1
|
Chen J, Jiang X. A high-fructose diet leads to osteoporosis by suppressing the expression of Thrb and facilitating the accumulation of cholesterol. Cell Death Discov 2025; 11:159. [PMID: 40204733 PMCID: PMC11982284 DOI: 10.1038/s41420-025-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/09/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Osteoporosis is classified as a metabolic syndrome, and the consumption of fructose has been linked to various metabolic diseases. However, the specific effects and underlying mechanisms of fructose on bone health remain inadequately understood. In this study, we demonstrate that fructose intake can exacerbate bone loss in murine models by facilitating the accumulation of cholesterol within the bones. We identify Thyroid Hormone Receptor Beta (Thrb) and Protein Kinase C Zeta (Prkcz) as potential therapeutic targets for the treatment of osteoporosis. Mice subjected to a high-fructose diet exhibited a reduction in bone density and a decrease in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) compared to those on a standard diet. Fructose treatment was found to decrease Thrb expression while increasing Prkcz expression, leading to cholesterol accumulation and hindering the osteogenic differentiation of BMSCs. Furthermore, our findings indicate that the activation of Thrb and the inhibition of Prkcz significantly ameliorate bone loss in mice. This study elucidates the molecular mechanisms by which fructose influences osteogenesis through the Thrb/Prkcz/cholesterol accumulation pathway in the context of osteoporosis, thereby highlighting the therapeutic potential of Thrb and Prkcz as targets for osteoporosis treatment.
Collapse
Affiliation(s)
- Jun Chen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Wanionok NE, Molinuevo MS, Fernández JM, Lucas B, Cortizo AM, Castillo EJ, Jiron JM, Claudia S, Leon S, Aguirre JI, McCarthy AD. Skeletal Effects of a Prolonged Oral Metformin Treatment in Adult Wistar Rats. Exp Clin Endocrinol Diabetes 2024; 132:547-556. [PMID: 38740375 DOI: 10.1055/a-2324-8661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
INTRODUCTION We previously showed that a 3-week oral metformin (MET) treatment enhances the osteogenic potential of bone marrow stromal cells (BMSCs) and improves several bone histomorphometric parameters in Wistar rats with metabolic syndrome (MetS). However, the skeletal effects of extended periods of MET need to be completely elucidated. Hence, in this study, the impact of a prolonged (3-month) MET treatment was investigated on bone architecture, histomorphometric and biomechanics variables, and osteogenic potential of BMSCs in Wistar rats with or without MetS. MATERIALS AND METHODS Young male Wistar rats (n=36) were randomized into four groups (n=9) that received either 20% fructose (F), MET (MET), F plus MET treatments (FMET), or drinking water alone (Veh). Rats were euthanized, blood was collected, and bones were dissected and processed for peripheral quantitative computed tomography (pQCT) analysis, static and dynamic histomorphometry, and bone biomechanics. In addition, BMSCs were isolated to determine their osteogenic potential. RESULTS MET affected trabecular and cortical bone, altering bone architecture and biomechanics. Furthermore, MET increased the pro-resorptive profile of BMSCs. In addition, fructose-induced MetS practically did not affect the the structural or mechanical variables of the skeleton. CONCLUSION A 3-month treatment with MET (with or without MetS) affects bone architecture and biomechanical variables in Wistar rats.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - María S Molinuevo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Juan M Fernández
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Besada Lucas
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Ana M Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Evelyn J Castillo
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Jessica M Jiron
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Sedlinsky Claudia
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Schurman Leon
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - José I Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| | - Antonio D McCarthy
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
3
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
4
|
