of hydroxysteroid dehydrogenase 12 (HSD17B12) in lipid metabolism is poorly understood. To study this further, we created mice with hepatocyte-specific knockout of HSD17B12 (LiB12cKO). From 2 months on, these mice showed significant fat accumulation in their liver. As they aged, they also had a reduced whole-body fat percentage. Interestingly, the liver fat accumulation did not result in the typical formation of large lipid droplets (LD); instead, small droplets were more prevalent. Thus, LiB12KO liver did not show increased macrovesicular steatosis with the increasing fat content, while microvesicular steatosis was the predominant feature in the liver. This indicates a failure in the LD expansion. This was associated with liver damage, presumably due to lipotoxicity. Notably, the lipidomics data did not support an essential role of HSD17B12 in fatty acid (FA) elongation. However, we did observe a decrease in the quantity of specific lipid species that contain FAs with carbon chain lengths of 18 and 20 atoms, including oleic acid. Of these, phosphatidylcholine and phosphatidylethanolamine have been shown to play a key role in LD formation, and a limited amount of these lipids could be part of the mechanism leading to the dysfunction in LD expansion. The increase in the Cidec expression further supported the deficiency in LD expansion in the LiB12cKO liver. This protein is crucial for the fusion and growth of LDs, along with the downregulation of several members of the major urinary protein family of proteins, which have recently been shown to be altered during endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hanna Heikelä
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Mairinoja
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kalle T Rytkönen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Leena Strauss
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Kamatar A, Bravo JPK, Yuan F, Wang L, Lafer EM, Taylor DW, Stachowiak JC, Parekh SH. Lipid droplets as substrates for protein phase separation. Biophys J 2024; 123:1494-1507. [PMID: 38462838 PMCID: PMC11163294 DOI: 10.1016/j.bpj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by reducing dimensionality from three to two dimensions, lipid bilayers can nucleate phase separation at far lower concentrations compared with those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that the model disordered domains FUS LC and LAF-1 RGG separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF-1 RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
Collapse
Affiliation(s)
- Advika Kamatar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Feng Yuan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas; Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, Texas; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas; LIVESTRONG Cancer Institutes, Dell Medical School, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas.
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
15
|
Xu L, Li L, Wu L, Li P, Chen FJ. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS Lett 2024; 598:1154-1169. [PMID: 38355218 DOI: 10.1002/1873-3468.14823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
The cell death-inducing DFF45-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec/Fsp27, regulate various aspects of lipid homeostasis, including lipid storage, lipolysis, and lipid secretion. This review focuses on the physiological roles of CIDE proteins based on studies on knockout mouse models and human patients bearing CIDE mutations. The primary cellular function of CIDE proteins is to localize to lipid droplets (LDs) and to control LD fusion and growth across different cell types. We propose a four-step process of LD fusion, characterized by (a) the recruitment of CIDE proteins to the LD surface and CIDE movement, (b) the enrichment and condensate formation of CIDE proteins to form LD fusion plates at LD-LD contact sites, (c) lipid transfer through lipid-permeable passageways within the fusion plates, and (d) the completion of LD fusion. Lastly, we outline CIDE-interacting proteins as regulatory factors, as well as their contribution in LD fusion.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lizhen Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lingzhi Wu
- College of Future Technology, Peking University, Beijing, China
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, China
| | - Feng-Jung Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Dudka W, Salo VT, Mahamid J. Zooming into lipid droplet biology through the lens of electron microscopy. FEBS Lett 2024; 598:1127-1142. [PMID: 38726814 DOI: 10.1002/1873-3468.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Electron microscopy (EM), in its various flavors, has significantly contributed to our understanding of lipid droplets (LD) as central organelles in cellular metabolism. For example, EM has illuminated that LDs, in contrast to all other cellular organelles, are uniquely enclosed by a single phospholipid monolayer, revealed the architecture of LD contact sites with different organelles, and provided near-atomic resolution maps of key enzymes that regulate neutral lipid biosynthesis and LD biogenesis. In this review, we first provide a brief history of pivotal findings in LD biology unveiled through the lens of an electron microscope. We describe the main EM techniques used in the context of LD research and discuss their current capabilities and limitations, thereby providing a foundation for utilizing suitable EM methodology to address LD-related questions with sufficient level of structural preservation, detail, and resolution. Finally, we highlight examples where EM has recently been and is expected to be instrumental in expanding the frontiers of LD biology.
Collapse
Affiliation(s)
- Wioleta Dudka
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology and Biophysics Unit, EMBL, Heidelberg, Germany
| |
Collapse
|
17
|
Griseti E, Bello AA, Bieth E, Sabbagh B, Iacovoni JS, Bigay J, Laurell H, Čopič A. Molecular mechanisms of perilipin protein function in lipid droplet metabolism. FEBS Lett 2024; 598:1170-1198. [PMID: 38140813 DOI: 10.1002/1873-3468.14792] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.
