1
|
Wang Z, Peng Q, Zhang Z, You X, Duan H, Sha R, Yuan N, Li Z, Xie Z, Han J, Feng Y. SRSF1 Is Crucial for Maintaining Satellite Cell Homeostasis During Skeletal Muscle Growth and Regeneration. J Cachexia Sarcopenia Muscle 2024; 15:2629-2641. [PMID: 39381961 PMCID: PMC11634495 DOI: 10.1002/jcsm.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The splicing factor SRSF1 emerges as a mater regulator of cell proliferation, displaying high expression in actively proliferative satellite cells (SCs). In SRSF1 knockout mice (KO) generated via MyoD-Cre, early mortality and muscle atrophy are observed during postnatal muscle growth. Despite these findings, the precise mechanisms through which SRSF1 loss influences SCs' functions and its role in muscle regeneration remain to be elucidated. METHODS To unravel the exact mechanisms underlying the impact of SRSF1 deficiency SC functions, we employed single-cell RNA sequencing (scRNA-seq) on a mononuclear cell suspension isolated from the newborn diaphragm of KO and control mice. Concurrently, we subjected diaphragm muscles to RNA-seq analysis to identify dysregulated splicing events associated with SRSF1 deletion. For the analysis of the effect of SRSF1 deletion on muscle regeneration, we generated mice with inducible SC-specific Srsf1 ablation through Pax7-CreER. SRSF1 ablation was induced by intraperitoneal injection of tamoxifen. Using cardiotoxin-induced muscle injury, we examined the consequences of SRSF1 depletion on SC function through HE staining, immunostaining and EdU incorporation assay. C2C12 myoblasts and isolated myoblasts were employed to assess stem cell function and senescence. RESULTS Utilizing scRNA-seq analysis, we observed a noteworthy increase in activated and proliferating myoblasts when SRSF1 was absent. This increase was substantial, with the proportion rising from 28.68% in the control group to 77.06% in the knockout group. However, these myoblasts experienced mitotic abnormalities in the absence of SRSF1, resulting in cell cycle arrest and the onset of cellular senescence. In the knockout mice, the proportion of Pax7+ cells within improper niche positioning increased significantly to 25% compared to 12% in the control cells (n ≥ 10, p < 0.001). Furthermore, there was an observation of persistent cell cycle exit specifically in the Pax7+ cells deficient in SRSF1 (n = 6, p < 0.001). SRSF1 plays a pivotal role in regulating the splicing of Fgfr1op2, favouring the full-length isoform crucial for mitotic spindle organization. Disrupting SRSF1 in C2C12 and primary myoblasts results in multipolar spindle formation (p < 0.001) and dysregulated splicing of Fgfr1op2 and triggers cellular senescence. Consequently, adult SCs lacking SRSF1 initially activate upon injury but face substantial challenge in proliferation (n = 4, p < 0.001), leading to a failure in muscle regeneration. CONCLUSIONS SRSF1 plays a critical role in SCs by ensuring proper splicing, maintaining mitotic progression and preventing premature senescence. These findings underscore the significant role of SRSF1 in controlling SC proliferation during skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhige Zhang
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical UniversityJiningChina
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical UniversityJiningChina
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhigang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jun Han
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical UniversityJiningChina
| |
Collapse
|
2
|
Koo ASH, Jia W, Kim SH, Scalf M, Boos CE, Chen Y, Wang D, Voter AF, Bajaj A, Smith LM, Keck JL, Bakkenist CJ, Guo L, Tibbetts RS. Alternative splicing modulates chromatin interactome and phase separation of the RIF1 C-terminal domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.619708. [PMID: 39553946 PMCID: PMC11565852 DOI: 10.1101/2024.10.29.619708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
RIF1 (RAP1 interacting factor) fulfills diverse roles in DNA double-strand break repair, DNA replication, and nuclear organization. RIF1 is expressed as two splice variants, RIF1-Long (RIF1-L) and RIF1-Short (RIF1-S), from the alternative splicing (AS) of Exon 32 (Ex32) which encodes a 26 aa Ser/Lys-rich cassette peptide in the RIF1 C-terminal domain (CTD). Here we demonstrate that Ex32 inclusion was repressed by DNA damage and oncogenesis but peaked at G2/M phase of the cell cycle. Ex32 splice-in was catalyzed by positive regulators including SRSF1, which bound to Ex32 directly, and negative regulators such as PTBP1 and SRSF3. Isoform proteomics revealed enhanced association of RIF1-L with MDC1, whose recruitment to IR-induced foci was strengthened by RIF1-L. RIF1-L and RIF1-S also exhibited unique phase separation and chromatin-binding characteristics that were regulated by CDK1-dependent CTD phosphorylation. These combined findings suggest that regulated AS affects multiple aspects of RIF1 function in genome protection and organization.