Lasalvia S, Sedlinsky C, Schurman L, McCarthy AD, Wanionok NE. Metformin treatment prevents experimental metabolic syndrome-induced femoral bone marrow adiposity in rats. Rev Peru Med Exp Salud Publica 2024; 41:28-36. [PMID: 38808841 PMCID: PMC11149757 DOI: 10.17843/rpmesp.2024.411.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE. Motivation for the study. Most research supports a negative association between metabolic syndrome and bone health, although there is an overall lack of consensus. Therefore, there is a need for research in this area to develop a better understanding. Main findings. Metabolic syndrome induced by a fructose-rich diet increases the adipogenic predisposition of bone marrow progenitor cells and femoral medullary adiposity in rats. Furthermore, this can be partially prevented by co-treatment with metformin. Implications. Experimental metabolic syndrome has negative effects on bone tissue and can be prevented by oral treatment with metformin as a normoglycemic drug. To determine the effect of metformin (MET) treatment on adipogenic predisposition of bone marrow progenitor cells (BMPC), bone marrow adiposity and bone biomechanical properties. MATERIALS AND METHODS. 20 young adult male Wistar rats were sorted into four groups. Each of the groups received the following in drinking water: 100% water (C); 20% fructose (F); metformin 100 mg/kg wt/day (M); or fructose plus metformin (FM). After five weeks the animals were sacrificed. Both humeri were dissected to obtain BMPC, and both femurs were dissected to evaluate medullary adiposity (histomorphometry) and biomechanical properties (3-point bending). BMPC were cultured in vitro in adipogenic medium to evaluate RUNX2, PPAR-γ and RAGE expression by RT-PCR, lipase activity and triglyceride accumulation. RESULTS. The fructose-rich diet (group F) caused an increase in both triglycerides in vitro, and medullary adiposity in vivo; being partially or totally prevented by co-treatment with metformin (group FM). No differences were found in femoral biomechanical tests in vivo, nor in lipase activity and RUNX2/PPAR-γ ratio in vitro. DRF increased RAGE expression in BMPC, being prevented by co-treatment with MET. CONCLUSIONS. Metabolic syndrome induced by a fructose-rich diet increases femoral medullary adiposity and, in part, the adipogenic predisposition of BMPC. In turn, this can be totally or partially prevented by oral co-treatment with MET.
Collapse
Affiliation(s)
- Siro Lasalvia
- Laboratory of Research on Osteopathies and Mineral Metabolism (LIOMM), Faculty of Exact Sciences, National University of La Plata. Buenos Aires, Argentina.National University of La PlataLaboratory of Research on Osteopathies and Mineral Metabolism (LIOMM)Faculty of Exact SciencesNational University of La PlataBuenos AiresArgentina
| | - Claudia Sedlinsky
- Laboratory of Research on Osteopathies and Mineral Metabolism (LIOMM), Faculty of Exact Sciences, National University of La Plata. Buenos Aires, Argentina.National University of La PlataLaboratory of Research on Osteopathies and Mineral Metabolism (LIOMM)Faculty of Exact SciencesNational University of La PlataBuenos AiresArgentina
| | - León Schurman
- Laboratory of Research on Osteopathies and Mineral Metabolism (LIOMM), Faculty of Exact Sciences, National University of La Plata. Buenos Aires, Argentina.National University of La PlataLaboratory of Research on Osteopathies and Mineral Metabolism (LIOMM)Faculty of Exact SciencesNational University of La PlataBuenos AiresArgentina
| | - Antonio Desmond McCarthy
- Laboratory of Research on Osteopathies and Mineral Metabolism (LIOMM), Faculty of Exact Sciences, National University of La Plata. Buenos Aires, Argentina.National University of La PlataLaboratory of Research on Osteopathies and Mineral Metabolism (LIOMM)Faculty of Exact SciencesNational University of La PlataBuenos AiresArgentina
| | - Nahuel Ezequiel Wanionok
- Laboratory of Research on Osteopathies and Mineral Metabolism (LIOMM), Faculty of Exact Sciences, National University of La Plata. Buenos Aires, Argentina.National University of La PlataLaboratory of Research on Osteopathies and Mineral Metabolism (LIOMM)Faculty of Exact SciencesNational University of La PlataBuenos AiresArgentina
| |
Collapse
|
5
|
Iqbal A, Hafeez Kamran S, Siddique F, Ishtiaq S, Hameed M, Manzoor M. Modulatory effects of rutin and vitamin A on hyperglycemia induced glycation, oxidative stress and inflammation in high-fat-fructose diet animal model. PLoS One 2024; 19:e0303060. [PMID: 38723008 PMCID: PMC11081234 DOI: 10.1371/journal.pone.0303060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmacology, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Sairah Hafeez Kamran
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmacology, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Farhan Siddique
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Saiqa Ishtiaq
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Punjab, Pakistan
| | - Misbah Hameed
