1
|
Suri S, Mitra P, Abhilasha A, Saxena I, Garg MK, Bohra GK, Sharma P. Altered expression of specific antioxidant (SOD1 and SOD2) and DNA repair (XRCC1 and OGG1) genes in patients with newly diagnosed type-2 diabetes mellitus. Minerva Endocrinol (Torino) 2024; 49:398-405. [PMID: 34160187 DOI: 10.23736/s2724-6507.21.03417-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Uncontrolled increase in reactive oxygen species (ROS) leads to the release of free radicals. Additionally, when antioxidants go below a certain level, major molecules of our system such as DNA, proteins, and many other macromolecules get damaged, leading to cancer, heart diseases, and metabolic syndromes like diabetes. Therefore, in our study we focused on: 1) newly diagnosed type 2 diabetes mellitus (T2DM) patients and tried to evaluate the expression of antioxidant enzyme encoding genes; 2) superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2) and DNA repair genes; and 3) X-ray repair cross-complementing 1(XRCC1) and 8-oxoguanine DNA glycosylase 1 (OGG1) in them. METHODS Expression analysis was performed by RT-PCR on 60 subjects (30 T2DM cases and 30 non-diabetic controls). The level of the SOD enzyme was also estimated in a serum sample by the colorimetric method. Biochemical parameters such as fasting plasma glucose (FBG), glycated haemoglobin (HbA1c), high sensitivity C-reactive protein (hsCRP), and lipid profile were estimated in an auto analyzer. Receiver operating characteristic (ROC) curve analysis was done, the area under the curve for mRNA expression and enzyme level was calculated to determine their potential as markers in newly diagnosed T2DM. RESULTS Down-regulation of both SOD1 (0.43 fold, P=0.02) and SOD2 (0.41 fold, P=0.13) and up-regulation of both XRCC1 (1.15 fold, P>0.05) and OGG1 (1.49 fold, P>0.05) was observed in patients with T2DM. We also observed a significant decrease (P=0.02) in SOD enzyme levels in diabetic cases than in controls (599.8±178.9 and 691.3±127.3). CONCLUSIONS We report that antioxidant repair genes are downregulated and DNA repair genes are upregulated in newly diagnosed T2DM patients. SOD levels and SOD1 gene expression can serve as informative biomarkers for identifying T2DM patients.
Collapse
Affiliation(s)
- Smriti Suri
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhilasha Abhilasha
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Indu Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, India
| | - M K Garg
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Gopal K Bohra
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India -
| |
Collapse
|
2
|
Macan TP, Magenis ML, Damiani AP, Monteiro IDO, Silveira GDB, Zaccaron RP, Silveira PCL, Teixeira JPF, Gajski G, Andrade VMD. Brazil nut consumption reduces DNA damage in overweight type 2 diabetes mellitus patients. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 895:503739. [PMID: 38575248 DOI: 10.1016/j.mrgentox.2024.503739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disease, which occurs largely due to unhealthy lifestyle. As oxidative stress is believed to promote T2D, by inducing damage to lipids, proteins, and DNA, appropriate dietary interventions seem critical to prevent, manage, and even reverse this condition. Brazil nuts (Bertholletia excelsa, H.B.K.) are nature's richest source of selenium, a mineral that has shown several health benefits. Therefore, this study aims to assess the effects of selenium consumption, through Brazil nuts, on biochemical and oxidative stress parameters, and genomic instability in T2D patients. We recruited 133 patients with T2D, registered in the Integrated Clinics of the University of Southern Santa Catarina (Brazil). Participants consumed one Brazil nut a day for six months. Blood samples and exfoliated buccal cells were collected at the beginning and the end of the intervention. The glycemic profile, lipid profile, renal profile and hepatic profile, DNA damage and selenium content were evaluated. A total of 74 participants completed the intervention. Brazil nut consumption increased selenium and GSH levels, GPx, and CAT activity while DCF and nitrites levels decreased. Total thiols increased, and protein carbonyl and MDA levels decreased. Levels of baseline and oxidative DNA damage in T2D patients were significantly decreased, as well as the frequency of micronuclei and nuclear buds. The fasting glucose levels, HDL and LDL cholesterol, and GGT levels that increased significantly in patients with type 2 diabetes were significantly reduced with nut consumption. Our results show an increase in antioxidant activity, along with reductions of protein and lipid oxidation as well as DNA damage, suggesting that Brazil nut consumption could be an ally in reducing oxidative stress and modulating the genomic instability in T2D patients.