Collapse
Affiliation(s)
- Adenine Si-Hui Koo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Weiyan Jia
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Sang Hwa Kim
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Claire E. Boos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew F. Voter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | - Aditya Bajaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Randal S. Tibbetts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
3
|
Malagola E, Vasciaveo A, Ochiai Y, Kim W, Zheng B, Zanella L, Wang ALE, Middelhoff M, Nienhüser H, Deng L, Wu F, Waterbury QT, Belin B, LaBella J, Zamechek LB, Wong MH, Li L, Guha C, Cheng CW, Yan KS, Califano A, Wang TC. Isthmus progenitor cells contribute to homeostatic cellular turnover and support regeneration following intestinal injury. Cell 2024; 187:3056-3071.e17. [PMID: 38848678 PMCID: PMC11164536 DOI: 10.1016/j.cell.2024.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/15/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.
Collapse
Affiliation(s)
- Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350000, China
| | - Luca Zanella
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Alexander L E Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrik Nienhüser
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Lu Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Quin T Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Bryana Belin
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Jonathan LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Leah B Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, L215, Portland, OR, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66107, USA
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; Chan Zuckerberg Biohub NY, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Liu L, Hong Y, Ma C, Zhang F, Li Q, Li B, He H, Zhu J, Wang H, Chen L. Circular RNA Gtdc1 Protects Against Offspring Osteoarthritis Induced by Prenatal Prednisone Exposure by Regulating SRSF1-Fn1 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307442. [PMID: 38520084 PMCID: PMC11132075 DOI: 10.1002/advs.202307442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Chondrodysplasia is closely associated with low birth weight and increased susceptibility to osteoarthritis in adulthood. Prenatal prednisone exposure (PPE) can cause low birth weight; however, its effect on offspring cartilage development remains unexplored. Herein, rats are administered clinical doses of prednisone intragastrically on gestational days (GDs) 0-20 and underwent long-distance running during postnatal weeks (PWs) 24-28. Knee cartilage is assayed for quality and related index changes on GD20, PW12, and PW28. In vitro experiments are performed to elucidate the mechanism. PPE decreased cartilage proliferation and matrix synthesis, causing offspring chondrodysplasia. Following long-distance running, the PPE group exhibited more typical osteoarthritis-like changes. Molecular analysis revealed that PPE caused cartilage circRNomics imbalance in which circGtdc1 decreased most significantly and persisted postnatally. Mechanistically, prednisolone reduced circGtdc1 expression and binding with Srsf1 to promote degradation of Srsf1 via K48-linked polyubiquitination. This further inhibited the formation of EDA/B+Fn1 and activation of PI3K/AKT and TGFβ pathways, reducing chondrocyte proliferation and matrix synthesis. Finally, intra-articular injection of offspring with AAV-circGtdc1 ameliorated PPE-induced chondrodysplasia, but this effect is reversed by Srsf1 knockout. Altogether, this study confirms that PPE causes chondrodysplasia and susceptibility to osteoarthritis by altering the circGtdc1-Srsf1-Fn1 axis; in vivo, overexpression of circGtdc1 can represent an effective intervention target for ameliorating PPE-induced chondrodysplasia.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yuntian Hong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Chi Ma
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Fan Zhang
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qingxian Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Bin Li
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| | - Hangyuan He
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiayong Zhu
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
- Department of PharmacologyWuhan University School of Basic Medical SciencesWuhan430071China
| | - Liaobin Chen
- Department of Orthopedic SurgeryJoint Disease Research Center of Wuhan UniversityZhongnan Hospital of Wuhan UniversityWuhan430071China
- Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan430071China
| |
Collapse
|
5
|
He XY, Wu BS, Yang L, Guo Y, Deng YT, Li ZY, Fei CJ, Liu WS, Ge YJ, Kang J, Feng J, Cheng W, Dong Q, Yu JT. Genetic associations of protein-coding variants in venous thromboembolism. Nat Commun 2024; 15:2819. [PMID: 38561338 PMCID: PMC10984941 DOI: 10.1038/s41467-024-47178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.