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmaceutics, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| | - Mobina Manzoor
- Faculty of Pharmaceutical and Allied Health Sciences, Department of Pharmaceutics, Institute of Pharmacy, Lahore College for Women University, Lahore, Punjab, Pakistan
| |
Collapse
|
6
|
de Vries TJ, Kleemann AS, Jin J, Schoenmaker T. The Differential Effect of Metformin on Osteocytes, Osteoblasts, and Osteoclasts. Curr Osteoporos Rep 2023; 21:743-749. [PMID: 37796390 PMCID: PMC10724308 DOI: 10.1007/s11914-023-00828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE OF REVIEW Metformin is an anti-glycemic agent, which is widely prescribed to diabetes patients. Although its alleged role on bone strength has been reported for some time, this review focuses primarily on the recent mechanistical insights of metformin on osteocytes, osteoblasts, and osteoclasts. RECENT FINDINGS Overall, metformin contributed to steering anabolic activity in osteocytes. It caused lower expression in osteocytes of the negative regulators of bone formation sclerostin and DKK1. Likewise, the osteoclastogenesis function of osteoblasts was also skewed towards lower RANKL and higher OPG expressions. Osteoblast lineage cells generally responded to metformin by activating bone formation parameters, such as alkaline phosphatase activity, higher expression of anabolic members of the Wnt pathway, transcription factor Runx2, bone matrix protein proteins, and subsequent mineralization. Metformin affected osteoclast formation and activity in a negative way, reducing the number of multinucleated cells in association with lower expression of typical osteoclast markers and with inhibited resorption. A common denominator studied in all three cell types is its beneficial effect on activating phosphorylated AMP kinase (AMPK) which is associated with the coordination of energy metabolism. Metformin differentially affects bone cells, shifting the balance to more bone formation. Although metformin is a drug prescribed for diabetic patients, the overall bone anabolic effects on osteocytes and osteoblasts and the anti-catabolic effect on osteoclast suggest that metformin could be seen as a promising drug in the bone field.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, The Netherlands.
| | - Antonella S Kleemann
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, The Netherlands
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098, XG, Amsterdam, The Netherlands
| | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081, LA, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Hu J, Han J, Jin M, Jin J, Zhu J. Effects of metformin on bone mineral density and bone turnover markers: a systematic review and meta-analysis. BMJ Open 2023; 13:e072904. [PMID: 37355276 PMCID: PMC10314630 DOI: 10.1136/bmjopen-2023-072904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVES Metformin is associated with osteoblastogenesis and osteoclastogenesis. This study aims to investigate the impacts of metformin therapy on bone mineral density (BMD) and bone turnover markers. DESIGN Systematic review and meta-analysis of randomised controlled trials. METHODS Searches were carried out in PubMed, EMBASE, Web of science, Cochrane library, ClinicalTrials.gov from database inception to 26 September 2022. Two review authors assessed trial eligibility in accordance with established inclusion criteria. The risk of bias was assessed using the Cochrane Risk of Bias tool (RoB V.2.0). Data analysis was conducted with Stata Statistical Software V.16.0 and Review Manager Software V.5.3. RESULTS A total of 15 studies with 3394 participants were identified for the present meta-analysis. Our pooled results indicated that metformin had no statistically significant effects on BMD at lumbar spine (SMD=-0.05, 95% CI=-0.19 to 0.09, p=0.47, participants=810; studies=7), at femoral (MD=-0.01 g/cm2, 95% CI=-0.04 to 0.01 g/cm2, p=0.25, participants=601; studies=3) and at hip (MD=0.01 g/cm2, 95% CI=-0.02 to 0.03 g/cm2, p=0.56, participants=634; studies=4). Metformin did not lead to significant change in osteocalcin, osteoprotegerin and bone alkaline phosphatase. Metformin induced decreases in N-terminal propeptide of type I procollagen (MD=-6.09 µg/L, 95% CI=-9.38 to -2.81 µg/L, p=0.0003, participants=2316; studies=7) and C-terminal telopeptide of type I collagen (MD=-55.80 ng/L, 95% CI=-97.33 to -14.26 ng/L, p=0.008, participants=2325; studies=7). CONCLUSION This meta-analysis indicated that metformin had no significant effect on BMD. Metformin decreased some bone turnover markers as N-terminal propeptide of type I procollagen and C-terminal telopeptide of type I collagen. But the outcomes should be interpreted with caution due to several limitations.
