1
|
Li L, Zhou H, Li M, Liu W, Li Y, Xu H, Jiang J, Yang Y, Gong Y. Salvianolic acid B ameliorates hepatic fibrosis via inhibiting p300/CBP. Eur J Pharmacol 2025; 998:177495. [PMID: 40058756 DOI: 10.1016/j.ejphar.2025.177495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/23/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Salvianolic acid B (Sal B), an active ingredient extracted from Salvia miltiorrhiza Bunge, has shown hepatic anti-fibrotic activity. Hepatic stellate cells (HSCs) activation is considered the determining event in liver fibrogenesis. E1A binding protein p300 (p300)/CREB binding protein (CBP) is an attractive target for inhibiting HSCs activation. But whether Sal B inhibits hepatic fibrosis through suppressing p300/CBP is unknown. We used DEN/CCl4/C2H5OH to establish a mouse model of hepatic fibrosis and detect the effects of Sal B on liver function, pathological alterations, and p300/CBP expression. TGF-β1 was used to induce LX-2 cells for in vitro experimental validation. Additionally, the effects of Sal B on LX-2 activation were explored using the p300/CBP activator CTB, and molecular docking was used to predict the interaction between Sal B and p300. The in vivo results demonstrated that Sal B improved liver function, reversed pathological changes, reduced collagen synthesis, and downregulated the protein levels of p300 and CBP in DEN/CCl4/C2H5OH-induced hepatic fibrosis mice. The in vitro results showed that Sal B inhibited LX-2 cells activation and decreased both the mRNA and protein levels of p300 and CBP. Furthermore, the p300/CBP activator CTB reversed the inhibitory effect of Sal B on LX-2 cells activation. Molecular docking showed that Sal B bound well to p300 with a high degree of match and a binding energy of -14.859 kcal/mol. Our study revealed that Sal B ameliorates hepatic fibrosis, which likely via inhibition of p300/CBP. However, the specific binding site deserves further exploration.
Collapse
Affiliation(s)
- Lili Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Huabiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Miaomiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Wenbo Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Yuxuan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Hanyang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China
| | - Jiemei Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China.
| | - Yongfang Gong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Hefei, 230032, China; School of Nursing, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Hrncir HR, Goodloe B, Bombin S, Hogan CB, Jadi O, Gracz AD. Sox9 inhibits Activin A to promote biliary maturation and branching morphogenesis. Nat Commun 2025; 16:1667. [PMID: 39955269 PMCID: PMC11830073 DOI: 10.1038/s41467-025-56813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Intrahepatic bile duct (IHBD) development produces a morphologically heterogeneous network of large "ducts" and small "ductules" by adulthood. IHBD formation is closely linked to developmental specification of biliary epithelial cells (BECs) starting as early as E13.5, but mechanisms regulating differential IHBD morphology remain poorly understood. Here, we show that duct and ductule development has distinct genetic requirements, with Sox9 required to form the developmental precursors to peripheral ductules in adult livers. By optimizing large-volume IHBD imaging, we find that IHBDs emerge as a homogeneous webbed structure by E15.5 and undergo morphological maturation through 2 weeks of age. Developmental knockout of Sox9 leads to decreased postnatal branching morphogenesis, resulting in adult IHBDs with normal ducts but significantly fewer ductules. In the absence of Sox9, BECs fail to mature and exhibit elevated TGF-β signaling and Activin A. Exogenous Activin A is sufficient to induce developmental gene expression and morphological defects in wild-type BEC organoids, while early postnatal inhibition of Activin A in vivo rescues IHBD morphogenesis in the absence of Sox9. Our data demonstrate that proper IHBD architecture relies on inhibition of Activin A by Sox9 to promote ductule morphogenesis, defining regulatory mechanisms underlying morphological heterogeneity.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA, USA
| | - Brianna Goodloe
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
| | - Sergei Bombin
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
| | - Connor B Hogan
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA
| | - Othmane Jadi
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Gracz
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, GA, USA.