Collapse
Affiliation(s)
- Elena Griseti
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Abdoul Akim Bello
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Eric Bieth
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
- Departement de Génétique Médicale, Centre Hospitalier Universitaire de Toulouse, France
| | - Bayane Sabbagh
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| | - Jason S Iacovoni
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire - IPMC, Université Côte d'Azur, CNRS, Valbonne, France
| | - Henrik Laurell
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier - CRBM, Université de Montpellier, CNRS, France
| |
Collapse
|
18
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
19
|
Xu N, Qiao Q, Fang X, Wang G, An K, Jiang W, Li J, Xu Z. Solvatochromic Buffering Fluorescent Probe Resolves the Lipid Transport and Morphological Changes during Lipid Droplet Fusion by Super-Resolution Imaging. Anal Chem 2024; 96:4709-4715. [PMID: 38457637 DOI: 10.1021/acs.analchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The varied functions of lipid droplets, which encompass the regulation of lipid and energy homeostasis, as well as their association with the occurrence of various metabolic diseases, are intricately linked to their dynamic properties. Super-resolution imaging techniques have emerged to decipher physiological processes and molecular mechanisms on the nanoscale. However, achieving long-term dynamic super-resolution imaging faces challenges due to the need for fluorescent probes with high photostability. This paper introduces LD-CF, a "buffering probe" for imaging lipid droplet dynamics using structured illumination microscopy (SIM). The polarity-sensitive LD-CF eliminates background fluorescence with a "cyan filter" strategy, enabling wash-free imaging of lipid droplets. In the fluorescent "off" state outside droplets, the probes act as a "buffering pool", replacing photobleached probes inside droplets and enabling photostable long-term SIM imaging. With this probe, three modes of lipid droplet fusion were observed, including the discovery of fusion from large to small lipid droplets. Fluorescence intensity tracking also revealed the direction of lipid transport during the lipid droplet fusion.
Collapse
Affiliation(s)
- Ning Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kai An
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenchao Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
20
|
Mathiowetz AJ, Olzmann JA. Lipid droplets and cellular lipid flux. Nat Cell Biol 2024; 26:331-345. [PMID: 38454048 PMCID: PMC11228001 DOI: 10.1038/s41556-024-01364-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
Collapse
Affiliation(s)
- Alyssa J Mathiowetz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Fu Y, Ding B, Liu X, Zhao S, Chen F, Li L, Zhu Y, Zhao J, Yuan Z, Shen Y, Yang C, Shao M, Chen S, Bickel PE, Zhong Q. Qa-SNARE syntaxin 18 mediates lipid droplet fusion with SNAP23 and SEC22B. Cell Discov 2023; 9:115. [PMID: 37989733 PMCID: PMC10663520 DOI: 10.1038/s41421-023-00613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/08/2023] [Indexed: 11/23/2023] Open
Abstract
Lipid droplets (LDs) are dynamic lipid storage organelles that can sense and respond to changes in systemic energy balance. The size and number of LDs are controlled by complex and delicate mechanisms, among which, whether and which SNARE proteins mediate LD fusion, and the mechanisms governing this process remain poorly understood. Here we identified a SNARE complex, syntaxin 18 (STX18)-SNAP23-SEC22B, that is recruited to LDs to mediate LD fusion. STX18 targets LDs with its transmembrane domain spanning the phospholipid monolayer twice. STX18-SNAP23-SEC22B complex drives LD fusion in adiposome lipid mixing and content mixing in vitro assays. CIDEC/FSP27 directly binds STX18, SEC22B, and SNAP23, and promotes the lipid mixing of SNAREs-reconstituted adiposomes by promoting LD clustering. Knockdown of STX18 in mouse liver via AAV resulted in smaller liver and reduced LD size under high-fat diet conditions. All these results demonstrate a critical role of the SNARE complex STX18-SNAP23-SEC22B in LD fusion.
