1
|
Weber DR, O'Brien KO, Ballester L, Rackovsky N, Graulich B, Schwartz GJ. Greater Urinary Calcium Excretion Is Associated With Diminished Bone Accrual in Youth With Type 1 Diabetes. J Clin Endocrinol Metab 2025; 110:e1802-e1810. [PMID: 39302657 DOI: 10.1210/clinem/dgae660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
CONTEXT The adverse skeletal effects of type 1 diabetes (T1D) include deficient bone accrual and lifelong increased fracture risk. The contributors to impaired bone accrual in people with T1D are incompletely understood. OBJECTIVE To determine if urinary calcium excretion is associated with impaired bone accrual in youth with T1D and to characterize the contribution of glycemic control and markers of bone mineral metabolism to urinary calcium excretion. DESIGN Observational study. PARTICIPANTS Fifty participants with T1D aged 6 to 20 years completed a 12-month longitudinal study of bone accrual. A second cohort of 99 similarly aged participants with T1D completed cross-sectional 24-hour urine and blood collections. MAIN OUTCOME MEASURE Whole body less head bone mineral content (WBLH BMC) velocity Z-score and fractional excretion of calcium (FeCa). RESULTS Participants in the bone accrual cohort had lower WBLH BMC velocity compared to a healthy reference dataset (Z-score -0.3 ± 1.0, P = .03). FeCa was negatively associated with WBLH BMC velocity Z-score, ρ = -0.47, P = .001. In the urinary calcium excretion cohort, intact PTH (β = -0.4, P = .01), beta c-telopeptide (β = 0.35, P = .007), and either hemoglobin A1c (β = 0.08, P = .03) or urine fractional glucose excretion (β = 0.07, P = .03) were associated with FeCa in multivariable regression models that included known determinants of urinary calcium excretion. CONCLUSION Urinary calcium excretion was negatively associated with bone accrual in this cohort of youth with T1D. Mechanistic studies are needed to determine if interventions to reduce urinary calcium excretion could increase bone accrual and reduce skeletal fragility in people with T1D.
Collapse
Affiliation(s)
- David R Weber
- Department of Pediatrics, The Children's Hospital of Philadelphia and The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly O O'Brien
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Lance Ballester
- Biostatistics and Data Management Core, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noya Rackovsky
- Department of Pediatrics, Golisano Children's Hospital, The University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Bethany Graulich
- Department of Pediatrics, Golisano Children's Hospital, The University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - George J Schwartz
- Department of Pediatrics, Golisano Children's Hospital, The University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Topkaya MS, Akın O, Cömert TK. Does metabolic control of the disease related with bone turnover markers in children with type 1 diabetes mellitus in Turkey? BMC Endocr Disord 2024; 24:89. [PMID: 38872156 DOI: 10.1186/s12902-024-01553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The aim was to evaluate the effect of metabolic control on bone biomarkers in children with type I diabetes. MATERIALS AND METHODS The children were divided into two groups according to their glycated hemoglobin (HbA1c) (%) levels: a group with HbA1c levels < 8% (n = 16) and: a group with HbA1c levels > 8% (n = 18). The serum total oxidative status (TOS) (µmol/L), total antioxidant status (TAS) (mmol/L), alkaline phosphatase (ALP) (IU/L), osteocalcin (OC) (ng/ml), procollagen type-1-N-terminal peptide (P1NP) (ng/ml), and vitamin D (IU) levels and food consumption frequencies were determined. RESULTS When patients were classified according to HbA1c (%) levels, those with HbA1c levels < 8% were found to have lower TOS (µmol/L) values (8.7 ± 6.16, 9.5 ± 5.60) and higher serum OC (ng/mL) (24.2 ± 16.92, 22.0 ± 6.21) levels than those with HbA1c levels > 8% (p < 0.05). Regardless of the level of metabolic control, there was a statistically significant association between serum TOS (µmol/L) and P1NP (ng/ml) (p < 0.05) levels, with no group-specific relationship (HbA1c levels <%8 or HbA1c levels >%8). CONCLUSION HbA1c and serum TOS levels had an effect on bone turnover biomarkers in individuals with type I diabetes.
Collapse
Affiliation(s)
- Merve Sena Topkaya
- Department of Nutrition and Dietetics, Gülhane Health Sciences Institute, Health Sciences University, Ankara, Turkey
| | - Onur Akın
- Specialist of Pediatric Endocrinology, Department of Pediatric Endocrinology, Gülhane Training and Research Hospital, Ankara, Turkey
| | - Tuğba Küçükkasap Cömert
- Department of Nutrition and Dietetics, Gülhane Health Sciences Institute, Health Sciences University, Ankara, Turkey.
| |
Collapse
|
3
|
Kondegowda NG, Filipowska J, Do JS, Leon-Rivera N, Li R, Hampton R, Ogyaadu S, Levister C, Penninger JM, Reijonen H, Levy CJ, Vasavada RC. RANKL/RANK is required for cytokine-induced beta cell death; osteoprotegerin, a RANKL inhibitor, reverses rodent type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadf5238. [PMID: 37910614 PMCID: PMC10619938 DOI: 10.1126/sciadv.adf5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Treatment for type 1 diabetes (T1D) requires stimulation of functional β cell regeneration and survival under stress. Previously, we showed that inhibition of the RANKL/RANK [receptor activator of nuclear factor kappa Β (NF-κB) ligand] pathway, by osteoprotegerin and the anti-osteoporotic drug denosumab, induces rodent and human β cell proliferation. We demonstrate that the RANK pathway mediates cytokine-induced rodent and human β cell death through RANK-TRAF6 interaction and induction of NF-κB activation. Osteoprotegerin and denosumab protected β cells against this cytotoxicity. In human immune cells, osteoprotegerin and denosumab reduce proinflammatory cytokines in activated T-cells by inhibiting RANKL-induced activation of monocytes. In vivo, osteoprotegerin reversed recent-onset T1D in nonobese diabetic/Ltj mice, reduced insulitis, improved glucose homeostasis, and increased plasma insulin, β cell proliferation, and mass in these mice. Serum from T1D subjects induced human β cell death and dysfunction, but not α cell death. Osteoprotegerin and denosumab reduced T1D serum-induced β cell cytotoxicity and dysfunction. Inhibiting RANKL/RANK could have therapeutic potential.
Collapse
Affiliation(s)
- Nagesha Guthalu Kondegowda
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna Filipowska
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeong-su Do
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Nancy Leon-Rivera
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Rosemary Li
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rollie Hampton
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selassie Ogyaadu
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Camilla Levister
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Josef M. Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna 1030, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Helena Reijonen
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Carol J. Levy
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Endocrinology and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rupangi C. Vasavada
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA 91010, USA
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Rodríguez-Narciso S, Martínez-Portilla RJ, Guzmán-Guzmán IP, Careaga-Cárdenas G, Rubio-Navarro BJ, Barba-Gallardo LF, Delgadillo-Castañeda R, Villafan-Bernal JR. Osteocalcin serum concentrations and markers of energetic metabolism in pediatric patients. Systematic review and metanalysis. Front Pediatr 2023; 10:1075738. [PMID: 36714656 PMCID: PMC9878130 DOI: 10.3389/fped.2022.1075738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Background Osteocalcin plays a role in glucose metabolism in mice, but its relevance in human energetic metabolism is controversial. Its relationship with markers of energetic metabolism in the pediatric population has not been systematically addressed in infants and adolescents. Objective This study aims to assess the mean differences between tOC, ucOC, and cOC among healthy children and children with type 1 or type 2 diabetes (T1D or T2D) and the correlation of these bone molecules with metabolic markers. Methods A systematic review and metanalysis were performed following PRISMA criteria to identify relevant observational studies published in English and Spanish using PubMed, Scopus, EBSCO, and Web of Science databases. The risk of bias was assessed using New Castle-Ottawa scale. Effect size measures comprised standardized mean difference (SMD) and Pearson correlations. Heterogeneity and meta-regressions were performed. Results The 20 studies included were of high quality and comprised 3,000 pediatric patients who underwent tOC, cOC, or ucOC measurements. Among healthy subjects, there was a positive correlation of ucOC with WC and weight, a positive correlation of tOC with FPG, HDL-c, WC, height, and weight, and a negative correlation between tOC and HbA1c. Among diabetic subjects, a negative correlation of ucOC with HbA1c and glycemia in both T1D and T2D was found and a negative correlation between tOC and HbA1c in T1D but not in T2D. The ucOC concentrations were lower in T2D, T1D, and patients with abnormal glucose status than among controls. The serum concentrations of tOC concentrations were lower among T1D than in controls. The patient's age, altitude, and HbA1c influenced the levels of serum tOC. Conclusion Osteocalcin is involved in energy metabolism in pediatric subjects because it is consistently related to metabolic and anthropometric parameters. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42019138283.
Collapse
Affiliation(s)
| | - Raigam Jafet Martínez-Portilla
- Clinical Research Division, Evidence-Based Medicine Department, National Institute of Perinatology, Mexico City, Mexico
- Molecular and Maternal-Fetal Medicine, Iberoamerican Research Network in Translational, Mexico City, Mexico
| | | | | | | | | | | | - José Rafael Villafan-Bernal
- Molecular and Maternal-Fetal Medicine, Iberoamerican Research Network in Translational, Mexico City, Mexico
- Investigador por México, National Council of Science and Technology (CONACYT), Mexico City, Mexico
- Laboratory of Immunogenomics and Metabolic Diseases, Mexican National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
5
|
Sochett EB, Dominicis M, Vali R, Shammas A, Elia Y, Moineddin R, Mahmud F, Assor E, Furman M, Boyd SK, Lenherr-Taube N. Relationship between risk factors for impaired bone health and HR-pQCT in young adults with type 1 diabetes. Front Endocrinol (Lausanne) 2023; 14:1144137. [PMID: 36936151 PMCID: PMC10020337 DOI: 10.3389/fendo.2023.1144137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVE In type 1 diabetes, risk factors associated with impaired bone health contribute to increased risk of fracture. The aim of this study was to (1): compare the high-resolution peripheral quantitative computed tomography (HR-pQCT) parameters of young adults with type 1 diabetes with those of healthy controls (2), identify sex differences, and (3) evaluate the association between diabetes and bone health risk factors, with HR-pQCT. METHODS This is a cross-sectional study in young Canadian adults with childhood onset type 1 diabetes. Z-scores were generated for HR-pQCT parameters using a large healthy control database. Diet, physical activity, BMI, hemoglobin A1C (A1C) and bone health measures were evaluated, and associations were analyzed using multivariate regression analysis. RESULTS Eighty-eight participants (age 21 ± 2.2 years; 40 males, 48 females, diabetes duration 13.9 ± 3.4 years) with type 1 diabetes were studied. Low trabecular thickness and elevated cortical geometry parameters were found suggesting impaired bone quality. There were no sex differences. Significant associations were found: Vitamin D (25(OH)D) with trabecular parameters with possible synergy with A1C, parathyroid hormone with cortical parameters, BMI with cortical bone and failure load, and diabetes duration with trabecular area. CONCLUSIONS Our data suggests impairment of bone health as assessed by HR-pQCT in young adults with type 1 diabetes. Modifiable risk factors were associated with trabecular and cortical parameters. These findings imply that correction of vitamin D deficiency, prevention and treatment of secondary hyperparathyroidism, and optimization of metabolic control may reduce incident fractures.
