1
|
Greiner D, Xue Q, Waddell TQ, Kurudza E, Chaudhary P, Belote RL, Dotti G, Judson-Torres RL, Reeves MQ, Cheshier SH, Roh-Johnson M. Human CSPG4-targeting CAR-macrophages inhibit melanoma growth. Oncogene 2025; 44:1665-1677. [PMID: 40082557 PMCID: PMC12122381 DOI: 10.1038/s41388-025-03332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Approximately half of melanoma patients relapse or fail to respond to current standards of care, highlighting the need for new treatment options. Engineering T-cells with chimeric antigen receptors (CARs) has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. We therefore sought to engineer alternative immune cell types to inhibit melanoma progression. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells; however, whether these engineered macrophages can effectively inhibit melanoma growth is unknown. To determine whether CAR-macrophages (CAR-Ms) specifically target and kill melanoma cells, we engineered CAR-Ms targeting chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. We developed 3D approaches to show that CSPG4-targeting CAR-Ms efficiently infiltrated melanoma spheroids. Furthermore, combining CSPG4-targeting CAR-Ms with strategies inhibiting CD47/SIRPα "don't eat me" signaling synergistically enhanced CAR-M-mediated phagocytosis and robustly inhibited melanoma spheroid growth in 3D. Importantly, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest engineering macrophages against melanoma antigens is a promising solid tumor immunotherapy approach for treating melanoma.
Collapse
Affiliation(s)
- Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Qian Xue
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Trinity Qa Waddell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Elena Kurudza
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, 84112, USA
| | - Piyush Chaudhary
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Rachel L Belote
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Molecular Genetics, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Melissa Q Reeves
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Pediatric Neurosurgery, Intermountain Primary Children's Hospital, Salt Lake City, UT, 84112, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Pichler R, Thurnher M. Training the synergy between Bacillus Calmette-Guérin and immune checkpoint-blocking antibodies in bladder cancer. Cancer Commun (Lond) 2025; 45:438-441. [PMID: 39797503 PMCID: PMC11999882 DOI: 10.1002/cac2.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Affiliation(s)
- Renate Pichler
- Department of UrologyComprehensive Cancer Center InnsbruckMedical University of InnsbruckInnsbruckAustria
| | - Martin Thurnher
- Immunotherapy UnitDepartment of UrologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Miller WD, Mishra AK, Sheedy CJ, Bond A, Gardner BM, Montell DJ, Morrissey MA. CD47 prevents Rac-mediated phagocytosis through Vav1 dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637707. [PMID: 39990418 PMCID: PMC11844498 DOI: 10.1101/2025.02.11.637707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
CD47 is expressed by viable cells to protect against phagocytosis. CD47 is recognized by SIRPα, an inhibitory receptor expressed by macrophages and other myeloid cells. Activated SIRPα recruits SHP-1 and SHP-2 phosphatases but the inhibitory signaling cascade downstream of these phosphatases is not clear. In this study, we used time lapse imaging to measure how CD47 impacts the kinetics of phagocytosis. We found that targets with IgG antibodies were primarily phagocytosed through a Rac-based reaching mechanism. Targets also containing CD47 were only phagocytosed through a less frequent Rho-based sinking mechanism. Hyperactivating Rac2 eliminated the suppressive effect of CD47, suggesting that CD47 prevents activation of Rac and reaching phagocytosis. During IgG-mediated phagocytosis, the tyrosine kinase Syk phosphorylates the GEF Vav, which then activates the GTPase Rac to drive F-actin rearrangement and target internalization. CD47 inhibited Vav1 phosphorylation without impacting Vav1 recruitment to the phagocytic synapse or Syk phosphorylation. Macrophages expressing a hyperactive Vav1 were no longer sensitive to CD47. Together this data suggests that Vav1 is a key target of the CD47 signaling pathway.