Collapse
Affiliation(s)
- Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binbin Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shangang Zhao
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Division of Endocrinology and Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jingxuan Zhao
- MedChem Service Unit of Shanghai Haoyuan Chemexpress Co., Ltd., Shanghai, China
| | - Zhen Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yafeng Shen
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofeng Yang
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Guo Y, Liu F, Guo Y, Qu Y, Zhang Z, Yao J, Xu J, Li J. Untargeted Lipidomics Analysis Unravels the Different Metabolites in the Fat Body of Mated Bumblebee ( Bombus terrestris) Queens. Int J Mol Sci 2023; 24:15408. [PMID: 37895088 PMCID: PMC10607666 DOI: 10.3390/ijms242015408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The fat body has important functions in energy, fertility, and immunity. In female insects, mating stimulates physiological, behavioral, and gene expression changes. However, it remains unclear whether the metabolites in the fat body are affected after the bumblebee (Bombus terrestris) queen mates. Here, the ultrastructure and lipid metabolites in fat body of mated queens were compared with those of virgins. The fat body weight of mated bumblebee queens was significantly increased, and the adipocytes were filled with lipid droplets. Using LC-MS/MS-based untargeted lipidomics, 949 and 748 differential metabolites were identified in the fat body of virgin and mated bumblebee queens, respectively, in positive and negative ion modes. Most lipid metabolites were decreased, especially some biomembrane components. In order to explore the relationship between the structures of lipid droplets and metabolite accumulation, transmission electron microscopy and fluorescence microscopy were used to observe the fat body ultrastructure. The size/area of lipid droplets was larger, and the fusion of lipid droplets was increased in the mated queen's fat body. These enlarged lipid droplets may store more energy and nutrients. The observed differences in lipid metabolites in the fat body of queens contribute to understanding the regulatory network of bumblebees post mating.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jilian Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.G.); (F.L.); (Y.G.); (Y.Q.); (Z.Z.); (J.Y.); (J.X.)
| |
Collapse
|
23
|
Ivanovska IL, Tobin MP, Bai T, Dooling LJ, Discher DE. Small lipid droplets are rigid enough to indent a nucleus, dilute the lamina, and cause rupture. J Cell Biol 2023; 222:e202208123. [PMID: 37212777 PMCID: PMC10202833 DOI: 10.1083/jcb.202208123] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/24/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
The nucleus in many cell types is a stiff organelle, but fat-filled lipid droplets (FDs) in cytoplasm are seen to indent and displace the nucleus. FDs are phase-separated liquids with a poorly understood interfacial tension γ that determines how FDs interact with other organelles. Here, micron-sized FDs remain spherical as they indent peri-nuclear actomyosin and the nucleus, while causing local dilution of Lamin-B1 independent of Lamin-A,C and sometimes triggering nuclear rupture. Focal accumulation of the cytosolic DNA sensor cGAS at the rupture site is accompanied by sustained mislocalization of DNA repair factors to cytoplasm, increased DNA damage, and delayed cell cycle. Macrophages show FDs and engulfed rigid beads cause similar indentation dilution. Spherical shapes of small FDs indicate a high γ, which we measure for FDs mechanically isolated from fresh adipose tissue as ∼40 mN/m. This value is far higher than that of protein condensates, but typical of oils in water and sufficiently rigid to perturb cell structures including nuclei.
Collapse
Affiliation(s)
- Irena L. Ivanovska
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Tobin
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyi Bai
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence J. Dooling
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E. Discher
- Molecular and Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
25
|
Ma B, Ju A, Zhang S, An Q, Xu S, Liu J, Yu L, Fu Y, Luo Y. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal Transduct Target Ther 2023; 8:229. [PMID: 37321990 PMCID: PMC10272166 DOI: 10.1038/s41392-023-01437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Hepatic mitochondrial dysfunction contributes to the progression of nonalcoholic fatty liver disease (NAFLD). However, the factors that maintain mitochondrial homeostasis, especially in hepatocytes, are largely unknown. Hepatocytes synthesize various high-level plasma proteins, among which albumin is most abundant. In this study, we found that pre-folding albumin in the cytoplasm is completely different from folded albumin in the serum. Mechanistically, endogenous pre-folding albumin undergoes phase transition in the cytoplasm to form a shell-like spherical structure, which we call the "albumosome". Albumosomes interact with and trap pre-folding carnitine palmitoyltransferase 2 (CPT2) in the cytoplasm. Albumosomes control the excessive sorting of CPT2 to the mitochondria under high-fat-diet-induced stress conditions; in this way, albumosomes maintain mitochondrial homeostasis from exhaustion. Physiologically, albumosomes accumulate in hepatocytes during murine aging and protect the livers of aged mice from mitochondrial damage and fat deposition. Morphologically, mature albumosomes have a mean diameter of 4μm and are surrounded by heat shock protein Hsp90 and Hsp70 family proteins, forming a larger shell. The Hsp90 inhibitor 17-AAG promotes hepatic albumosomal accumulation in vitro and in vivo, through which suppressing the progression of NAFLD in mice.