Collapse
Affiliation(s)
- Etienne B. Sochett
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- *Correspondence: Etienne B. Sochett,
| | - Mary Dominicis
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Reza Vali
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Amer Shammas
- Department of Diagnostic Imaging, Division of Nuclear Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Yesmino Elia
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Rahim Moineddin
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Farid Mahmud
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Esther Assor
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michelle Furman
- Department of Pediatrics, Division of Endocrinology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steve K. Boyd
- Department of Radiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Nina Lenherr-Taube
- Division of Endocrinology, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Damrath JG, Metzger CE, Allen MR, Wallace JM. A novel murine model of combined insulin-dependent diabetes and chronic kidney disease has greater skeletal detriments than either disease individually. Bone 2022; 165:116559. [PMID: 36116758 PMCID: PMC9798592 DOI: 10.1016/j.bone.2022.116559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Diabetes and chronic kidney disease (CKD) consistently rank among the top ten conditions in prevalence and mortality in the United States. Insulin-dependent diabetes (IDD) and CKD each increase the risk of skeletal fractures and fracture-related mortality. However, it remains unknown whether these conditions have interactive end-organ effects on the skeleton. We hypothesized that combining IDD and CKD in mice would cause structural and mechanical bone alterations that are more deleterious compared to the single disease states. Female C57BL6/J mice were divided into four groups: 1) N = 12 Control (CTRL), 2) N = 10 Streptozotocin-induced IDD (STZ), 3) N = 10 Adenine diet-induced CKD (AD), and 4) N = 9 Combination (STZ+AD). STZ administration resulted in significantly higher blood glucose, HbA1c (p < 0.0001), and glucose intolerance (p < 0.0001). AD resulted in higher blood urea nitrogen (p = 0.0002) while AD, but not STZ+AD mice, had high serum parathyroid hormone (p < 0.0001) and phosphorus (p = 0.0005). STZ lowered bone turnover (p = 0.001). Trabecular bone volume was lowered by STZ (p < 0.0001) and increased by AD (p = 0.003). Tissue mineral density was lowered by STZ (p < 0.0001) and AD (p = 0.02) in trabecular bone but only lowered by STZ in cortical bone (p = 0.002). Cortical porosity of the proximal tibia was increased by AD, moment of inertia was lower in both disease groups, and most cortical properties were lower in all groups vs CTRL. Ultimate force, stiffness, toughness, and total displacement/strain were lowered by STZ and AD. Fracture toughness was lower by AD (p = 0.003). Importantly, Cohen's D indicated that STZ+AD most strongly lowered bone turnover and mechanical properties. Taken together, structural and material-level bone properties are altered by STZ and AD while their combination resulted in greater detriments, indicating that improving bone health in the combined disease state may require novel interventions.
Collapse
Affiliation(s)
- John G Damrath
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Corinne E Metzger
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Matthew R Allen
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Joseph M Wallace
- Indiana University-Purdue University at Indianapolis, Department of Biomedical Engineering, Indianapolis, IN, United States.
| |
Collapse
|
7
|
Rubin MR, de Boer IH, Backlund JYC, Arends V, Gubitosi-Klug R, Wallia A, Sinha Gregory N, Barnie A, Burghardt AJ, Lachin JM, Braffett BH, Schwartz AV. Biochemical Markers of Bone Turnover in Older Adults With Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:e2405-e2416. [PMID: 35188961 PMCID: PMC9113800 DOI: 10.1210/clinem/dgac099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Type 1 diabetes (T1D) is characterized by high fracture risk, yet little is known regarding diabetes-related mechanisms or risk factors. OBJECTIVE Determine whether glycemic control, advanced glycation end products (AGEs), and microvascular complications are associated with bone turnover markers among older T1D adults. DESIGN Cross-sectional. SETTING Epidemiology of Diabetes Interventions and Complications study (6 of 27 clinical centers). PARTICIPANTS 232 T1D participants followed for >30 years. EXPOSURES Glycemic control ascertained as concurrent and cumulative hemoglobin A1c (HbA1c); kidney function, by estimated glomerular filtration rates (eGFR); and AGEs, by skin intrinsic fluorescence. MAIN OUTCOME MEASURES Serum procollagen 1 intact N-terminal propeptide (PINP), bone-specific alkaline phosphatase (bone ALP), serum C-telopeptide (sCTX), tartrate-resistant acid phosphatase 5b (TRACP5b), and sclerostin. RESULTS Mean age was 59.6 ± 6.8 years, and 48% were female. In models with HbA1c, eGFR, and AGEs, adjusted for age and sex, higher concurrent HbA1c was associated with lower PINP [β -3.4 pg/mL (95% CI -6.1, -0.7), P = 0.015 for each 1% higher HbA1c]. Lower eGFR was associated with higher PINP [6.9 pg/mL (95% CI 3.8, 10.0), P < 0.0001 for each -20 mL/min/1.73 m2 eGFR], bone ALP [1.0 U/L (95% CI 0.2, 1.9), P = 0.011], sCTX [53.6 pg/mL (95% CI 32.6, 74.6), P < 0.0001], and TRACP5b [0.3 U/L (95% CI 0.1, 0.4), P = 0.002]. However, AGEs were not associated with any bone turnover markers in adjusted models. HbA1c, eGFR, and AGEs were not associated with sclerostin levels. CONCLUSIONS Among older adults with T1D, poor glycemic control is a risk factor for reduced bone formation, while reduced kidney function is a risk factor for increased bone resorption and formation.
Collapse
Affiliation(s)
| | - Ian H de Boer
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jye-Yu C Backlund
- The Biostatistics Center, George Washington University, Rockville, MD,USA
| | - Valerie Arends
- Departement of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Rose Gubitosi-Klug
- Case Western Reserve/Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Amisha Wallia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - John M Lachin
- The Biostatistics Center, George Washington University, Rockville, MD,USA
| | - Barbara H Braffett
- The Biostatistics Center, George Washington University, Rockville, MD,USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Santiprabhob J, Charoentawornpanich P, Khemaprasit K, Manpayak T, Kiattisakthavee P, Pipatsathian A, Wannasilp N, Tangjittipokin W. Effect of gender, diabetes duration, inflammatory cytokines, and vitamin D level on bone mineral density among Thai children and adolescents with type 1 diabetes. Bone 2021; 153:116112. [PMID: 34252600 DOI: 10.1016/j.bone.2021.116112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Type 1 diabetes mellitus (T1DM) is considered a risk factor for osteoporosis in adults; however, studies in bone mineral density (BMD) in children with T1DM reported conflicting results. The aim of this study was to compare BMD between T1DM youth and healthy controls, and to identify factors that affect BMD in T1DM youth. METHODS One hundred T1DM youths and 100 healthy controls (both groups aged 5-20 years) were recruited. BMD of total body, lumbar (L2-4), femoral neck, and total hip were assessed using dual energy X-ray absorptiometry. Blood investigations, including hemoglobin A1c (HbA1c), 25-hydroxyvitamin D, and inflammatory cytokines, were performed. RESULTS Forty-four boys and 56 girls with T1DM were enrolled [mean age 14.5 ± 2.7 years, median (IQR) duration of T1DM 5.80 (2.97-9.07) years, and mean HbA1c entire duration 9.2 ± 1.4%]. T1DM girls had a lower height Z-score than control girls (p < 0.05), and 25-hydroxyvitamin D level was higher in T1DM youth than in controls (p < 0.001). After adjusting for pubertal status, height Z-score, and 25-hydroxyvitamin D, T1DM youth had a significantly lower lumbar BMD Z-score and femoral neck BMD than controls (p = 0.027 and p = 0.025, respectively). We also found that T1DM boys had a significantly lower lumbar BMD Z-score (p = 0.028), femoral neck BMD (p = 0.004), and total hip BMD (p = 0.016) than control boys. In contrast, these significant differences were not found in T1DM girls. Factors affecting BMD were different between T1DM boys and girls, and among different BMD sites. IL-13 was positively correlated with BMD in the total cohort and among girls. In boys - IL-2 and 25-hydroxyvitamin D were positively associated with BMD, and duration of diabetes was found to negatively affect BMD. CONCLUSION Deleterious effect of T1DM on BMD is gender specific. The longer the duration of T1DM, the greater the deficit in BMD found among boys with T1DM.
Collapse
Affiliation(s)
- Jeerunda Santiprabhob
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Diabetes Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Parichat Charoentawornpanich
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Khwanhatai Khemaprasit
- Siriraj Diabetes Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Teerarat Manpayak
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pornpimol Kiattisakthavee
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Amornrat Pipatsathian
- Division of Endocrinology and Metabolism, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Nilrat Wannasilp
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Brunetti G, D'Amato G, De Santis S, Grano M, Faienza MF. Mechanisms of altered bone remodeling in children with type 1 diabetes. World J Diabetes 2021; 12:997-1009. [PMID: 34326950 PMCID: PMC8311475 DOI: 10.4239/wjd.v12.i7.997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Bone loss associated with type 1 diabetes mellitus (T1DM) begins at the onset of the disease, already in childhood, determining a lower bone mass peak and hence a greater risk of osteoporosis and fractures later in life. The mechanisms underlying diabetic bone fragility are not yet completely understood. Hyperglycemia and insulin deficiency can affect the bone cells functions, as well as the bone marrow fat, thus impairing the bone strength, geometry, and microarchitecture. Several factors, like insulin and growth hormone/insulin-like growth factor 1, can control bone marrow mesenchymal stem cell commitment, and the receptor activator of nuclear factor-κB ligand/osteoprotegerin and Wnt-b catenin pathways can impair bone turnover. Some myokines may have a key role in regulating metabolic control and improving bone mass in T1DM subjects. The aim of this review is to provide an overview of the current knowledge of the mechanisms underlying altered bone remodeling in children affected by T1DM.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University "A. Moro" of Bari, Bari 70125, Italy
| | - Gabriele D'Amato
- Department of Women’s and Children’s Health, ASL Bari, Neonatal Intensive Care Unit, Di Venere Hospital, Bari 70124, Italy
| | - Stefania De Santis
- Department of Pharmacy-Drug Science, University of Bari Aldo Moro, Bari 70126, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Univ Bari, Bari 70124, Italy
| | - Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University "A.Moro", Bari 70124, Italy
| |
Collapse
|
10
|
Garavelli S, Bruzzaniti S, Tagliabue E, Di Silvestre D, Prattichizzo F, Mozzillo E, Fattorusso V, La Sala L, Ceriello A, Puca AA, Mauri P, Strollo R, Marigliano M, Maffeis C, Petrelli A, Bosi E, Franzese A, Galgani M, Matarese G, de Candia P. Plasma circulating miR-23~27~24 clusters correlate with the immunometabolic derangement and predict C-peptide loss in children with type 1 diabetes. Diabetologia 2020; 63:2699-2712. [PMID: 32728892 DOI: 10.1007/s00125-020-05237-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS We aimed to analyse the association between plasma circulating microRNAs (miRNAs) and the immunometabolic profile in children with type 1 diabetes and to identify a composite signature of miRNAs/immunometabolic factors able to predict type 1 diabetes progression. METHODS Plasma samples were obtained from children at diagnosis of type 1 diabetes (n = 88) and at 12 (n = 32) and 24 (n = 30) months after disease onset and from healthy control children with similar sex and age distribution (n = 47). We quantified 60 robustly expressed plasma circulating miRNAs by quantitative RT-PCR and nine plasma immunometabolic factors with a recognised role at the interface of metabolic and immune alterations in type 1 diabetes. Based on fasting C-peptide loss over time, children with type 1 diabetes were stratified into the following groups: those who had lost >90% of C-peptide compared with diagnosis level; those who had lost <10% of C-peptide; those showing an intermediate C-peptide loss. To evaluate the modulation of plasma circulating miRNAs during the course of type 1 diabetes, logistic regression models were implemented and the correlation between miRNAs and immunometabolic factors was also assessed. Results were then validated in an independent cohort of children with recent-onset type 1 diabetes (n = 18). The prognostic value of the identified plasma signature was tested by a neural network-based model. RESULTS Plasma circulating miR-23~27~24 clusters (miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27a-3p and miR-27b-3p) were upmodulated upon type 1 diabetes progression, showed positive correlation with osteoprotegerin (OPG) and were negatively correlated with soluble CD40 ligand, resistin, myeloperoxidase and soluble TNF receptor in children with type 1 diabetes but not in healthy children. The combination of plasma circulating miR-23a-3p, miR-23b-3p, miR-24-3p, miR-27b-3p and OPG, quantified at disease onset, showed a significant capability to predict the decline in insulin secretion 12 months after disease diagnosis in two independent cohorts of children with type 1 diabetes. CONCLUSIONS/INTERPRETATIONS We have pinpointed a novel miR-23a-3p/miR-23b-3p/miR-24-3p/miR-27b-3p/OPG plasma signature that may be developed into a novel blood-based method to better stratify patients with type 1 diabetes and predict C-peptide loss.