Collapse
Affiliation(s)
- Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chen-Jie Fei
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, UK.
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Takashima S, Sun W, Otten ABC, Cai P, Peng SI, Tong E, Bui J, Mai M, Amarbayar O, Cheng B, Odango RJ, Li Z, Qu K, Sun BK. Alternative mRNA splicing events and regulators in epidermal differentiation. Cell Rep 2024; 43:113814. [PMID: 38402585 PMCID: PMC11293371 DOI: 10.1016/j.celrep.2024.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Alternative splicing (AS) of messenger RNAs occurs in ∼95% of multi-exon human genes and generates diverse RNA and protein isoforms. We investigated AS events associated with human epidermal differentiation, a process crucial for skin function. We identified 6,413 AS events, primarily involving cassette exons. We also predicted 34 RNA-binding proteins (RBPs) regulating epidermal AS, including 19 previously undescribed candidate regulators. From these results, we identified FUS as an RBP that regulates the balance between keratinocyte proliferation and differentiation. Additionally, we characterized the function of a cassette exon AS event in MAP3K7, which encodes a kinase involved in cell signaling. We found that a switch from the short to long isoform of MAP3K7, triggered during differentiation, enforces the demarcation between proliferating basal progenitors and overlying differentiated strata. Our findings indicate that AS occurs extensively in the human epidermis and has critical roles in skin homeostasis.
Collapse
Affiliation(s)
- Shota Takashima
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Auke B C Otten
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shaohong Isaac Peng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Elton Tong
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Jolina Bui
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - McKenzie Mai
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Oyumergen Amarbayar
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Binbin Cheng
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Rowen Jane Odango
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA
| | - Zongkai Li
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, La Jolla, CA 92109, USA.
| |
Collapse
|
7
|
Yao X, Wang C, Yu W, Sun L, Lv Z, Xie X, Tian S, Yan L, Zhang H, Liu J. SRSF1 is essential for primary follicle development by regulating granulosa cell survival via mRNA alternative splicing. Cell Mol Life Sci 2023; 80:343. [PMID: 37907803 PMCID: PMC11072053 DOI: 10.1007/s00018-023-04979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023]
Abstract
Granulosa cell abnormalities are characteristics of premature ovarian insufficiency (POI). Abnormal expression of serine/arginine-rich splicing factor 1 (SRSF1) can cause various diseases, but the role of SRSF1 in mouse granulosa cells remains largely unclear. In this study, we found that SRSF1 was expressed in the nuclei of both mouse oocytes and granulosa cells. The specific knockout of Srsf1 in granulosa cells led to follicular development inhibition, decreased granulosa cell proliferation, and increased apoptosis. Gene Ontology (GO) analysis of RNA-seq results revealed abnormal expression of genes involved in DNA repair, cell killing and other signalling pathways. Alternative splicing (AS) analysis showed that SRSF1 affected DNA damage in granulosa cells by regulating genes related to DNA repair. In summary, SRSF1 in granulosa cells controls follicular development by regulating AS of genes associated with DNA repair, thereby affecting female reproduction.