Collapse
Affiliation(s)
- Boyuan Ma
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Anji Ju
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Shaosen Zhang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qi An
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Siran Xu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Jie Liu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Immunogenetics Laboratory, Shenzhen Blood Center, 518025, Shenzhen, Guangdong, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
26
|
Ganeva I, Lim K, Boulanger J, Hoffmann PC, Muriel O, Borgeaud AC, Hagen WJH, Savage DB, Kukulski W. The architecture of Cidec-mediated interfaces between lipid droplets. Cell Rep 2023; 42:112107. [PMID: 36800289 PMCID: PMC9989828 DOI: 10.1016/j.celrep.2023.112107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Lipid droplets (LDs) are intracellular organelles responsible for storing surplus energy as neutral lipids. Their size and number vary enormously. In white adipocytes, LDs can reach 100 μm in diameter, occupying >90% of the cell. Cidec, which is strictly required for the formation of large LDs, is concentrated at interfaces between adjacent LDs and facilitates directional flux of neutral lipids from the smaller to the larger LD. The mechanism of lipid transfer is unclear, in part because the architecture of interfaces between LDs remains elusive. Here we visualize interfaces between LDs by electron cryo-tomography and analyze the kinetics of lipid transfer by quantitative live fluorescence microscopy. We show that transfer occurs through closely apposed monolayers, is slowed down by increasing the distance between the monolayers, and follows exponential kinetics. Our data corroborate the notion that Cidec facilitates pressure-driven transfer of neutral lipids through two "leaky" monolayers between LDs.
Collapse
Affiliation(s)
- Iva Ganeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Patrick C Hoffmann
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Olivia Muriel
- Electron Microscopy Facility, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Alicia C Borgeaud
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Wanda Kukulski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
27
|
Qian K, Tol MJ, Wu J, Uchiyama LF, Xiao X, Cui L, Bedard AH, Weston TA, Rajendran PS, Vergnes L, Shimanaka Y, Yin Y, Jami-Alahmadi Y, Cohn W, Bajar BT, Lin CH, Jin B, DeNardo LA, Black DL, Whitelegge JP, Wohlschlegel JA, Reue K, Shivkumar K, Chen FJ, Young SG, Li P, Tontonoz P. CLSTN3β enforces adipocyte multilocularity to facilitate lipid utilization. Nature 2023; 613:160-168. [PMID: 36477540 PMCID: PMC9995219 DOI: 10.1038/s41586-022-05507-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3β) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3β is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3β have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3β is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3β associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3β-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus J Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin Wu
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Lauren F Uchiyama
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liujuan Cui
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander H Bedard
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas A Weston
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pradeep S Rajendran
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuta Shimanaka
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yesheng Yin
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bryce T Bajar
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benita Jin
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laura A DeNardo
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feng-Jung Chen
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Stephen G Young
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peng Li
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Coumarin-based two-photon AIE fluorophores: Photophysical properties and biological application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discov 2022; 8:60. [PMID: 35764611 PMCID: PMC9240053 DOI: 10.1038/s41421-022-00426-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
As a critical node for insulin/IGF signaling, insulin receptor substrate 1 (IRS-1) is essential for metabolic regulation. A long and unstructured C-terminal region of IRS-1 recruits downstream effectors for promoting insulin/IGF signals. However, the underlying molecular basis for this remains elusive. Here, we found that the C-terminus of IRS-1 undergoes liquid-liquid phase separation (LLPS). Both electrostatic and hydrophobic interactions were seen to drive IRS-1 LLPS. Self-association of IRS-1, which was mainly mediated by the 301–600 region, drives IRS-1 LLPS to form insulin/IGF-1 signalosomes. Moreover, tyrosine residues of YXXM motifs, which recruit downstream effectors, also contributed to IRS-1 self-association and LLPS. Impairment of IRS-1 LLPS attenuated its positive effects on insulin/IGF-1 signaling. The metabolic disease-associated G972R mutation impaired the self-association and LLPS of IRS-1. Our findings delineate a mechanism in which LLPS of IRS-1-mediated signalosomes serves as an organizing center for insulin/IGF-1 signaling and implicate the role of aberrant IRS-1 LLPS in metabolic diseases.
Collapse
|
30
|
Wang Z, Lou J, Zhang H. Essence determines phenomenon: Assaying the material properties of biological condensates. J Biol Chem 2022; 298:101782. [PMID: 35245500 PMCID: PMC8958544 DOI: 10.1016/j.jbc.2022.101782] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Intracellular spaces are partitioned into separate compartments to ensure that numerous biochemical reactions and cellular functions take place in a spatiotemporally controlled manner. Biomacromolecules including proteins and RNAs undergo liquid–liquid phase separation and subsequent phase transition to form biological condensates with diverse material states. The material/physical properties of biological condensates are crucial for fulfilling their distinct physiological functions, and abnormal material properties can cause deleterious effects under pathological conditions. Here, we review recent studies showing the role of the material properties of biological condensates in their physiological functions. We also summarize several classic methods as well as newly emerging techniques for characterization and/or measurement of the material properties of biological condensates.
Collapse
Affiliation(s)
- Zheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|