Collapse
Affiliation(s)
- Silvia Garavelli
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy
| | - Sara Bruzzaniti
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - Elena Tagliabue
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
| | | | | | - Enza Mozzillo
- Centre of Paediatric Diabetology, Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Valentina Fattorusso
- Centre of Paediatric Diabetology, Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Lucia La Sala
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
| | | | - Annibale A Puca
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, C. N. R, Segrate, Milan, Italy
| | - Rocky Strollo
- Department of Medicine, Unit of Endocrinology & Diabetes, Università Campus Bio-Medico, Rome, Italy
| | - Marco Marigliano
- Paediatric Diabetes and Metabolic Disorders Unit, University of Verona, Verona, Italy
| | - Claudio Maffeis
- Paediatric Diabetes and Metabolic Disorders Unit, University of Verona, Verona, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Adriana Franzese
- Centre of Paediatric Diabetology, Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Mario Galgani
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', via Pansini 5, 80131, Naples, Italy.
| | - Giuseppe Matarese
- Institute for Endocrinology and Experimental Oncology 'G. Salvatore', C.N.R, via Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples 'Federico II', via Pansini 5, 80131, Naples, Italy.
| | - Paola de Candia
- IRCCS MultiMedica, via G. Fantoli 16/15, 20138, Milan, Italy.
| |
Collapse
|
11
|
Sherk VD, Vigers T, Pyle L, Snell-Bergeon JK, Nadeau KJ, Rickels MR, Miller KM, Greenbaum CJ, Shah VN. Acute Hyperinsulinemia Alters Bone Turnover in Women and Men With Type 1 Diabetes. JBMR Plus 2020; 4:e10389. [PMID: 32995692 PMCID: PMC7507374 DOI: 10.1002/jbm4.10389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) increases fracture risk across the lifespan. The low bone turnover associated with T1D is thought to be related to glycemic control, but it is unclear whether peripheral hyperinsulinemia due to dependence on exogenous insulin has an independent effect on suppressing bone turnover. The purpose of this study was to test the bone turnover marker (BTM) response to acute hyperinsulinemia. Fifty‐eight adults aged 18 to 65 years with T1D over 2 years were enrolled at seven T1D Exchange Clinic Network sites. Participants had T1D diagnosis between age 6 months to 45 years. Participants were stratified based on their residual endogenous insulin secretion measured as peak C‐peptide response to a mixed meal tolerance test. BTMs (CTX, P1NP, sclerostin [SCL], osteonectin [ON], alkaline phosphatase [ALP], osteocalcin [OCN], osteoprotegerin [OPG], osteopontin [OPN], and IGF‐1) were assessed before and at the end of a 2‐hour hyperinsulinemic‐euglycemic clamp (HEC). Baseline ON (r = −0.30, p = .022) and OCN (r = −0.41, p = .002) were negatively correlated with age at T1D diagnosis, but baseline BTMs were not associated with HbA1c. During the HEC, P1NP decreased significantly (−14.5 ± 44.3%; p = .020) from baseline. OCN, ON, and IGF‐1 all significantly increased (16.0 ± 13.1%, 29.7 ± 31.7%, 34.1 ± 71.2%, respectively; all p < .001) during the clamp. The increase in SCL was not significant (7.3 ± 32.9%, p = .098), but the decrease in CTX (−12.4 ± 48.9, p = .058) neared significance. ALP and OPG were not changed from baseline (p = .23 and p = .77, respectively). Baseline ON and SCL were higher in men, but OPG was higher in women (all p ≤ .029). SCL was the only BTM that changed differently in women than men. There were no differences in baseline BTMs or change in BTMs between C‐peptide groups. Exogenous hyperinsulinemia acutely alters bone turnover, suggesting a need to determine whether strategies to promote healthy remodeling may protect bone quality in T1D. © 2020 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Department of OrthopedicsSchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Timothy Vigers
- Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Pediatrics, Section of EndocrinologySchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA.,Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Laura Pyle
- Department of Biostatistics and Informatics Colorado School of Public Health University of Colorado Anschutz Medical Campus Aurora CO USA.,Department of Pediatrics, Section of EndocrinologySchool of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA.,Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Kristen J Nadeau
- Children's Hospital Colorado University of Colorado School of Medicine Aurora CO USA
| | - Michael R Rickels
- Institute for Diabetes, Obesity & Metabolism University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | | | | | - Viral N Shah
- Barbara Davis Center for Diabetes University of Colorado Anschutz Medical Campus Aurora CO USA
| |
Collapse
|
12
|
Fuusager G, Milandt N, Shanbhogue VV, Hermann AP, Schou AJ, Christesen HT. Lower estimated bone strength and impaired bone microarchitecture in children with type 1 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001384. [PMID: 32816873 PMCID: PMC7437694 DOI: 10.1136/bmjdrc-2020-001384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Patients with type 1 diabetes has an increased risk of fracture. We wished to evaluate estimated bone strength in children and adolescents with type 1 diabetes and assess peripheral bone geometry, volumetric bone mineral density (vBMD) and microarchitecture. RESEARCH DESIGN AND METHODS In a cross-sectional study, high-resolution peripheral quantitative CT (HR-pQCT) was performed of the radius and tibia in 84 children with type 1 diabetes and 55 healthy sibling controls. Estimated bone strength was assessed using a microfinite element analysis solver. Multivariate regression analyses were performed adjusting for age, sex, height and body mass index. RESULTS The median age was 13.0 years in the diabetes group vs 11.5 years in healthy sibling controls. The median (range) diabetes duration was 4.2 (0.4-15.9) years; median (range) latest year Hb1Ac was 7.8 (5.9-11.8) % (61.8 (41-106) mmol/mol). In adjusted analyses, patients with type 1 diabetes had reduced estimated bone strength in both radius, β -390.6 (-621.2 to -159.9) N, p=0.001, and tibia, β -891.9 (-1321 to -462.9) N, p<0.001. In the radius and tibia, children with type 1 diabetes had reduced cortical area, trabecular vBMD, trabecular number and trabecular bone volume fraction and increased trabecular inhomogeneity, adjusted p<0.05 for all. Latest year HbA1c was negatively correlated with bone microarchitecture (radius and tibia), trabecular vBMD and estimated bone strength (tibia). CONCLUSION Children with type 1 diabetes had reduced estimated bone strength. This reduced bone strength could partly be explained by reduced trabecular bone mineral density, adverse microarchitecture and reduced cortical area. We also found increasing latest year HbA1c to be associated with several adverse changes in bone parameters. HR-pQCT holds potential to identify early adverse bone changes and to explain the increased fracture risk in young patients with type 1 diabetes.
Collapse
Affiliation(s)
- Gitte Fuusager
- Clinical Research, Syddansk Universitet, Odense, Syddanmark, Denmark
- Department of Internal Medicine, Hospitalsenheden Vest, Herning, Denmark
- OPEN - Odense Patient data Explorative Network, Odense Universitets Hospital, Odense, Denmark
- Hans Christian Andersen Children's Hospital, Odense Universitetshospital, Odense, Denmark
| | - Nikolaj Milandt
- Clinical Research, Syddansk Universitet, Odense, Syddanmark, Denmark
- The Orthopedic Research Unit, Odense University Hospital, Odense, Denmark
| | | | | | - Anders Jørgen Schou
- Clinical Research, Syddansk Universitet, Odense, Syddanmark, Denmark
- Hans Christian Andersen Children's Hospital, Odense Universitetshospital, Odense, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Henrik Thybo Christesen
- Clinical Research, Syddansk Universitet, Odense, Syddanmark, Denmark
- Hans Christian Andersen Children's Hospital, Odense Universitetshospital, Odense, Denmark
| |
Collapse
|
13
|
Leão AAP, Fritz CK, Dias MRMG, Carvalho JAR, Mascarenhas LPG, Cat MNL, Radominski R, Nesi-França S. Bone mass and dietary intake in children and adolescents with type 1 diabetes mellitus. J Diabetes Complications 2020; 34:107573. [PMID: 32169332 DOI: 10.1016/j.jdiacomp.2020.107573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To evaluate the bone mineral density (BMD) in children/adolescents with type 1 diabetes mellitus (T1DM) and its association with the nutritional intake, metabolic control, and physical activity level of this population. METHODS Study including 34 patients with T1DM and 17 controls. Assessments included the participants disease history, intake of macronutrient, calcium, phosphorus and magnesium, physical activity level, total body and lumbar spine BMD and serum levels of glycated hemoglobin, vitamin D, calcium, phosphorus, magnesium, osteocalcin and C-terminal telopeptide. RESULTS Total body and lumbar spine BMD z-scores were normal in all but two participants in the T1DM group. The T1DM group had significantly lower total body BMD z-score values (p < 0.001) and levels of osteocalcin, C-terminal telopeptide, calcium, phosphorus, and magnesium. Intake of macronutrients and calcium was inadequate in both groups. Participants in the T1DM group were more sedentary (88%) and had inadequate metabolic control (91%) and low vitamin D levels (82%). Bone mass in the T1DM group was influenced by body mass index (BMI), pubertal stage, disease duration, calcium intake, and physical activity level. CONCLUSIONS Bone mass in patients with T1DM was adequate but lower than controls and was influenced by BMI, pubertal stage, disease duration, calcium consumption, and physical activity level.
Collapse
Affiliation(s)
- Andreia Araújo Porchat Leão
- Postgraduate Program in Child and Adolescent Health, Department of Pediatrics, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | - Camilla Kapp Fritz
- Postgraduate Program in Child and Adolescent Health, Department of Pediatrics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | - Mônica Nunes Lima Cat
- Department of Pediatrics, School of Medicine, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Rosana Radominski
- Postgraduate Program in Food and Nutrition, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Suzana Nesi-França
- Department of Pediatrics, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
14
|
Yang J, Ma C, Zhang M. High glucose inhibits osteogenic differentiation and proliferation of MC3T3‑E1 cells by regulating P2X7. Mol Med Rep 2019; 20:5084-5090. [PMID: 31702818 PMCID: PMC6854521 DOI: 10.3892/mmr.2019.10790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus adversely affects human bones and increases the risk of developing osteoporosis. In the present study, treatment with 30 mmol/l glucose was used to establish a high glucose (HG) cell model in vitro. Plasmids were used to overexpress the P2X purinoceptor 7 (P2X7) gene. Brilliant blue G and (4‑benzoyl‑benzoyl)‑ATP were used as a P2X7 antagonist and agonist, respectively. Proliferation of osteogenic MC3T3‑E1 cells and alkaline phosphatase (ALP) activity were determined using MTT and colorimetric assays, respectively. Alizarin Red S was used to assess calcification of MC3T3‑E1 cells. Western blotting and reverse transcription‑quantitative PCR were performed to determine protein and mRNA expression levels. The results demonstrated that HG inhibited MC3T3‑E1 cell proliferation and P2X7 expression, reduced calcification, and downregulated the expression levels of ALP and osteocalcin (Ocn) in MC3T3‑E1 cells. Overexpression of P2X7 in HG conditions increased calcification and proliferation, and upregulated the levels of ALP and Ocn in MC3T3‑E1 cells. Inhibition of P2X7 downregulated the expressions of ALP and Ocn in MC3T3‑E1 cells under HG conditions. Therefore, the present results indicated that HG caused damage to osteogenic MC3T3‑E1 cells. Thus, P2X7 may be a regulatory factor that may be used to counteract the effects of HG on osteogenesis.