Collapse
Affiliation(s)
- Tamires Pavei Macan
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Environmental Health Department, Portuguese National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
| | - Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Isadora de Oliveira Monteiro
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gustavo De Bem Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
3
|
Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Impact of Polyphenols on Inflammatory and Oxidative Stress Factors in Diabetes Mellitus: Nutritional Antioxidants and Their Application in Improving Antidiabetic Therapy. Biomolecules 2023; 13:1402. [PMID: 37759802 PMCID: PMC10526737 DOI: 10.3390/biom13091402] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia and oxidative stress. Oxidative stress plays a crucial role in the development and progression of diabetes and its complications. Nutritional antioxidants derived from dietary sources have gained significant attention due to their potential to improve antidiabetic therapy. This review will delve into the world of polyphenols, investigating their origins in plants, metabolism in the human body, and relevance to the antioxidant mechanism in the context of improving antidiabetic therapy by attenuating oxidative stress, improving insulin sensitivity, and preserving β-cell function. The potential mechanisms of, clinical evidence for, and future perspectives on nutritional antioxidants as adjuvant therapy in diabetes management are discussed.
Collapse
|
4
|
Bragagna L, Polak C, Schütz L, Maqboul L, Klammer C, Feldbauer R, Draxler A, Clodi M, Wagner KH. Effect of Repeated Bolus and Continuous Glucose Infusion on DNA Damage and Oxidative Stress Biomarkers in Healthy Male Volunteers. Int J Mol Sci 2023; 24:13608. [PMID: 37686414 PMCID: PMC10487933 DOI: 10.3390/ijms241713608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Glucose variability (GV), which describes fluctuations in blood glucose levels within the day, is a phenomenon that is increasingly becoming the target of scientific attention when it comes to increased risk of coronary heart disease. Effects of GV may contribute to the development of metabolic syndrome and type 2 diabetes. Hyperglycemia can lead to oxidative stress resulting in molecular damage due to accumulation of reactive oxygen species (ROS). To discover more about the immediate effects of GV, continuous vs. bolus intravenous glucose administration was applied to 10 healthy men aged 21-30 years over a time frame of 48 h. Whole blood and plasma were analyzed for DNA damage using a comet assay with 3 different treatments (lysis buffer, H2O2, and the lesion-specific enzyme formamidopyrimidine DNA glycosylase (FPG)) as well as for the oxidative stress markers protein carbonyls (PC), unconjugated bilirubin (UCB), and ferric reducing antioxidant power (FRAP). A significant time effect was found in the three DNA damage treatments as well as in PC and UCB possibly due to circadian changes on oxidative stress, but no intervention group effect was observed for any of the markers. In conclusion, bolus vs. continuous glucose administration had no significant acute effect on DNA damage and markers of oxidative stress in healthy men.
Collapse
Affiliation(s)
- Laura Bragagna
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Christina Polak
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| | - Lisa Schütz
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| | - Lina Maqboul
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| | - Carmen Klammer
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria;
- Department of Internal Medicine, St. John of God Hospital Linz, 4020 Linz, Austria; (R.F.); (M.C.)
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler University Linz (JKU Linz), 4040 Linz, Austria
| | - Roland Feldbauer
- Department of Internal Medicine, St. John of God Hospital Linz, 4020 Linz, Austria; (R.F.); (M.C.)
| | - Agnes Draxler
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Martin Clodi
- Department of Internal Medicine, St. John of God Hospital Linz, 4020 Linz, Austria; (R.F.); (M.C.)
- ICMR–Institute for Cardiovascular and Metabolic Research, Johannes Kepler University Linz (JKU Linz), 4040 Linz, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria; (L.B.); (L.M.); (A.D.)
| |
Collapse
|
5
|
Lima JEBF, Moreira NCS, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503437. [PMID: 35151421 DOI: 10.1016/j.mrgentox.2021.503437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a complex multifactorial disease that emerges from the combination of genetic and environmental factors, and obesity, lifestyle, and aging are the most relevant risk factors. Hyperglycemia is the main metabolic feature of T2D as a consequence of insulin resistance and β-cell dysfunction. Among the cellular alterations induced by hyperglycemia, the overproduction of reactive oxygen species (ROS) and consequently oxidative stress, accompanied by a reduced antioxidant response and impaired DNA repair pathways, represent essential mechanisms underlying the pathophysiology of T2D and the development of late complications. Mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation are also closely correlated with insulin resistance and β-cell dysfunction. This review focus on the mechanisms by which oxidative stress, mitochondrial dysfunction, ER stress, and inflammation are involved in the pathophysiology of T2D, highlighting the importance of the antioxidant response and DNA repair mechanisms counteracting the development of the disease. Moreover, we indicate evidence on how nutritional interventions effectively improve diabetes care. Additionally, we address key molecular characteristics and signaling pathways shared between T2D and Alzheimer's disease (AD), which might probably be implicated in the risk of T2D patients to develop AD.