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
4
|
Bebelman MP, Belicova L, Gralinska E, Jumel T, Lahree A, Sommer S, Shevchenko A, Zatsepin T, Kalaidzidis Y, Vingron M, Zerial M. Hepatocyte differentiation requires anisotropic expansion of bile canaliculi. Development 2024; 151:dev202777. [PMID: 39373104 DOI: 10.1242/dev.202777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi. Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary mouse hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Timecourse RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or by increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feed back to hepatoblast-to-hepatocyte differentiation.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lenka Belicova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elzbieta Gralinska
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Tobias Jumel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aparajita Lahree
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Sarah Sommer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Timofei Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
5
|
Hellen DJ, Fay ME, Lee DH, Klindt-Morgan C, Bennett A, Pachura KJ, Grakoui A, Huppert SS, Dawson PA, Lam WA, Karpen SJ. BiliQML: a supervised machine-learning model to quantify biliary forms from digitized whole slide liver histopathological images. Am J Physiol Gastrointest Liver Physiol 2024; 327:G1-G15. [PMID: 38651949 PMCID: PMC11376979 DOI: 10.1152/ajpgi.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
The progress of research focused on cholangiocytes and the biliary tree during development and following injury is hindered by limited available quantitative methodologies. Current techniques include two-dimensional standard histological cell-counting approaches, which are rapidly performed, error prone, and lack architectural context or three-dimensional analysis of the biliary tree in opacified livers, which introduce technical issues along with minimal quantitation. The present study aims to fill these quantitative gaps with a supervised machine-learning model (BiliQML) able to quantify biliary forms in the liver of anti-keratin 19 antibody-stained whole slide images. Training utilized 5,019 researcher-labeled biliary forms, which following feature selection, and algorithm optimization, generated an F score of 0.87. Application of BiliQML on seven separate cholangiopathy models [genetic (Afp-CRE;Pkd1l1null/Fl, Alb-CRE;Rbp-jkfl/fl, and Albumin-CRE;ROSANICD), surgical (bile duct ligation), toxicological (3,5-diethoxycarbonyl-1,4-dihydrocollidine), and therapeutic (Cyp2c70-/- with ileal bile acid transporter inhibition)] allowed for a means to validate the capabilities and utility of this platform. The results from BiliQML quantification revealed biological and pathological differences across these seven diverse models, indicating a highly sensitive, robust, and scalable methodology for the quantification of distinct biliary forms. BiliQML is the first comprehensive machine-learning platform for biliary form analysis, adding much-needed morphologic context to standard immunofluorescence-based histology, and provides clinical and basic science researchers with a novel tool for the characterization of cholangiopathies.NEW & NOTEWORTHY BiliQML is the first comprehensive machine-learning platform for biliary form analysis in whole slide histopathological images. This platform provides clinical and basic science researchers with a novel tool for the improved quantification and characterization of biliary tract disorders.
Collapse
Affiliation(s)
- Dominick J Hellen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Meredith E Fay
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - David H Lee
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Caroline Klindt-Morgan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ashley Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kimberly J Pachura
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Arash Grakoui
- Emory National Primate Research Center, Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Stacey S Huppert
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
7
|
Hrncir HR, Bombin S, Goodloe B, Hogan CB, Jadi O, Gracz AD. Sox9 links biliary maturation to branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.574730. [PMID: 38293117 PMCID: PMC10827067 DOI: 10.1101/2024.01.15.574730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Branching morphogenesis couples cellular differentiation with development of tissue architecture. Intrahepatic bile duct (IHBD) morphogenesis is initiated with biliary epithelial cell (BEC) specification and eventually forms a heterogeneous network of large ducts and small ductules. Here, we show that Sox9 is required for developmental establishment of small ductules. IHBDs emerge as a webbed structure by E15.5 and undergo morphological maturation through 2 weeks of age. Developmental knockout of Sox9 leads to decreased postnatal branching morphogenesis, manifesting as loss of ductules in adult livers. In the absence of Sox9, BECs fail to mature and exhibit elevated TGF-β signaling and Activin A. Activin A induces developmental gene expression and morphological defects in BEC organoids and represses ductule formation in postnatal livers. Our data demonstrate that adult IHBD morphology and BEC maturation is regulated by the Sox9-dependent formation of precursors to ductules during development, mediated in part by downregulation of Activin A.
Collapse
Affiliation(s)
- Hannah R Hrncir
- Department of Medicine, Division of Digestive Diseases, Emory University. Atlanta, GA USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University
| | - Sergei Bombin
- Department of Medicine, Division of Digestive Diseases, Emory University. Atlanta, GA USA
| | - Brianna Goodloe
- Department of Medicine, Division of Digestive Diseases, Emory University. Atlanta, GA USA
| | - Connor B Hogan
- Department of Medicine, Division of Digestive Diseases, Emory University. Atlanta, GA USA
| | - Othmane Jadi
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Adam D Gracz
- Department of Medicine, Division of Digestive Diseases, Emory University. Atlanta, GA USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University
- Lead contact:
| |
Collapse
|