Collapse
Affiliation(s)
- Jinsan Yang
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Cao Ma
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Maoshu Zhang
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
15
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|
16
|
Fuusager GB, Christesen HT, Milandt N, Schou AJ. Glycemic control and bone mineral density in children and adolescents with type 1 diabetes. Pediatr Diabetes 2019; 20:629-636. [PMID: 31017353 DOI: 10.1111/pedi.12861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/09/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/OBJECTIVE Fracture risk is increased in patients with type 1 diabetes. We aimed to evaluate bone mineral density (BMD) and to identify risk factors associated to lower BMD in Danish children and adolescents with type 1 diabetes. METHODS In this cross-sectional study BMD Z-score were determined by dual-energy X-ray absorptiometry (DXA) from a cohort of otherwise healthy children and adolescents with type 1 diabetes. Puberty Tanner stage, hemoglobin A1c (HbA1c), disease duration, and age at diabetes onset were investigated for associations to DXA results. RESULTS We included 85 patients, 39 girls, 46 boys, with a median (range) age of 13.2 (6-17) years; disease duration 4.2 (0.4-15.9) years; HbA1c of the last year 61.8 (41-106) mmol/mol. Our patients were taller and heavier than the background population. When adjusted for increased height SD and body mass index SD, no overall difference in BMD Z-score was found. When stratified by sex, boys had significantly increased adjusted mean BMD Z-score, 0.38 (95% confidence interval [CI]: 0.13;0.62), girls; -0.27 (95% CI: -0.53;0.00). For the whole cohort, a negative correlation between mean latest year HbA1c and BMD Z-score was found, adjusted ß -0.019 (95%CI: -0.034;-0.004, P = 0.01). Poor glycemic control (HbA1c > 58 mmol/mol [7.5%]) within the latest year was likewise negatively correlated with BMD Z-score, adjusted ß -0.35 (95%CI: -0.69;-0.014, P = 0.04). CONCLUSIONS Our study suggests that elevated blood glucose has a negative effect on the bones already before adulthood in patients with type 1 diabetes, although no signs of osteoporosis were identified by DXA.
Collapse
Affiliation(s)
- Gitte B Fuusager
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Nikolaj Milandt
- The Orthopedic Research Unit, Odense University Hospital, Odense, Denmark
| | - Anders J Schou
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| |
Collapse
|
17
|
Chen SC, Shepherd S, McMillan M, McNeilly J, Foster J, Wong SC, Robertson KJ, Ahmed SF. Skeletal Fragility and Its Clinical Determinants in Children With Type 1 Diabetes. J Clin Endocrinol Metab 2019; 104:3585-3594. [PMID: 30848792 DOI: 10.1210/jc.2019-00084] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
CONTEXT Type 1 diabetes (T1D) is associated with an increased fracture risk at all ages. OBJECTIVE To understand the determinants of bone health and fractures in children with T1D. DESIGN Case-control study of children with T1D on bone-turnover markers, dual-energy X-ray absorptiometry, and 3 Tesla-MRI of the proximal tibia to assess bone microarchitecture and vertebral marrow adiposity compared with age- and sex-matched healthy children. RESULTS Thirty-two children with T1D at a median (range) age of 13.7 years (10.4, 16.7) and 26 controls, aged 13.8 years (10.2, 17.8), were recruited. In children with T1D, serum bone-specific alkaline phosphatase (BAP) SD score (SDS), C-terminal telopeptide of type I collagen SDS, and total body (TB) and lumbar spine bone mineral density (BMD) SDS were lower (all P < 0.05). Children with T1D also had lower trabecular volume [0.55 (0.47, 0.63) vs 0.59 (0.47, 0.63); P = 0.024], lower trabecular number [1.67 (1.56, 1.93) vs 1.82 (1.56, 1.99); P = 0.004], and higher trabecular separation [0.27 (0.21, 0.32) vs 0.24 (0.20, 0.33); P = 0.001] than controls. Marrow adiposity was similar in both groups (P = 0.25). Bone formation, as assessed by BAP, was lower in children with poorer glycemic control (P = 0.009) and who were acidotic at initial presentation (P = 0.017) but higher in children on continuous subcutaneous insulin infusion (P = 0.025). Fractures were more likely to be encountered in children with T1D compared with controls (31% vs 19%; P< 0.001). Compared with those without fractures, the T1D children with a fracture history had poorer glycemic control (P = 0.007) and lower TB BMD (P < 0.001) but no differences in bone microarchitecture. CONCLUSION Children with T1D display a low bone-turnover state with reduced bone mineralization and poorer bone microarchitecture.
Collapse
Affiliation(s)
- Suet Ching Chen
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
- Paediatric Diabetes Service, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Sheila Shepherd
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Martin McMillan
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Jane McNeilly
- Department of Clinical Biochemistry, Royal Hospital for Children, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - John Foster
- Department of Clinical Physics, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Sze Choong Wong
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Kenneth J Robertson
- Paediatric Diabetes Service, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Madsen JOB, Jørgensen NR, Pociot F, Johannesen J. Bone turnover markers in children and adolescents with type 1 diabetes-A systematic review. Pediatr Diabetes 2019; 20:510-522. [PMID: 30941847 DOI: 10.1111/pedi.12853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with impaired bone health and both osteocalcin (OCN) and procollagen type 1 amino terminal propetide (P1NP) (markers of bone formation) and C-terminal cross-linked telopeptide (CTX) (marker of bone resorption) are decreased in adult patients with T1D. We review the existing literature characterizing these bone turnover markers in children and adolescents with T1D and by meta-analysis examine whether alterations in OCN, P1NP, and CTX are evident and if potential changes correlate to the metabolic control (hemoglobin A1c, HbA1c). Systematic searches at MEDLINE and EMBASE were conducted in January 2018 identifying all studies describing OCN, P1NP, or CTX in children and adolescents with T1D. A total of 26 studies were included, representing data from more than 1000 patients with T1D. Pooled analyses of standard mean difference and summary effects analysis were performed when sufficient data were available. Pooled analysis revealed mean OCN to be significantly lower in children and adolescents with T1D compared to healthy controls (standard mean difference: -1.87, 95% confidence interval, CI: -2.83; -0.91) whereas both P1NP and CTX did not differ from the controls. Only data on OCN was sufficient to make pooled correlation analysis revealing a negative correlation between OCN and HbA1c (-0.31 95% CI: -0.45; -0.16). In conclusion, OCN is decreased in children and adolescents with T1D, whether CTX and P1NP are affected as well is unclear, due to very limited data available. New and large studies including OCN, P1NP, and CTX (preferably as z-scores adjusting for age variability) is needed to further elucidate the status of bone turnover in children and adolescents with T1D.
Collapse
Affiliation(s)
- Jens O B Madsen
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Glostrup, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Flemming Pociot
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Jesper Johannesen
- Department of Pediatrics, Herlev University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Grzelak T, Wedrychowicz A, Grupinska J, Pelczynska M, Sperling M, Mikulska AA, Naughton V, Czyzewska K. Neuropeptide B and neuropeptide W as new serum predictors of nutritional status and of clinical outcomes in pediatric patients with type 1 diabetes mellitus treated with the use of pens or insulin pumps. Arch Med Sci 2019; 15:619-631. [PMID: 31110527 PMCID: PMC6524189 DOI: 10.5114/aoms.2018.75818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The aim of our study was to determine the relationship between neuropeptide B (NPB), neuropeptide W (NPW), nutritional and antioxidant status and selected fat- and bone-derived factors in type 1 diabetes mellitus (T1DM) treated using pens (T1DM pen group) or insulin pumps (T1DM pump group) in order to investigate the potential role of NPB and NPW in the clinical outcomes of T1DM. MATERIAL AND METHODS Fifty-eight patients with T1DM and twenty-five healthy controls (CONTR) participated in the study. Assessments of NPB, NPW, total antioxidant status (TAS), leptin, adiponectin, osteocalcin, and free soluble receptor activator for nuclear factor κB (free sRANKL) were conducted. RESULTS NPB, NPW, leptin, and TAS were lower (by 33%, p < 0.013; 34%, p < 0.008; 290%, p < 0.00004; 21%, p < 0.05; respectively), while adiponectin was by 51% higher (p < 0.006) in T1DM vs. CONTR, while osteocalcin and free sRANKL levels were similar in both groups. NPW was lower in the T1DM pen group both vs. the T1DM pump group (36% lower, p < 0.0009) and vs. the CONTR group (35% lower, p < 0.002). In the T1DM pen group, but not in the T1DM pump group or the CONTR group, the Cole index and TAS levels explain (besides NPB) the variation in NPW values. ROC curves showed that serum levels of leptin, adiponectin, NPB and NPW (but not osteocalcin or free sRANKL) were predictive indicators for T1DM. CONCLUSIONS Measurements of NPB and NPW, besides leptin and adiponectin, are worth considering in the detailed prognosis of nutritional status in T1DM, primarily in the T1DM pen-treated population.
Collapse
Affiliation(s)
- Teresa Grzelak
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Wedrychowicz
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Grupinska
- Department of General Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Pelczynska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcelina Sperling
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Aniceta A. Mikulska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
- Nutrigenomics Student Research Group, Poznan University of Medical Sciences, Poznan, Poland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland
| | - Krystyna Czyzewska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Shen Y, Guo S, Chen G, Ding Y, Wu Y, Tian W. Hyperglycemia Induces Osteoclastogenesis and Bone Destruction Through the Activation of Ca 2+/Calmodulin-Dependent Protein Kinase II. Calcif Tissue Int 2019; 104:390-401. [PMID: 30506439 DOI: 10.1007/s00223-018-0499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
Hyperglycemia induces osteoclastogenesis and bone resorption through complicated, undefined mechanisms. Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes osteoclastogenesis, and could be activated by hyperglycemia. Here, we investigated whether CaMKII is involved in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption. Osteoclast formation, bone resorption, CaMKII expression and phosphorylation were measured under high glucose in vitro and in streptozotocin-induced hyperglycemia rats with or without CaMKII inhibitor KN93. The results showed that 25 mmol/L high glucose in vitro promoted cathepsin K and tartrate-resistant acid phosphatase expression (p < 0.05) and osteoclast formation (p < 0.01) associated with enhancing β isoform expression (p < 0.05) and CaMKII phosphorylation (p < 0.001). Hyperglycemia promoted the formation of osteoclasts and resorption of trabecular and alveolar bone, and inhibited sizes of femur and mandible associated with enhanced CaMKII phosphorylation (p < 0.001) in rats. All these changes could be alleviated by KN93. These findings imply that CaMKII participates not only in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption, but also in the hyperglycemia-induced developmental inhibition of bone.