Collapse
Affiliation(s)
- Xiaohong Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chaofan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Weiran Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zheng Lv
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Xie
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Wan L, Lin KT, Rahman MA, Ishigami Y, Wang Z, Jensen MA, Wilkinson JE, Park Y, Tuveson DA, Krainer AR. Splicing Factor SRSF1 Promotes Pancreatitis and KRASG12D-Mediated Pancreatic Cancer. Cancer Discov 2023; 13:1678-1695. [PMID: 37098965 PMCID: PMC10330071 DOI: 10.1158/2159-8290.cd-22-1013] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/27/2023]
Abstract
Inflammation is strongly associated with pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy. Dysregulated RNA splicing factors have been widely reported in tumorigenesis, but their involvement in pancreatitis and PDAC is not well understood. Here, we report that the splicing factor SRSF1 is highly expressed in pancreatitis, PDAC precursor lesions, and tumors. Increased SRSF1 is sufficient to induce pancreatitis and accelerate KRASG12D-mediated PDAC. Mechanistically, SRSF1 activates MAPK signaling-partly by upregulating interleukin 1 receptor type 1 (IL1R1) through alternative-splicing-regulated mRNA stability. Additionally, SRSF1 protein is destabilized through a negative feedback mechanism in phenotypically normal epithelial cells expressing KRASG12D in mouse pancreas and in pancreas organoids acutely expressing KRASG12D, buffering MAPK signaling and maintaining pancreas cell homeostasis. This negative feedback regulation of SRSF1 is overcome by hyperactive MYC, facilitating PDAC tumorigenesis. Our findings implicate SRSF1 in the etiology of pancreatitis and PDAC, and point to SRSF1-misregulated alternative splicing as a potential therapeutic target. SIGNIFICANCE We describe the regulation of splicing factor SRSF1 expression in the context of pancreas cell identity, plasticity, and inflammation. SRSF1 protein downregulation is involved in a negative feedback cellular response to KRASG12D expression, contributing to pancreas cell homeostasis. Conversely, upregulated SRSF1 promotes pancreatitis and accelerates KRASG12D-mediated tumorigenesis through enhanced IL1 and MAPK signaling. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yuma Ishigami
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zhikai Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mads A. Jensen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John E. Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A. Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
9
|
Sandoval-Castellanos AM, Bhargava A, Zhao M, Xu J, Ning K. Serine and arginine rich splicing factor 1: a potential target for neuroprotection and other diseases. Neural Regen Res 2023; 18:1411-1416. [PMID: 36571335 PMCID: PMC10075106 DOI: 10.4103/1673-5374.360243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Alternative splicing is the process of producing variably spliced mRNAs by choosing distinct combinations of splice sites within a messenger RNA precursor. This splicing enables mRNA from a single gene to synthesize different proteins, which have different cellular properties and functions and yet arise from the same single gene. A family of splicing factors, Serine-arginine rich proteins, are needed to initiate the assembly and activation of the spliceosome. Serine and arginine rich splicing factor 1, part of the arginine/serine-rich splicing factor protein family, can either activate or inhibit the splicing of mRNAs, depending on the phosphorylation status of the protein and its interaction partners. Considering that serine and arginine rich splicing factor 1 is either an activator or an inhibitor, this protein has been studied widely to identify its various roles in different diseases. Research has found that serine and arginine rich splicing factor 1 is a key target for neuroprotection, showing its promising potential use in therapeutics for neurodegenerative disorders. Furthermore, serine and arginine rich splicing factor 1 might be used to regulate cancer development and autoimmune diseases. In this review, we highlight how serine and arginine rich splicing factor 1 has been studied concerning neuroprotection. In addition, we draw attention to how serine and arginine rich splicing factor 1 is being studied in cancer and immunological disorders, as well as how serine and arginine rich splicing factor 1 acts outside the central or peripheral nervous system.