Collapse
Affiliation(s)
- Jessica E B F Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Lima JEBF, Moreira NCS, Takahashi P, Xavier DJ, Sakamoto-Hojo ET. Oxidative Stress, DNA Damage, and Transcriptional Expression of DNA Repair and Stress Response Genes in Diabetes Mellitus. TRANSCRIPTOMICS IN HEALTH AND DISEASE 2022:341-365. [DOI: 10.1007/978-3-030-87821-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Møller P, Stopper H, Collins AR. Measurement of DNA damage with the comet assay in high-prevalence diseases: current status and future directions. Mutagenesis 2021; 35:5-18. [PMID: 31294794 DOI: 10.1093/mutage/gez018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
The comet assay is widely used in studies on genotoxicity testing, human biomonitoring and clinical studies. The simple version of the assay detects a mixture of DNA strand breaks and alkali-labile sites; these lesions are typically described as DNA strand breaks to distinguish them from oxidatively damaged DNA that are measured with the enzyme-modified comet assay. This review assesses the association between high-prevalence diseases in high-income countries and DNA damage measured with the comet assay in humans. The majority of case-control studies have assessed genotoxicity in white blood cells. Patients with coronary artery disease, diabetes, kidney disease, chronic obstructive pulmonary disease and Alzheimer's disease have on average 2-fold higher levels of DNA strand breaks compared with healthy controls. Patients with coronary artery disease, diabetes, kidney disease and chronic obstructive pulmonary disease also have 2- to 3-fold higher levels of oxidatively damaged DNA in white blood cells than controls, although there is not a clear difference in DNA damage levels between the different diseases. Case-control studies have shown elevated levels of DNA strand breaks in patients with breast cancer, whereas there are only few studies on colorectal and lung cancers. At present, it is not possible to assess if these neoplastic diseases are associated with a different level of DNA damage compared with non-neoplastic diseases.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen H, Denmark
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Andrew R Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Inhibitory effect of celastrol on adipogenic differentiation of human adipose-derived stem cells. Biochem Biophys Res Commun 2018; 507:236-241. [DOI: 10.1016/j.bbrc.2018.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/19/2022]
|
9
|
Aydın S, Bacanlı M, Anlar HG, Çal T, Arı N, Ündeğer Bucurgat Ü, Başaran AA, Başaran N. Preventive role of Pycnogenol ® against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats. Food Chem Toxicol 2018; 124:54-63. [PMID: 30465898 DOI: 10.1016/j.fct.2018.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol® (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes.
Collapse
Affiliation(s)
- Sevtap Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Hatice Gül Anlar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| | - Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Arif Ahmet Başaran
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Nursen Başaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
10
|
Increased Micronuclei Frequency in Oral and Lingual Epithelium of Treated Diabetes Mellitus Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4898153. [PMID: 29546061 PMCID: PMC5818950 DOI: 10.1155/2018/4898153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by persistent high levels of glucose in plasma. Chronic hyperglycemia is thought to increase oxidative stress and the formation of free radicals that in turn damage cells. Thus, we decided to determine the frequency of nuclear abnormalities in epithelial cells from cheek and tongue mucosa of DM patients with type 1 (DM1, treated only with insulin) and type 2 (DM2, treated with metformin) using the buccal micronucleus cytome (BMCyt) assay. Micronuclei frequency in cheek epithelial cells was higher in both DM1 (0.75 ± 0.31, P < 0.001) and DM2 (0.52 ± 0.27, P < 0.001) patients, as compared to healthy controls (0.07 ± 0.06). Similarly, micronuclei frequency in tongue epithelium was increased in DM1 (0.81 ± 0.22, P < 0.001) and DM2 (0.41 ± 0.21, P < 0.001) groups, in comparison to controls (0.06 ± 0.05). Besides, we found a positive correlation between micronuclei frequency and the onset time of DM2 in both cheek (ρ = 0.69, P < 0.001) and tongue epithelial cells (ρ = 0.71, P < 0.001), but not with onset time of DM1 or age of the patients. Considering all this, we pose that BMCyt could serve as a fast and easily accessible test to assess genotoxic damage during dental visits of DM patients, helping to monitor their disease.