Collapse
Affiliation(s)
- Yanxin Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
21
|
Song W, Qiao Y, Xue J, Zhao F, Yang X, Li G. The association of insulin-like growth factor-1 standard deviation score and height in Chinese children with type 1 diabetes mellitus. Growth Factors 2018; 36:274-282. [PMID: 30900527 DOI: 10.1080/08977194.2019.1573819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Assessing the relationship between IGF-1 and height in type 1 diabetes children. Seventy-two type 1 diabetes children and 190 controls were recruited. The height standard deviation score of type 1 diabetes children was significantly higher than controls. The height standard deviation score was higher than the target height standard deviation score in both type 1 diabetes and controls. Serum IGF-1 levels and the IGF-1 standard deviation score were significantly lower in type 1 diabetes patients compared with controls. There was a significant difference in IGF-1 standard deviation score between the good glycemic control group and control group. The height standard deviation score was significantly correlated with C-peptide and IGF-1 levels. Furthermore, the IGF-1 standard deviation score was significantly correlated with glycemic control and C-peptide. The growth hormone/IGF-1 axis is impaired in type 1 diabetes, but height with good or poor glycemic control is not impaired.
Collapse
Affiliation(s)
- Wei Song
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Yu Qiao
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
| | - Jiang Xue
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Fei Zhao
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Xin Yang
- b Department of Pediatrics , the Second Hospital of Shandong University , Jinan , P.R. China
| | - Guimei Li
- a Department of Pediatrics , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , P.R. China
| |
Collapse
|
22
|
Wierzbicka E, Swiercz A, Pludowski P, Jaworski M, Szalecki M. Skeletal Status, Body Composition, and Glycaemic Control in Adolescents with Type 1 Diabetes Mellitus. J Diabetes Res 2018; 2018:8121634. [PMID: 30250851 PMCID: PMC6140037 DOI: 10.1155/2018/8121634] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Disturbed bone turnover, osteoporosis, and increased fracture risk are late complications of insulin-dependent diabetes mellitus. Little is known about how far and to what extent can glycaemic control of type 1 diabetes mellitus (T1DM) prevent disturbances of bone health and body composition during the growth and maturation period. OBJECTIVE The aim of this cross-sectional study was to compare the skeletal status outcomes and body composition between patients stratified by glycaemic control (1-year HbA1c levels) into well- and poorly-controlled subgroups in a population of T1DM adolescents, that is, <8% and ≥8%, respectively. SUBJECTS AND METHODS Skeletal status and body composition were evaluated in 60 adolescents with T1DM (53.3% female; mean aged: 15.1 ± 1.9 years; disease duration: 5.1 ± 3.9 years) using dual energy X-ray absorptiometry (GE Prodigy). The results were compared to age- and sex-adjusted reference values for healthy controls. The calculated Z-scores of different metabolic control subgroups were compared. Clinical data was also assessed. RESULTS As evidenced by Z-scores, patients with T1DM revealed a significantly lower TBBMD (total body bone mineral density), TBBMC (total body bone mineral content), S24BMD (bone mineral density of lumbar spine L2-L4), and TBBMC/LBM ratio (total body bone mineral content/lean body mass), but higher FM (fat mass) and FM/LBM ratio (fat mass/lean body mass) values compared to an age- and sex-adjusted general population. The subset (43.3% patients) with poor metabolic control (HbA1c ≥ 8%) had lower TBBMD, TBBMC, and LBM compared to respective values noted in the HbA1c < 8% group, after adjusting for confounders (mean Z-scores: -0.74 vs. -0.10, p = 0.037; -0.67 vs. +0.01, p = 0.026; and -0.45 vs. +0.20, p = 0.043, respectively). Additionally, we found a significant difference in the TBBMC/LBM ratio (relative bone strength index) between the metabolic groups (-0.58 vs. -0.07; p = 0.021). A statistically significant negative correlation between 1-year HbA1c levels and Z-scores of TBBMD, TBBMC, and LBM was also observed. In patients with longer disease duration, a significant negative correlation was established only for TBBMD, after adjusting for confounders. The relationships between densitometric values and age at onset of T1DM and sex were not significant and showed no relation to any of the analysed parameters of the disease course. CONCLUSION Findings from this study of adolescents with T1DM indicate that the lower Z-scores of TBBMD, TBBMC, and LBM as well as the TBBMC/LBM ratio are associated with increased HbA1c levels. Their recognition can be crucial in directing strategies to optimise metabolic control and improve diabetes management for bone development and maintenance in adolescents with T1DM.
Collapse
Affiliation(s)
- Elzbieta Wierzbicka
- Department of Human Nutrition, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Anna Swiercz
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Pawel Pludowski
- Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Jaworski
- Department of Biochemistry, Radioimmunology, and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczyslaw Szalecki
- Department of Endocrinology and Diabetology, The Children's Memorial Health Institute, Warsaw, Poland
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
23
|
Loureiro MB, Ururahy MAG, Souza KSCD, Oliveira YMDC, Silva HPVD, Bortolin RH, Bezerra JF, Hirata RDC, Maciel-Neto JJ, Arrais RF, Almeida MDG, Hirata MH, Rezende AAD. Relationship between glycemic control and OPG gene polymorphisms with lower bone mineral density in patients with type 1 Diabetes mellitus. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000400060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Maratova K, Soucek O, Matyskova J, Hlavka Z, Petruzelkova L, Obermannova B, Pruhova S, Kolouskova S, Sumnik Z. Muscle functions and bone strength are impaired in adolescents with type 1 diabetes. Bone 2018; 106:22-27. [PMID: 29017892 DOI: 10.1016/j.bone.2017.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sarcopenia and osteoporosis are among the late complications of type 1 diabetes (T1D) in adults. Whether and to what extent musculoskeletal impairment is present in childhood and adolescence has yet to be determined. The aim of this study was to assess volumetric bone mineral density (BMD) and dynamic muscle function in adolescents with T1D and to assess the clinical and biochemical predictors of their musculoskeletal system. METHODS Ninety-five children and adolescents (59 boys and 36 girls, mean age 16.2±1.2years) with T1D were included in this cross-sectional study. Study participants were divided into two groups according to the duration of the disease (<6years and >9years, respectively). Volumetric BMD of the non-dominant tibia was assessed using peripheral quantitative computed tomography (pQCT). Dynamic muscle function was evaluated using jumping mechanography. Gender- and height-specific Z-scores were calculated using published reference data. HbA1c was evaluated retrospectively as an average over the past 5years. RESULTS Relative muscle power (Pmax/mass) and force (Fmax/body weight) were significantly decreased in T1D subjects (mean Z-scores -0.4±1.0; p<0.001, and -0.3±1.1; p<0.01, respectively). The duration of T1D negatively affected Pmax/mass (p<0.01) but not Fmax/body weight (p=0.54). Patients with T1D had also decreased trabecular BMD, the Strength-Strain Index and cortical thickness (mean Z-scores -0.8±1.3; -0.5±0.8 and -1.1±0.8, respectively, p<0.001 for all) whereas cortical BMD was increased when compared to controls (Z-score 1.2±0.90, p<0.001). No association was observed between the HbA1c and 25-hydroxyvitamin D levels and bone or muscle parameters. CONCLUSION T1D influences the musculoskeletal system in adolescence. Decreased muscle function could contribute to the osteoporosis reported in adult diabetic patients.
Collapse
Affiliation(s)
- Klara Maratova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Ondrej Soucek
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Jana Matyskova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Zdenek Hlavka
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 49/83, 186 75 Prague 8, Czech Republic.
| | - Lenka Petruzelkova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Barbora Obermannova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Stepanka Pruhova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Stanislava Kolouskova
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| | - Zdenek Sumnik
- Department of Pediatrics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 150 06 Prague 5, Czech Republic.
| |
Collapse
|
26
|
Guo L, Gao Z, Ge H. Effects of serum 25-hydroxyvitaminD level on decreased bone mineral density at femoral neck and total hip in Chinese type 2 diabetes. PLoS One 2017; 12:e0188894. [PMID: 29190676 PMCID: PMC5708672 DOI: 10.1371/journal.pone.0188894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The aims of this study is to observe the levels of serum 25-hydroxyvitaminD (25OHD), parathyroid hormone and bone mineral density (BMD) in type 2 diabetes as well as to analyze the correlationship between 25OHD level and BMD. METHODS The subjects included 368 type 2 diabetic patients, ages ranged 40-79 years and 300 non-diabetic control subjects matched for age, gender and body mass index. The serum 25OHD concentration, parathyroid hormone level and BMDs value at lumbar spine (L1-L4), femoral neck, total hip and total body were measured. The BMDs (g/cm2) was measured by LUNAR's DEXA dual-energy X-ray absorptiometry. RESULTS ①Compared with control subjects, the serum 25OHD level, BMDs at the femoral neck and total hip declined in type 2 diabetes[(45±17 vs. 36±12 nmol/L), (0.93±0.17 vs. 0.85±0.14 g/cm2), (0.93±0.14 vs. 0.87±0.15g/cm2) (all P<0.05)]; The parathyroid hormone level in type 2 diabetes was higher in type 2 diabetes than that in control subjects (8.5±4.2 vs. 5.6±3.9 pmol/L) (P<0.05). ②Compared with diabetes duration ≤10 years group, BMDs at the femoral neck and total hip decreased in diabetes duration >10years group [(0.88±0.11 vs. 0.81±0.15 g/cm2), (0.91±0.14 vs. 0.84±0.16 g/cm2)(All P<0.05)]; The parathyroid hormone level increased in diabetes duration >10years group than diabetes duration ≤10 years group (10.6±9.1 vs. 7.1±3.7 pmol/L) (P<0.05). ③ Compared with hemoglobin A1c (HbA1c) ≤8% group, 25OHD and BMDs at the femoral neck and total hip in HbA1c>8% group decreased [(40±15 vs. 32±13 nmol/l), (0.89±0.13 vs. 0.83±0.13 g/cm2), (0.95±0.13 vs. 0.83±0.16 g/cm2) (All P<0.05)] and the parathyroid hormone level increased (7.2±4.0 vs. 10.0±8.8 pmol/L) (P<0.05). ④The morbidity of diabetic osteoporosis and osteopenia (41.0%, 47.8%) were higher than those in control subjects (27.0%,33.3%) (X2 = 4.37 and 4.70, P = 0.04 and 0.03); Diabetes duration, HbA1c and parathyroid hormone levels were longer or higher in Diabetic osteoporosis group than those in normal BMD group and osteopenia group(All p<0.05). ⑤ Simple factor correlation analysis showed that the BMD at the femoral neck was negatively correlated with the age, diabetes duration, HbA1c, parathyroid hormone (rs = -0.18,-0.23,-0.18,-0.25), and positively correlated with 25OHD (rs = 0.23). CONCLUSIONS Decreased BMDs and increased incidence of osteoporosis were observed in type 2 diabetic patients, which are closely related to the serum 25OHD level. These findings were more prominent at the femoral neck and total hip for patients with a longer diabetic history and poor glycemic control.