Collapse
Affiliation(s)
- Jinhua Hu
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, Shanghai, China
| | - Jingjie Han
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, Shanghai, China
| | - Min Jin
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, Shanghai, China
| | - Jing Jin
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, Shanghai, China
| | - Jialei Zhu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, Shanghai, China
| |
Collapse
|
8
|
Wong SK, Fikri NIA, Munesveran K, Hisham NSN, Lau SHJ, Chin KY, Fahami NAM, Saad QHM, Kamisah Y, Abdullah A, Masbah N, Ima-Nirwana S. Effects of tocotrienol on osteocyte-mediated phosphate metabolism in high-carbohydrate high-fat diet-induced osteoporotic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
9
|
Effects of Metformin on Bone Mineral Density and Adiposity-Associated Pathways in Animal Models with Type 2 Diabetes Mellitus: A Systematic Review. J Clin Med 2022; 11:jcm11144193. [PMID: 35887957 PMCID: PMC9323116 DOI: 10.3390/jcm11144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, there have been investigations on metformin (Met) as a potential treatment for bone diseases such as osteoporosis, as researchers have outlined that type 2 diabetes mellitus (T2DM) poses an increased risk of fractures. Hence, this systematic review was conducted according to the 2020 PRISMA guidelines to evaluate the evidence that supports the bone-protective effects of metformin on male animal models with T2DM. Five databases—Google Scholar, PubMed, Wiley Online Library, SCOPUS, and ScienceDirect—were used to search for original randomized controlled trials published in English with relevant keywords. The search identified 18 articles that matched the inclusion criteria and illustrated the effects of Met on bone. This study demonstrates that Met improved bone density and reduced the effects of T2DM on adiposity formation in the animal models. Further research is needed to pinpoint the optimal dosage of Met required to exhibit these therapeutic effects.
Collapse
|
10
|
Ekici O, Aslan E, Guzel H, Korkmaz OA, Sadi G, Gurol AM, Boyaci MG, Pektas MB. Kefir alters craniomandibular bone development in rats fed excess dose of high fructose corn syrup. J Bone Miner Metab 2022; 40:56-65. [PMID: 34613434 DOI: 10.1007/s00774-021-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Dietary high fructose corn syrup (HFCS) is involved in the pathogenesis of oral diseases as well as metabolic diseases. The aim of this study was to investigate the effects of HFCS-feeding on the craniomandibular bone development at an early age and also the potential of milk kefir for preventive treatment. MATERIALS AND METHODS In this study, Control, Kefir, HFCS, and HFCS plus Kefir groups were formed; kefir was given by gastric gavage, while HFCS (20% beverages) was given in drinking water; for 8 weeks. RESULTS Based on morphological evaluations, immunohistochemical, and gene expression results, it was clearly determined that excess dose of HFCS consumption decreased osteoblastic activity in craniomandibular bones while increasing osteoclastic activity. However, it has been determined that the intake of kefir with the HFCS-feeding greatly suppresses the effects of HFCS on bone tissues. CONCLUSION In conclusion, dietary the excess dose of HFCS at an early age has been observed to pose a risk for cranial and mandible bone development. The healing effects of kefir may be a new approach to the treatment via kefir consumption in young's.