Collapse
Affiliation(s)
- Ana M Sandoval-Castellanos
- Sheffield Institute of Translational Neuroscience, SITraN, The University of Sheffield, Sheffield, UK; Department of Ophthalmology & Vision Science, and Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Anushka Bhargava
- Sheffield Institute of Translational Neuroscience, SITraN, The University of Sheffield, Sheffield, UK
| | - Min Zhao
- Department of Ophthalmology & Vision Science, and Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, USA
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Sheffield Institute of Translational Neuroscience, SITraN, The University of Sheffield, Sheffield, UK; East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang P, Li W, Liu Z, He X, Hong Q, Lan R, Liu Y, Chu M. Identification of WNT4 alternative splicing patterns and effects on proliferation of granulosa cells in goat. Int J Biol Macromol 2022; 223:1230-1242. [PMID: 36395931 DOI: 10.1016/j.ijbiomac.2022.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Increasing ovulation numbers is one of the most important ways to promote reproduction in mammals, and follicular granulosa cells (GCs) provide the necessary nutrients and microenvironment for oocytes to ovulate. WNT4 has been shown to be a key factor in regulating the proliferation of GCs in mammalian ovarian tissues. Our previous transcriptome sequencing (RNA-seq) results have identified two alternatively spliced products of WNT4;however, little is known about the splicing mechanism and its effect on GC proliferation. In this study, two alternatively spliced products of WNT4, designated WNT4-α and WNT4-β, were identified by cloning and analyzed for their function by bioinformatics. The RT-qPCR and Western blot results showed that the expression of WNT4-α was significantly higher than that of WNT4-β in the ovary tissues and GCs of Yunshang black goats. We therefore hypothesized that WNT4-α was the main isoform affecting the proliferation of goat GCs. Subsequently, goat GC proliferation assays showed that overexpression of WNT4-α significantly promoted GC proliferation, and the opposite was true after WNT4-α inhibition. The expression of marker genes of the Wnt signaling pathway was also examined and WNT4-α was found to affect the proliferation and hormone secretion of goat GCs by regulating the Wnt signaling pathway. In addition, a series of splicing factors were involved in in the alternative splicing; in this study, SRSF6 was found to be involved as a splicing factor in the generation of WNT4 alternative splicing. In summary, WNT4 alternative splicing was mediated by the splicing factor SRSF6, and WNT4-α alternative splicing played an important role in follicle development and had a significant effect on the proliferation of goat GCs. The results of this study provide a theoretical foundation for further understanding the molecular regulatory mechanisms of the WNT4 in follicle development in goats.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Fan HH, Zheng J, Huang XY, Wu KY, Cui L, Dong HJ, Wang Z, Zhang X, Zhu JH. An antisense Alu transposon insertion/deletion polymorphism of ALDH1A1 may functionally associate with Parkinson's disease. BMC Geriatr 2022; 22:427. [PMID: 35578164 PMCID: PMC9109383 DOI: 10.1186/s12877-022-03132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 1 (encoded by ALDH1A1) has been shown to protect against Parkinson's disease (PD) by reducing toxic metabolites of dopamine. We herein revealed an antisense Alu element insertion/deletion polymorphism in intron 4 of ALDH1A1, and hypothesized that it might play a role in PD. METHODS: A Han Chinese cohort comprising 488 PD patients and 515 controls was recruited to validate the Alu insertion/deletion polymorphism following a previous study of tag-single nucleotide polymorphisms, where rs7043217 was shown to be significantly associated with PD. Functional analyses of the Alu element insertion were performed. RESULTS The Alu element of ALDH1A1 was identified to be a variant of Yb8 subfamily and termed as Yb8c4. The antisense Yb8c4 insertion/deletion polymorphism (named asYb8c4ins and asYb8c4del, respectively) appeared to be in a complete linkage disequilibrium with rs7043217 and was validated to be significantly associated with PD susceptibility with asYb8c4ins serving as a risk allele (P = 0.030, OR = 1.224, 95% CI = 1.020-1.470). Multiple functional analyses including ALDH1A1 mRNA expression in blood cells of carriers, and reporters of EGFP and luciferase showed that the asYb8c4ins had a suppressive activity on gene transcription. Mechanistic explorations suggested that the asYb8c4ins induced no changes in CpG methylation and mRNA splicing of ALDH1A1 and appeared no binding of transcription factors. CONCLUSIONS Our results consolidate an involvement of ALDH1 in PD pathogenesis. The asYb8c4 polymorphism may be a functional output of its linkage disequilibrium-linked single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Hui-Hui Fan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jing Zheng
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiao-Ya Huang
- Department of Neurology, Wenzhou Central Hospital, Wenzhou, Zhejiang, China
| | - Ke-Yun Wu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lei Cui
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hao-Jia Dong
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhen Wang
- Department of Neurology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|