Collapse
Affiliation(s)
- Liting Guo
- Department of Endocrinology, Teda International Cardiovascular Hospital, Tianjin, China
| | - Zhihong Gao
- Department of Endocrinology, General Hospital of Tianjin Medical University, Tianjin, China
- * E-mail: (ZHG); (HQG)
| | - Huanqi Ge
- Department of Endocrinology, Teda International Cardiovascular Hospital, Tianjin, China
- * E-mail: (ZHG); (HQG)
| |
Collapse
|
27
|
Raehtz S, Bierhalter H, Schoenherr D, Parameswaran N, McCabe LR. Estrogen Deficiency Exacerbates Type 1 Diabetes-Induced Bone TNF-α Expression and Osteoporosis in Female Mice. Endocrinology 2017; 158:2086-2101. [PMID: 28419209 PMCID: PMC5505215 DOI: 10.1210/en.2016-1821] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Estrogen deficiency after menopause is associated with rapid bone loss, osteoporosis, and increased fracture risk. Type 1 diabetes (T1D), characterized by hypoinsulinemia and hyperglycemia, is also associated with bone loss and increased fracture risk. With better treatment options, T1D patients are living longer; therefore, the number of patients having both T1D and estrogen deficiency is increasing. Little is known about the mechanistic impact of T1D in conjunction with estrogen deficiency on bone physiology and density. To investigate this, 11-week-old mice were ovariectomized (OVX), and T1D was induced by multiple low-dose streptozotocin injection. Microcomputed tomographic analysis indicated a marked reduction in trabecular bone volume fraction (BVF) in T1D-OVX mice (~82%) that was far greater than the reductions (~50%) in BVF in either the OVX and T1D groups. Osteoblast markers, number, and activity were significantly decreased in T1D-OVX mice, to a greater extent than either T1D or OVX mice. Correspondingly, marrow adiposity was significantly increased in T1D-OVX mouse bone. Bone expression analyses revealed that tumor necrosis factor (TNF)-α levels were highest in T1D-OVX mice and correlated with bone loss, and osteoblast and osteocyte death. In vitro studies indicate that estrogen deficiency and high glucose enhance TNF-α expression in response to inflammatory signals. Taken together, T1D combined with estrogen deficiency has a major effect on bone inflammation, which contributes to suppressed bone formation and osteoporosis. Understanding the mechanisms/effects of estrogen deficiency in the presence of T1D on bone health is essential for fracture prevention in this patient population.
Collapse
Affiliation(s)
- Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Hayley Bierhalter
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Daniel Schoenherr
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | | | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
28
|
Raisingani M, Preneet B, Kohn B, Yakar S. Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis. Growth Horm IGF Res 2017; 34:13-21. [PMID: 28482269 PMCID: PMC5516798 DOI: 10.1016/j.ghir.2017.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/23/2017] [Accepted: 04/27/2017] [Indexed: 12/29/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases diagnosed in childhood. Childhood and adolescent years are also the most important period for growth in height and acquisition of skeletal bone mineral density (BMD). The growth hormone (GH)/insulin like growth factor -1 (IGF-1) axis which regulates growth, is affected by T1DM, with studies showing increased GH and decreased IGF-1 levels in children with T1DM. There is conflicting data as to whether adolescents with TIDM are able to achieve their genetically-determined adult height. Furthermore, data support that adolescents with T1DM have decreased peak BMD, although the pathophysiology of which has not been completely defined. Various mechanisms have been proposed for the decrease in BMD including low osteocalcin levels, reflecting decreased bone formation; increased sclerostin, an inhibitor of bone anabolic pathways; and increased leptin, an adipocytokine which affects bone metabolism via central and peripheral mechanisms. Other factors implicated in the increased bone resorption in T1DM include upregulation of the osteoprotegerin/ receptor-activator of the nuclear factor-κB ligand pathway, elevated parathyroid hormone levels, and activation of other cytokines involved in chronic systemic inflammation. In this review, we summarize the clinical studies that address the alterations in the GH/IGF-I axis, linear growth velocity, and BMD in children and adolescents with T1DM; and we review the possible molecular mechanisms that may contribute to an attenuation of linear growth and to the reduction in the acquisition of peak bone mass in the child and adolescent with T1DM.
Collapse
Affiliation(s)
- Manish Raisingani
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, New York University School of Medicine, New York, NY 10016, United States
| | - Brar Preneet
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, New York University School of Medicine, New York, NY 10016, United States
| | - Brenda Kohn
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, New York University School of Medicine, New York, NY 10016, United States
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010-4086, United States.
| |
Collapse
|
29
|
Status of Bone Mineral Density in Children with Type 1 Diabetes Mellitus and Its Related Factors. IRANIAN JOURNAL OF PEDIATRICS 2017. [DOI: 10.5812/ijp.9062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Faienza MF, Ventura A, Delvecchio M, Fusillo A, Piacente L, Aceto G, Colaianni G, Colucci S, Cavallo L, Grano M, Brunetti G. High Sclerostin and Dickkopf-1 (DKK-1) Serum Levels in Children and Adolescents With Type 1 Diabetes Mellitus. J Clin Endocrinol Metab 2017; 102:1174-1181. [PMID: 28388723 DOI: 10.1210/jc.2016-2371] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022]
Abstract
CONTEXT Childhood type 1 diabetes mellitus (T1DM) is associated with decreased bone mass. Sclerostin and dickkopf-1 (DKK-1) are Wnt inhibitors that regulate bone formation. OBJECTIVE To evaluate sclerostin and DKK-1 levels in T1DM children and to analyze the influence of glycemic control on bone health. DESIGN AND SETTING Cross-sectional study conducted at a clinical research center. PARTICIPANTS One hundred and six T1DM subjects (12.2 ± 4 years), 66 on multiple daily injections (MDIs) and 40 on continuous subcutaneous infusion of insulin (CSII), and 80 controls. RESULTS The average bone transmission time (BTT) and amplitude-dependent speed of sound (AD-SoS) z scores were lower in patients with diabetes than in controls. Significantly increased DKK-1 (3593 ± 1172 vs 2652 ± 689 pg/mL; P < 0.006) and sclerostin (29.45 ± 12.32 vs 22.53 ± 8.29; P < 0.001) levels were found in patients with diabetes with respect to controls, particularly in patients on MDI compared with ones on CSII. Glycemic control was improved in CSII patients compared with MDI ones (P < 0.001) and was also associated with significantly higher BMI-SDS (P < 0.002) and BTT z scores (P < 0.02). With adjustment for age, multiple linear regression analysis of DKK-1 and sclerostin as dependent variables showed that levels of glycated hemoglobin, glucose, 25(OH) vitamin D, osteocalcin, and parathyroid hormone; years of diabetes; and BMI-SDS and AD-SoS z score were the most important predictors (P < 0.0001). CONCLUSIONS Our study highlighted (1) the high serum levels of DKK-1 and sclerostin in T1DM children and their relationship with altered glycemic control and (2) the effect of CSII on improvement of glycemic control and bone health in T1DM children.
Collapse
Affiliation(s)
| | - Annamaria Ventura
- Departments of Biomedical Science and Human Oncology, Pediatric Unit, and
| | | | - Anna Fusillo
- Departments of Biomedical Science and Human Oncology, Pediatric Unit, and
| | - Laura Piacente
- Departments of Biomedical Science and Human Oncology, Pediatric Unit, and
| | - Gabriella Aceto
- Departments of Biomedical Science and Human Oncology, Pediatric Unit, and
| | - Graziana Colaianni
- Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari A. Moro, 70124 Bari, Italy
| | - Silvia Colucci
- Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari A. Moro, 70124 Bari, Italy
| | - Luciano Cavallo
- Departments of Biomedical Science and Human Oncology, Pediatric Unit, and
| | - Maria Grano
- Department of Emergency and Organ Transplantation, University of Bari A. Moro, 70121 Bari, Italy
| | - Giacomina Brunetti
- Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari A. Moro, 70124 Bari, Italy
| |
Collapse
|
31
|
Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. MECHANISMS IN ENDOCRINOLOGY: Diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol 2017; 176:R137-R157. [PMID: 28049653 DOI: 10.1530/eje-16-0652] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the differences in bone turnover between diabetic patients and controls. DESIGN A systematic review and meta-analysis. METHODS A literature search was conducted using the databases Medline at PubMed and EMBASE. The free text search terms 'diabetes mellitus' and 'bone turnover', 'sclerostin', 'RANKL', 'osteoprotegerin', 'tartrate-resistant acid' and 'TRAP' were used. Studies were eligible if they investigated bone turnover markers in patients with diabetes compared with controls. Data were extracted by two reviewers. RESULTS A total of 2881 papers were identified of which 66 studies were included. Serum levels of the bone resorption marker C-terminal cross-linked telopeptide (-0.10 ng/mL (-0.12, -0.08)) and the bone formation markers osteocalcin (-2.51 ng/mL (-3.01, -2.01)) and procollagen type 1 amino terminal propeptide (-10.80 ng/mL (-12.83, -8.77)) were all lower in patients with diabetes compared with controls. Furthermore, s-tartrate-resistant acid phosphatase was decreased in patients with type 2 diabetes (-0.31 U/L (-0.56, -0.05)) compared with controls. S-sclerostin was significantly higher in patients with type 2 diabetes (14.92 pmol/L (3.12, 26.72)) and patients with type 1 diabetes (3.24 pmol/L (1.52, 4.96)) compared with controls. Also, s-osteoprotegerin was increased among patients with diabetes compared with controls (2.67 pmol/L (0.21, 5.14)). CONCLUSIONS Markers of both bone formation and bone resorption are decreased in patients with diabetes. This suggests that diabetes mellitus is a state of low bone turnover, which in turn may lead to more fragile bone. Altered levels of sclerostin and osteoprotegerin may be responsible for this.
Collapse
Affiliation(s)
- Katrine Hygum
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus C, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus C, Denmark
- Department of Infectious DiseasesAarhus University Hospital, Aarhus N, Denmark
| | - Torben Harsløf
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus C, Denmark
| | - Peter Vestergaard
- Department of Clinical Medicine and EndocrinologyAalborg University Hospital, Aalborg, Denmark
| | - Bente L Langdahl
- Department of Endocrinology and Internal MedicineAarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
32
|
Duan P, Yang M, Wei M, Liu J, Tu P. Serum Osteoprotegerin Is a Potential Biomarker of Insulin Resistance in Chinese Postmenopausal Women with Prediabetes and Type 2 Diabetes. Int J Endocrinol 2017; 2017:8724869. [PMID: 28255300 PMCID: PMC5308197 DOI: 10.1155/2017/8724869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to investigate the circulating OPG levels in postmenopausal women with diabetes and prediabetes and explore the relationships between serum OPG and insulin resistance. A total of 271 unrelated Chinese postmenopausal women were recruited in this study. The subjects were divided into type 2 diabetes mellitus (T2DM) group (n = 93), impaired glucose regulation (IGR) (n = 90), and normal glucose regulation group (NGR) (n = 88), according to different glucose regulation categories. Serum OPG levels were measured by enzyme-linked immunosorbent assay. The serum OPG concentration in NGR group, 151.00 ± 45.72 pg/mL, was significantly lower than that in IGR group (169.28 ± 64.91 pg/mL) (p = 0.031) and T2DM group (183.20 ± 56.53 pg/mL) (p < 0.01), respectively. In multiple linear regression analysis, HOMA-IR, age, 2hPG, AST, ALP, and eGFR were found to be independent predictors of OPG. Increased serum OPG levels (OR = 1.009, p = 0.006) may be a risk factor for insulin resistance. The present study suggests that OPG might be implicated in the pathogenesis of diabetes and is a potential biomarker of insulin resistance in subjects with diabetes and prediabetes.