Collapse
Affiliation(s)
- O Ekici
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - E Aslan
- Department of Histology and Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - H Guzel
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - O A Korkmaz
- Department of Chemistry, Faculty of Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - G Sadi
- Department of Biology, K.O. Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - A M Gurol
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - M G Boyaci
- Department of Neurosurgery, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey
| | - M B Pektas
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, 03200, Afyonkarahisar, Turkey.
| |
Collapse
|
11
|
Luetić M, Kretzschmar G, Grobe M, Jerčić L, Bota I, Ivić V, Balog M, Zjalić M, Vitlov Uljević M, Heffer M, Gaspar R, Tabi T, Vukojević K, Vari SG, Filipović N. Sex-specific effects of metformin and liraglutide on renal pathology and expression of connexin 45 and pannexin 1 following long-term high-fat high-sugar diet. Acta Histochem 2021; 123:151817. [PMID: 34808525 DOI: 10.1016/j.acthis.2021.151817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
The comparative effects of the two commonly used antidiabetic drugs metformin and liraglutide on renal pathology and expression of connexin 45 (Cx45) and pannexin 1 (Panx1) in adult obese rats fed high-fat high-sugar diet (HFHSD) were studied. Considering recent data on the profound influence of sex on metformin and liraglutide effects, we compared the effects of both drugs between male and female animals. 44-week-old Sprague-Dawley rats were separated into 4 groups that were fed: standard diet, HFHSD, HFHSD treated with metformin (s.c., 50 mg/kg/day) and HFHSD treated with liraglutide (s.c., 0.3 mg/kg/day). Treatment with metformin or liraglutide lasted for 14 weeks. Histology and immunohistochemistry were performed to quantify renal pathological changes and Cx45 and Panx1 expression. HFHSD caused thickening of the Bowman's capsule (BC). Both metformin and liraglutide failed to ameliorate the BC thickening; metformin even worsened it. Effects on the tubulointerstitial fibrosis score, BC thickness and Cx45 and Panx1 expression were sex-dependent. We found a 50% increase in mitochondria in proximal tubules of metformin- and liraglutide-treated HFHSD-fed rats, but these effects were not dependent on the sex. This is a first study showing that the effects of metformin and liraglutide on kidney pathology in rats fed HFHSD are mostly sex-dependent and that these effects are not necessarily beneficial. Both drugs changed the Cx45 and Panx 1 expression; hence their effects could be related to amelioration of disruptions in intercellular communication.
Collapse
Affiliation(s)
- Martina Luetić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital Centre Split, Spinčićeva 1, Split 21000, Croatia
| | - Genia Kretzschmar
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Maximilian Grobe
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Leo Jerčić
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Ivana Bota
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Vedrana Ivić
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Marta Balog
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Milorad Zjalić
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Marija Vitlov Uljević
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Marija Heffer
- Faculty of Medicine Osijek Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, Osijek 31000, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér. 12., H-6720 Szeged, Hungary
| | - Tamas Tabi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Katarina Vukojević
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia; University of Split School of Medicine, Laboratory for Early Human Development, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia
| | - Sandor G Vari
- International Research and Innovation in Medicine Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natalija Filipović
- University of Split School of Medicine, Laboratory for Neurocardiology, Department of Anatomy, Histology and Embryology, Šoltanska 2, Split 21000, Croatia.
| |
Collapse
|
12
|
Torres ML, Wanionok NE, McCarthy AD, Morel GR, Fernández JM. Systemic oxidative stress in old rats is associated with both osteoporosis and cognitive impairment. Exp Gerontol 2021; 156:111596. [PMID: 34678425 DOI: 10.1016/j.exger.2021.111596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated both with an increase in memory loss and with comorbidities such as Osteoporosis, which could be causatively linked. In the present study, a deleterious effect on bone is demonstrated for the first time in a model of aged rats with impaired memory. We show that bone marrow progenitor cells obtained from rats with memory deficit have a decrease in their osteogenic capacity, and an increase both in their osteoclastogenic profile and adipogenic capacity, when compared to aged rats with preserved memory. Rats with impaired (versus preserved) memory also show alterations in long-bone micro-architecture (decreased trabecular bone and osteocyte density, increased TRAP-positive osteoclasts), lower bone quality (decreased trabecular bone mineral content and density) and an increase in bone marrow adiposity. Interestingly, the development of bone alterations and memory deficit in old rats is associated with significantly higher levels of serum oxidative stress (versus unaffected aged rats). In conclusion, we have found for the first time in an aged rat model, a relationship between alterations in bone quality and memory impairment, with increased systemic oxidative stress as a possible unifying mechanism.