Collapse
|
11
|
Dimauro I, Sgura A, Pittaluga M, Magi F, Fantini C, Mancinelli R, Sgadari A, Fulle S, Caporossi D. Regular exercise participation improves genomic stability in diabetic patients: an exploratory study to analyse telomere length and DNA damage. Sci Rep 2017. [PMID: 28646223 PMCID: PMC5482873 DOI: 10.1038/s41598-017-04448-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Physical activity has been demonstrated to be effective in the prevention and treatment of different chronic conditions, including type 2 diabetes (T2D). In particular, several studies highlighted how the beneficial effects of physical activity may be related to the stability of the DNA molecule, such as longer telomeric ends. Here we analyze the effect of exercise training on telomere length, spontaneous and H2O2-induced DNA damage, as well as the apoptosis level in leukocytes from untrained or trained T2D patients vs. age-matched control subjects (CS) (57–66 years). Moreover, expression analysis of selected genes belonging to DNA repair systems, cell cycle control, antioxidant and defence systems was performed. Subjects that participated in a regular exercise program showed a longer telomere sequence than untrained counterparts. Moreover, ex vivo treatment of leukocytes with H2O2 highlighted that: (1) oxidative DNA damage induced similar telomere attrition in all groups; (2) in T2D subjects, physical activity seemed to prevent a significant increase of genomic oxidative DNA damage induced by chronic exposure to pro-oxidant stimulus, and (3) decreased the sensitivity of leukocytes to apoptosis. Finally, the gene expression analysis in T2D subjects suggested an adaptive response to prolonged exercise training that improved the response of specific genes.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | | | - Monica Pittaluga
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Fiorenza Magi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Cristina Fantini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Antonio Sgadari
- Department of Geriatrics, Gerontology and Physiatry, University Hospital Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, Interuniversity Institute of Miology (IIM), University "G d'Annunzio", Chieti, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
12
|
Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A, Mare G, Briskey D, Brath H, Wagner KH. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS One 2016; 11:e0162082. [PMID: 27598300 PMCID: PMC5012603 DOI: 10.1371/journal.pone.0162082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. METHODS Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. RESULTS No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. CONCLUSION BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment with regular health checks in T2DM patients in Austria.
Collapse
Affiliation(s)
- Annemarie Grindel
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Bianca Guggenberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Lukas Eichberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Christina Pöppelmeyer
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Michaela Gschaider
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Anela Tosevska
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - George Mare
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Helmut Brath
- Diabetes Outpatient Clinic, Health Centre South, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Xavier DJ, Takahashi P, Evangelista AF, Foss-Freitas MC, Foss MC, Donadi EA, Passos GA, Sakamoto-Hojo ET. Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus. Mutat Res 2015; 776:98-110. [PMID: 26364207 DOI: 10.1016/j.mrfmmm.2015.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 06/05/2023]
Abstract
The development of type 2 diabetes mellitus (T2D) is associated with a number of genetic and environmental factors. Hyperglycemia, a T2D hallmark, is related to several metabolic complications, comorbidities and increased DNA damage. However, the molecular alterations of a proper glucose control are still unclarified. In this study, we aimed to evaluate DNA damage (comet assay), as well as to compare the transcriptional expression (mRNA and miRNA analyzed by the microarray technique) displayed by peripheral blood mononuclear cells (PBMCs) from three distinct groups: hyperglycemic T2D patients (T2D-H, n=14), non-hyperglycemic T2D patients (T2D-N, n=15), and healthy non-diabetic individuals (n=16). The comet assay revealed significantly (p<0.05) higher levels of DNA damage in T2D-H group compared to both T2D-N and control groups, while a significant difference was not observed between the control and T2D-N groups. After bioinformatics analysis, the differentially expressed mRNAs were subjected to functional enrichment analysis (DAVID) and inflammatory response was among the enriched terms found when comparing T2D-N with controls and T2D-H with T2D-N. Concerning the gene set enrichment and gene set analyses, among the differentially expressed gene sets, three were of interest: regulation of DNA repair (T2D-H versus T2D-N), superoxide response (T2D-H versus control group), and response to endoplasmic reticulum stress (T2D-H versus control group). We also identified miRNAs related with T2D and hyperglycemia not yet associated with these conditions in the literature. Some of the differentially expressed mRNAs were among the predicted targets of the differentially expressed miRNAs. Our results showed the association of hyperglycemia with increased DNA damage and aberrant expression of miRNAs and genes related to several biological processes, such as inflammation, DNA repair, ROS production and antioxidant defense, highlighting the importance of proper glycemic control. Moreover, the transcriptional expression of miRNAs provided novel information for understanding the regulatory mechanisms involved in the T2D progression.
Collapse
Affiliation(s)
- Danilo J Xavier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Paula Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Adriane F Evangelista
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Milton C Foss
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Disciplines of Genetics and Molecular Biology, Department of Morphology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo - USP, Av. Do Café, s/n, Monte Alegre, 14040-904 Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|