Collapse
Affiliation(s)
- Peng Duan
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
| | - Min Yang
- Department of Finance, Nanchang Normal University, No. 889 Ruixiang Road, Nanchang, Jiangxi 330009, China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
| | - Ping Tu
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
- *Ping Tu:
| |
Collapse
|
33
|
Kalaitzoglou E, Popescu I, Bunn RC, Fowlkes JL, Thrailkill KM. Effects of Type 1 Diabetes on Osteoblasts, Osteocytes, and Osteoclasts. Curr Osteoporos Rep 2016; 14:310-319. [PMID: 27704393 PMCID: PMC5106298 DOI: 10.1007/s11914-016-0329-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW To describe the effects of type 1 diabetes on bone cells. RECENT FINDINGS Type 1 diabetes (T1D) is associated with low bone mineral density, increased risk of fractures, and poor fracture healing. Its effects on the skeleton were primarily attributed to impaired bone formation, but recent data suggests that bone remodeling and resorption are also compromised. The hyperglycemic and inflammatory environment associated with T1D impacts osteoblasts, osteocytes, and osteoclasts. The mechanisms involved are complex; insulinopenia, pro-inflammatory cytokine production, and alterations in gene expression are a few of the contributing factors leading to poor osteoblast activity and survival and, therefore, poor bone formation. In addition, the observed sclerostin level increase accompanied by decreased osteocyte number and enhanced osteoclast activity in T1D results in uncoupling of bone remodeling. T1D negatively impacts osteoblasts and osteocytes, whereas its effects on osteoclasts are not well characterized, although the limited studies available indicate increased osteoclast activity, favoring bone resorption.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Iuliana Popescu
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
| | - R Clay Bunn
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John L Fowlkes
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Kathryn M Thrailkill
- UK Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, 830 S. Limestone St., Lexington, KY, 40536, USA
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| |
Collapse
|
34
|
Bortolin RH, Freire Neto FP, Arcaro CA, Bezerra JF, Silva FS, Ururahy MAG, Souza KSDC, Lima VMGDM, Luchessi AD, Lima FP, Lia Fook MV, Silva BJ, Almeida MDG, Abreu BJ, Rezende LA, Rezende AA. Anabolic Effect of Insulin Therapy on the Bone:
Osteoprotegerin
and
Osteocalcin
Up‐Regulation in Streptozotocin‐Induced Diabetic Rats. Basic Clin Pharmacol Toxicol 2016; 120:227-234. [DOI: 10.1111/bcpt.12672] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/01/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | | | - Carlos Alberto Arcaro
- Department of Clinical Analyses São Paulo State University Araraquara São Paulo Brazil
| | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Flávio Santos Silva
- Department of Morphology Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Marcela Abbott Galvão Ururahy
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Karla Simone da Costa Souza
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | | | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Francisco Pignataro Lima
- Department of Clinical Pathology Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Marcus Vinicius Lia Fook
- Laboratory of Evaluation and Development of Biomaterials Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Bartolomeu Jorge Silva
- Laboratory of Evaluation and Development of Biomaterials Federal University of Campina Grande Campina Grande Paraíba Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | - Bento João Abreu
- Department of Morphology Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| | | | - Adriana Augusto Rezende
- Department of Clinical and Toxicological Analyses Federal University of Rio Grande do Norte Natal Rio Grande do Norte Brazil
| |
Collapse
|
35
|
de Souza KSC, Ururahy MAG, da Costa Oliveira YM, Loureiro MB, da Silva HPV, Bortolin RH, Melo Dos Santos F, Luchessi AD, Neto JJM, Arrais RF, Hirata RDC, das Graças Almeida M, Hirata MH, de Rezende AA. Low bone mineral density in patients with type 1 diabetes: association with reduced expression of IGF1, IGF1R and TGF B 1 in peripheral blood mononuclear cells. Diabetes Metab Res Rev 2016; 32:589-95. [PMID: 26663878 DOI: 10.1002/dmrr.2772] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/13/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The negative effects of type 1 diabetes (T1D) on growth factors of bone metabolism lead to a reduction in bone mineral density. This study aimed to evaluate the association between bone mineral density and insulin-like growth factor 1 (IGF1), insulin-like growth factor 1 receptor (IGF1R) and transforming growth factor beta 1 (TGFB1) expressions in children and adolescents with T1D. Moreover, the influences of age at diagnosis, time since diagnosis, glycaemic control and albuminuria on bone mineral density were investigated. METHODS Eighty-six T1D children/adolescents (T1D group) and ninety normoglycaemic controls (normoglycaemic group) were included. T1D patients were analysed as a whole and also in subsets of patients with good glycaemic control (glycated hemoglobin concentration ≤7.5%) and with poor glycaemic control (glycated hemoglobin concentration >7.5%). Bone mineral density was assessed by dual energy x-ray absorptiometry. Glycaemic control, renal function and bone markers were also assessed. IGF1, IGF1R and TGFB1 expressions were determined in peripheral blood mononuclear cells by real-time polymerase chain reaction. RESULTS Patients with T1D showed low bone mineral density and poor glycaemic control. Serum total calcium and urinary albumin-to-creatinine ratio were higher in patients with poor glycaemic control compared to those with good glycemic control (p = 0.003 and p = 0.035, respectively). There was a reduction of IGF1, IGF1R and TGFB1 expressions in the T1D patients and in the subset with poor glycaemic control compared to normoglycaemic controls (p < 0.05). CONCLUSIONS The decreased IGF1, IGF1R and TGFB1 expressions in the T1D patients, who presented with T1D at an early age, had been diagnosed with T1D for a longer time, had poor glycaemic control and albuminuria may contribute to low bone mineral density. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | - Melina Bezerra Loureiro
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabricio Melo Dos Santos
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - José Jorge Maciel Neto
- Radiology Center, Onofre Lopes University Hospital of Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, SP, Brazil
| | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
36
|
Mosso C, Hodgson MI, Ortiz T, Reyes ML. Bone mineral density in young Chilean patients with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2016; 29:731-6. [PMID: 27054593 DOI: 10.1515/jpem-2015-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 01/29/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND In this study, our aim was to analyze bone mineral density (BMD) in patients with type 1 diabetes mellitus (T1DM) and compare them with a healthy reference population; in addition, we aimed to observe the association between BMD and the following variables: age at onset, disease duration, metabolic control, pubertal stage, level of physical activity, clinical parameters and nutrient intake. METHODS A total of 30 patients with T1DM were included in the study. BMD was determined using dual-energy X-ray densitometry (DXA). Participants with a z-score of values ≥-1 were accepted as normal; BMDs between -2 and -1 were defined as being in the low range of normality; ≤-2 were defined as having low BMD. The 25-hydroxy vitamin D level was classified as sufficient (30-100 ng/mL), insufficient (20-30 ng/mL), and deficient (<20 ng/mL). RESULTS The percentages of patients with deficient and insufficient 25(OH) vitamin D levels were 50% and 45.8%, respectively. Lumbar spine (LS2-LS4) BMD, total body (TB) BMD and femoral neck (FN) BMD were found in the normal range for more than 80% of the subjects, with no significant differences due to gender. No strong correlations between clinical variables, biochemical parameters and nutrient intake were observed; however, a moderate positive correlation was found between serum calcium and LS2-LS4 BMD (p<0.05). Regression analysis showed that serum calcium, duration of diabetes and intake of sodium and protein are significant factors in determining LS2-LS4 BMD and TB BMD. CONCLUSIONS Patients with T1DM had a normal mean BMD at all sites evaluated, except for two patients who had low BMD at the lumbar spine. More than 95% of patients had insufficient or deficient vitamin D levels. With respect to all the variables studied, serum calcium presented the highest significant correlation with LS2-LS4 BMD.
Collapse
|
37
|
Tsentidis C, Gourgiotis D, Kossiva L, Doulgeraki A, Marmarinos A, Galli-Tsinopoulou A, Karavanaki K. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int 2016; 27:1631-1643. [PMID: 26588909 DOI: 10.1007/s00198-015-3422-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Simultaneous lower bone mineral density, metabolic bone markers, parathyroid hormone (PTH), magnesium, insulin-like growth factor 1 (IGF1), and higher levels of total soluble receptor activator of nuclear factor-kappa B ligand (s-RANKL), osteoprotegerin (OPG), and alkaline phosphatase (ALP) are indicative of lower osteoblast and increased osteoclast signaling in children and adolescents with type 1 diabetes mellitus, predisposing to adult osteopenia and osteoporosis. INTRODUCTION Type 1 diabetes mellitus (T1DM) is a risk factor for reduced bone mass, disrupting several bone metabolic pathways. We aimed at identifying association patterns between bone metabolic markers, particularly OPG, s-RANKL, and bone mineral density (BMD) in T1DM children and adolescents, in order to study possible underlying pathophysiologic mechanisms of bone loss. METHODS We evaluated 40 children and adolescents with T1DM (mean ± SD age 13.04 ± 3.53 years, T1DM duration 5.15 ± 3.33 years) and 40 healthy age- and gender-matched controls (aged12.99 ± 3.3 years). OPG, s-RANKL, osteocalcin, C-telopeptide cross-links (CTX), IGF1, electrolytes, PTH, and total 25(OH)D were measured, and total body along with lumbar spine BMD were evaluated with dual energy X-ray absorptiometry (DXA). Multivariate regression and factor analysis were performed after classic inference. RESULTS Patients had significantly lower BMD, with lower bone turnover markers, PTH, magnesium, and IGF1 than controls, indicating lower osteoblast signaling. Higher levels of total s-RANKL, OPG, and total ALP were observed in patients, with log(s-RANKL) and OPG correlation found only in controls, possibly indicating increased osteoclast signaling in patients. Coupling of bone resorption and formation was observed in both groups. Multivariate regression confirmed simultaneous lower bone turnover, IGF1, magnesium, and higher total s-RANKL, OPG, and ALP in patients, while factor analysis indicated possible activation of RANK/RANKL/OPG system in patients and its association with magnesium and IGF1. Patients with longer disease duration or worse metabolic control had lower BMD. CONCLUSIONS T1DM children and adolescents have impaired bone metabolism which seems to be multifactorial. Reduced osteoblast and increased osteoclast signaling, resulting from multiple simultaneous disturbances, could lead to reduced peak bone accrual in early adulthood, predisposing to adult osteopenia and osteoporosis.