Collapse
Affiliation(s)
- Wyatt D Miller
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Abhinava K Mishra
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Connor J Sheedy
- Interdisciplinary Program in Quantitative Biology, University of California, Santa Barbara, Santa Barbara CA
| | - Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Brooke M Gardner
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Denise J Montell
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| | - Meghan A Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara CA
| |
Collapse
|
4
|
Xu J, Chen X, Shen X, Zhu R, Yin H, Mao L, Wang S, Gu C, Yao X, Li W. IgG Signalling Involves in Skin Inflammation of Atopic Dermatitis. Exp Dermatol 2025; 34:e70058. [PMID: 39912287 DOI: 10.1111/exd.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/24/2024] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Atopic dermatitis (AD) patients usually have elevated serum IgE that is thought inducing inflammation upon binding to allergen. However, the role of IgE-producing B cells and other isotypes of immunoglobulin, such as IgG, in AD are not clear and rarely explored. This study aimed to investigate the role of IgE-producing B cells and other isotypes of immunoglobulin, particularly IgG, in skin lesion of AD. BCR repertoires were analysed using mRNA prepared from skin lesions and peripheral blood mononuclear cells (PBMCs) from AD patients and non-allergic healthy subjects. Single-cell RNA sequencing data of AD lesions from published literature were extracted to analyse the function of IgG. BCR repertoires from skin lesion and PBMCs clustered distinctly, and PBMCs showed higher interindividual similarity compared to those from the skin. The proportions of IGHM, IGHD, IGHA, IGHG and IGHE varied among skin lesion and PBMCs of AD patients and healthy individuals, and IGHG was significantly increased in AD lesion. IGHG showed biased VH usage, with dominance of V1-58, V1-8, V3-13 and V3-73. The much higher hyperexpanded clonality and lower diversity of IGHG repertoire in skin than those of the PBMCs, suggested the clonal expansion of IgG+ B cells in the skin. Pathways related with IgG activation were enriched in AD skin, and macrophages may be activated by IgG and promote skin inflammation. In conclusion, skin is not the main production site for IgE in AD. IgG may involve in promoting Th2 inflammation in AD skin through macrophages.
Collapse
Affiliation(s)
- Jing Xu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Ronghui Zhu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Huibin Yin
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Liya Mao
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Chaoyin Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
5
|
Bond A, Morrissey MA. Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite. J Cell Sci 2025; 138:JCS263513. [PMID: 39749603 PMCID: PMC11828473 DOI: 10.1242/jcs.263513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris. Depending on the context, macrophages can increase their appetite for phagocytosis, to prioritize an effective immune response, or decrease their appetite, to avoid damage to healthy tissue during homeostasis. In this Review, we discuss the biochemical and biophysical mechanisms that macrophages employ to increase or decrease their sensitivity or capacity for phagocytosis. We discuss evidence that macrophages tune their sensitivity via several mechanisms, including altering the balance of activating and inhibitory receptor expression, altering the availability of activating receptors, as well as influencing their clustering and mobility, and modulating inhibitory receptor location. We also highlight how membrane availability limits the capacity of macrophages for phagocytosis and discuss potential mechanisms to promote membrane recycling and increase phagocytic capacity. Overall, this Review highlights recent work detailing the molecular toolkit that macrophages use to alter their appetite.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Dooling LJ, Anlaş AA, Tobin MP, Ontko NM, Marchena T, Wang M, Andrechak JC, Discher DE. Clustered macrophages cooperate to eliminate tumors via coordinated intrudopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613918. [PMID: 39345601 PMCID: PMC11430028 DOI: 10.1101/2024.09.19.613918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrophages often pervade solid tumors, but their nearest neighbor organization is understudied and potentially enables key functions such as phagocytosis. Here, we observe dynamic macrophage clusters in tumors under conditions that maximize cancer cell phagocytosis and use reductionist approaches to uncover pathways to cluster formation and roles for tumor-intrusive pseudopodia, which we term 'intrudopodia'. Macrophage clusters form over hours on low- adhesion substrates after M1 polarization with interferons, including T cell-derived cytokines, and yet clusters prove fluid on timescales of minutes. Clusters also sort from M2 macrophages that disperse on the same substrates. M1 macrophages upregulate specific cell-cell adhesion receptors but suppress actomyosin contractility, and while both pathways contribute to cluster formation, decreased cortical tension was predicted to unleash pseudopodia. Macrophage neighbors in tumor spheroids indeed extend intrudopodia between adjacent cancer cell junctions - at least when phagocytosis conditions are maximized, and coordinated intrudopodia help detach and individualize cancer cells for rapid engulfment. Macrophage clusters thereby provide a cooperative advantage for phagocytosis to overcome solid tumor cohesion.
Collapse
|