Collapse
Affiliation(s)
- C Tsentidis
- Diabetes Clinic, 2nd Department of Pediatrics, Athens University Medical School, "P&A Kyriakou" Children's Hospital, Thivon & Livadias, 11527, Ampelokipi, Athens, Greece.
| | - D Gourgiotis
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics, Athens University Medical School, "P&A Kyriakou" Children's Hospital, Athens, Greece
| | - L Kossiva
- Diabetes Clinic, 2nd Department of Pediatrics, Athens University Medical School, "P&A Kyriakou" Children's Hospital, Thivon & Livadias, 11527, Ampelokipi, Athens, Greece
| | - A Doulgeraki
- Department of Bone and Mineral Metabolism, Institute of Child Health, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - A Marmarinos
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics, Athens University Medical School, "P&A Kyriakou" Children's Hospital, Athens, Greece
| | - A Galli-Tsinopoulou
- Fourth Department of Pediatrics, Faculty of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - K Karavanaki
- Diabetes Clinic, 2nd Department of Pediatrics, Athens University Medical School, "P&A Kyriakou" Children's Hospital, Thivon & Livadias, 11527, Ampelokipi, Athens, Greece
| |
Collapse
|
38
|
Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med 2016; 37:565-74. [PMID: 26782642 PMCID: PMC4771119 DOI: 10.3892/ijmm.2016.2457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023] Open
Abstract
This study was carried out in order to investigate bone dysfunction and the involvement of bradykinin receptors and the Eph/Ephrin signaling pathway in osteoblasts and in mice with diabetes-related osteoporosis in response to exposure to high glucose. Osteogenic transdifferentiation was inhibited when the osteoblasts were exposed to high glucose, and the expression levels of bone formation-related genes [Runx2 and alkaline phosphatase (ALP)] were decreased, while those of bone resorption-related genes [matrix metalloproteinase (MMP)9 and carbonic anhydrase II (CAII)] were increased. Moreover, the mRNA and protein expression levels of bradykinin receptor B1 (BK1R)/bradykinin receptor B2 (BK2R) and EphB2/EphrinB2 were significantly decreased in the osteoblasts following exposure to high glucose. Intriguingly, the interaction between BK2R and EphB2/EphrinB2 was confirmed, and BK2R loss-of-function significantly decreased the mRNA and protein expression levels of EphB2/EphrinB4. In vivo, hyperglycemia induced the disequilibrium of calcium homeostasis through the inhibition of bone formation and the acceleration of bone resorption, which was manifested by the reduction of trabecular bone mass of the primary and secondary spongiosa, as well as by the increase in the number of mature osteoclasts throughout the proximal tibial metaphysis in mice with diabetes-related osteoporosis. Furthermore, the mRNA and protein expression levels of BK1R/BK2R and EphB2/EphrinB2 in the tibias of the mice with diabetes-related osteoporosis were significantly decreased. These results demonstrate that bradykinin receptors and the EphB4/EphrinB2 pathway mediate the development of complications in mice with diabetes-related osteoporosis and suggest that the inactivation of bradykinin receptors and the EphB4/EphrinB2 pathway enhance the severity of complications in mice with diabetes-related osteoporosis.
Collapse
Affiliation(s)
- Min Wu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Wenting Ai
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Lin Chen
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
39
|
Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A. Osteocalcin, adipokines and their associations with glucose metabolism in type 1 diabetes. Bone 2016; 82:50-5. [PMID: 25888930 DOI: 10.1016/j.bone.2015.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/27/2015] [Accepted: 04/08/2015] [Indexed: 01/26/2023]
Abstract
To determine osteocalcin (OC) and adipokines in type 1 diabetes (T1D) and healthy controls, and to explore possible associations between glucose and bone metabolism, body composition and adipokines. Serum levels of total OC, undercarboxylated (UC-OC), leptin, adiponectin, and other parameters of glucose and bone metabolism were measured in 128 patients with T1D (mean duration 21.2years) and in 77 healthy controls, matched for gender, age, and body mass index (BMI). Partial correlations (adjusted for age and gender) with parameters of body composition (BMI, fat body mass [derived from bone mineral density scans]), glycaemic control (hemoglobin A1c (HbA1c), daily insulin dose in T1D), skeletal homeostasis (osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), all measured in serum), and serum insulin-like growth factor 1 (IGF-1) were also examined. Independent predictors of total and UC-OC were then explored. Total OC was lower in males with T1D (16.3±6.4 vs. 22.2±9.9ng/ml; p=0.001), whereas UC-OC did not show group differences. Adiponectin was higher in T1D patients, both for males and females (8.9±6.6 vs. 5.7±2.5μg/ml; p=0.004 and 13.8±6.4 vs. 8.8±4.0μg/ml; p<0.001). IGF-1 was lower only in females with T1D (146.6±68.8 vs. 203.0±74.4ng/ml; p<0.001). BMI and fat body mass were similar in T1D and controls. In T1D patients, total OC was inversely correlated with BMI and HbA1c, and UC-OC inversely correlated with HbA1c. In T1D patients, leptin positively correlated with BMI, fat body mass and daily insulin dose, while adiponectin inversely correlated with BMI and daily insulin dose. Multivariate regression modelling showed that determinants of higher total OC levels were male gender (p=0.04, ß-coefficient=2.865) and lower HbA1c (p=0.04, ß-coefficient=-0.117), whereas determinants of UC-OC levels were T1D (p=0.016, ß-coefficient=2.015), higher IGF-1 (p=0.004, ß-coefficient=0.011) and lower HbA1c (p=0.011, ß-coefficient=- 0.061). Total OC and UC-OC are associated with good glycaemic control in T1D, with gender-specific differences for total-OC. The association of leptin and adiponectin with glycaemic control, as observed in controls, does not seem to be a feature in T1D, although both adipokines appear to be related to the insulin demand. This article is part of a Special Issue entitled "Bone and diabetes".
Collapse
Affiliation(s)
- T Neumann
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany.
| | - S Lodes
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - B Kästner
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - S Franke
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - M Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University-Hospital, Jena, Germany
| | - T Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University-Hospital, Jena, Germany
| | - U A Müller
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - G Wolf
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| | - A Sämann
- Department of Internal Medicine III, Jena University-Hospital, Jena, Germany
| |
Collapse
|
40
|
Piscitelli P, Neglia C, Vigilanza A, Colao A. Diabetes and bone: biological and environmental factors. Curr Opin Endocrinol Diabetes Obes 2015; 22:439-45. [PMID: 26512769 DOI: 10.1097/med.0000000000000203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Type 1 and type 2 diabetes mellitus are known to increase fracture risk. It is known that type 1 diabetes mellitus is associated with lower bone mineral density, but for type 2 diabetes mellitus, the real risk of increasing osteoporotic fractures is not explained by bone mineral density, which was found to be normal or paradoxically higher than controls in several studies, thus claiming for further investigations. This review summarizes some of the newest findings about factors that contribute to bone alterations in diabetic patients. RECENT FINDINGS Most recent evidences showed that bone of diabetic patients presents a cortical porosity which is not captured by the bidimensional densitometric measurements as performed by dual energy X-ray absorptiometry. Other studies investigated bone matrix searching for molecular mechanisms underlying the reduced bone strength in diabetic patients. The loss of bone biomechanical properties in diabetes has been associated to the glycated collagen matrix induced by hyperglycemia. Other studies analyzed the effect on bone microarchitecture of the most common antidiabetic drugs. SUMMARY Disease management of fracture risk in diabetic patients needs new methodologies of assessment that also take into account bone quality and evaluation of clinical risk factors, including balance, visual, and neurological impairments.
Collapse
Affiliation(s)
- Prisco Piscitelli
- aIOS, Southern Italy Hospital Institute bColeman Ltd, Naples, cISBEM, Euro Mediterranean Scientific Biomedical Institute, Brindisi and Naples dUniversity Federico II, Naples, Italy
| | | | | | | |
Collapse
|
41
|
Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med 2015; 32:1134-42. [PMID: 26096918 PMCID: PMC4860902 DOI: 10.1111/dme.12734] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2015] [Indexed: 01/10/2023]
Abstract
AIMS To conduct a systematic review and meta-analysis of observational studies in order to assess the association between Type 1 diabetes and fractures. BACKGROUND The risk of fracture in men and women with Type 1 diabetes has not been studied in a large prospective well designed cohort. METHODS Data were selected from Medline and Embase and abstracts from annual scientific meetings of various diabetes and bone and mineral societies. Published studies that reported the fracture risk in people with Type 1 diabetes in comparison with people without diabetes between 1990 and July 2014 and abstracts from various annual meeting (2005 onwards) were included in the present meta-analysis. Data were extracted from the text of included publications or from abstracts of conferences. RESULTS The 14 studies that met the inclusion criteria reported 2066 fracture events among 27 300 people with Type 1 diabetes (7.6%) and 136 579 fracture events among 4 364 125 people without diabetes (3.1%). The pooled relative risk of any fracture in people with Type 1 diabetes was 3.16 (95% CI 1.51-6.63; P = 0.002). Women and men with Type 1 diabetes had a four and two times higher risk of any fractures, respectively, compared with people without diabetes. The pooled relative risks of hip fractures and spinal fractures were 3.78 (95% CI 2.05-6.98; P < 0.001) and 2.88 (95% CI 1.71-4.82; P < 0.001), respectively, among people with Type 1 diabetes. CONCLUSIONS Our meta-analysis suggests that both men and women with Type 1 diabetes might have an increased risk of any fractures. A large prospective epidemiological study is needed to confirm our findings.
Collapse
Affiliation(s)
- Viral N Shah
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Campus, Aurora, CO
| | - Chirag S. Shah
- Department of Pharmacy Practice, SJM College of Pharmacy, Karnataka, India
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Campus, Aurora, CO
| |
Collapse
|
42
|
Reyes-García R, García-Martín A, Varsavsky M, Rozas-Moreno P, Cortés-Berdonces M, Luque-Fernández I, Gómez Sáez JM, Vidal Casariego A, Romero Muñoz M, Guadalix Iglesias S, Fernández García D, Jódar Gimeno E, Muñoz Torres M. Actualización de las recomendaciones para la evaluación y tratamiento de la osteoporosis asociada a enfermedades endocrinas y nutricionales. Grupo de trabajo de osteoporosis y metabolismo mineral de la SEEN. ACTA ACUST UNITED AC 2015; 62:e47-56. [DOI: 10.1016/j.endonu.2015.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/30/2015] [Indexed: 02/06/2023]
|
43
|
Bortolin RH, da Graça Azevedo Abreu BJ, Abbott Galvão Ururahy M, Costa de Souza KS, Bezerra JF, Bezerra Loureiro M, da Silva FS, Marques DEDS, Batista AADS, Oliveira G, Luchessi AD, Lima VMGDM, Miranda CES, Lia Fook MV, Almeida MDG, de Rezende LA, de Rezende AA. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats. PLoS One 2015; 10:e0125349. [PMID: 25933189 PMCID: PMC4416905 DOI: 10.1371/journal.pone.0125349] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 02/01/2023] Open
Abstract
Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus), and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic and protective effect of zinc under chronic diabetic conditions. Furthermore, these results indicate that zinc supplementation could act as a complementary therapy in chronic T1DM.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Bone Density/drug effects
- Bone Resorption/prevention & control
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/diet therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Dietary Supplements
- Elastic Modulus
- Femur/drug effects
- Femur/metabolism
- Femur/pathology
- Gene Expression Regulation
- Humans
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin
- Tibia/drug effects
- Tibia/metabolism
- Tibia/pathology
- Zinc/administration & dosage
Collapse
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Marcela Abbott Galvão Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Melina Bezerra Loureiro
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávio Santos da Silva
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Gisele Oliveira
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Marcus Vinicius Lia Fook
- Laboratory of Evaluation and Development of Biomaterials, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| |
Collapse
|
44
|
Abstract
There are several mechanisms by which diabetes could affect bone mass and strength. These mechanisms include insulin deficiency; hyperglycemia; the accumulation of advanced glycation end products that may influence collagen characteristics; marrow adiposity and bone inflammation. Furthermore, associated diabetic complications and treatment with thaizolidinediones may also increase risk of fracturing. The following article provides its readers with an update on the latest information pertaining to diabetes related bone skeletal fragility. In the authors' opinion, future studies are needed in order to clarify the impact of different aspects of diabetes metabolism, glycemic control, and specific treatments for diabetes on bone. Given that dual energy x-ray absorptiometry is a poor predictor of bone morbidity in this group of patients, there is a need to explore novel approaches for assessing bone quality. It is important that we develop a better understanding of how diabetes affects bone in order to improve our ability to protect bone health and prevent fractures in the growing population of adults with diabetes.
Collapse
Affiliation(s)
- Naiemh Abdalrahman
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | - Suet Ching Chen
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | - Jessie Ruijun Wang
- a Developmental Endocrinology Research Group, Royal Hospital for Sick Children, School of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, UK
| | | |
Collapse
|