Collapse
Affiliation(s)
- María Luz Torres
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Nahuel Ezequiel Wanionok
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Antonio Desmond McCarthy
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina
| | - Gustavo Ramón Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan Manuel Fernández
- LIOMM (Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CIC, Calle 47 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
13
|
Virgen-Carrillo CA, de Los Ríos DLH, Torres KR, Moreno AGM. Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review. Curr Diabetes Rev 2021; 17:e140421192834. [PMID: 33855947 DOI: 10.2174/1573399817666210414103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thousands of publications in recent years have addressed the induction of metabolic syndrome (MetS) in rodents. However, the criteria and the reference values for diagnosing this disease have not been defined. OBJECTIVE Our main objective was to carry out a systematic review to gather evidence about the criteria for biochemical and anthropometric parameters in which scientific studies have relied on to report that rats developed MetS from a previous dietary manipulation. METHODS We compiled characteristics and findings of diet-induced MetS with high-fat, high-carbohydrate, high-fat/high-carbohydrates, and cafeteria diet from PubMed and Science Direct databases published in the last 5 years. RESULTS The results on the principal determinants for the syndrome, published in the reviewed articles, were chosen to propose reference values in the rat models of food induction. CONCLUSION The values obtained will serve as reference cut-of points in the development of the disease; in addition, the compilation of data will be useful in planning and executing research protocols in animal models.
Collapse
Affiliation(s)
- Carmen Alejandrina Virgen-Carrillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Diana Laura Hernández de Los Ríos
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Karina Ruíz Torres
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Alma Gabriela Martínez Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
14
|
Maternal intake of alpha-lipoic acid prevents development of symptoms associated with a fructose-rich diet in the male offspring in Wistar rats. J Dev Orig Health Dis 2020; 12:758-767. [PMID: 33303040 DOI: 10.1017/s2040174420001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The hypothesis was that maternal intake of the antioxidant alpha-lipoid acid (ALA), during the developmental period of the hypothalamic orexigenic neurons, causes a permanent beneficial effect in offspring metabolism. Pregnant Wistar rats were fed with standard diet (food) + ALA (0.4% wt/wt) from day 14 of gestation to day 20 of lactation (n = 4) or food (n = 4). At 3 months of age, male offspring born from ALA-fed rats or controls (CT) were randomly assigned to be fed with food + 10% fructose solution in drinking water (F) or food + tap water (C), resulting in four groups: ALAF, ALAC, CTF, and CTC (n = 5/group). Food intake and body weight (BW) were measured twice a week for 31 days. Metabolites' levels in blood, mRNA expressions of Npy, Agrp (hypothalamus), Fasn, Srebf1, Ppard, and Pparg (liver), and the antioxidant capacity of the liver were determined. Results significance was set at p < 0.05. Average BW gain, daily BW gain, and intraabdominal fat tissue at necropsy were higher in CTF group followed by CTC, ALAF, and ALAC groups. There were no differences between groups in Kcal intake per day. mRNA expressions of hypothalamic and hepatic genes and plasmatic levels of glucose and triglycerides were higher in CTF group followed by ALAF, CTC, and ALAC groups. Fructose intake affected the oxidative capacity of the liver, but this effect was not observed in the ALAF group. In conclusion, maternal ALA intake protected the adult offspring to develop metabolic symptoms associated with high fructose in the drinking water.
Collapse
|
15
|
Williams EAJ, Douard V, Sugimoto K, Inui H, Devime F, Zhang X, Kishida K, Ferraris RP, Fritton JC. Bone Growth is Influenced by Fructose in Adolescent Male Mice Lacking Ketohexokinase (KHK). Calcif Tissue Int 2020; 106:541-552. [PMID: 31996963 PMCID: PMC9466006 DOI: 10.1007/s00223-020-00663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023]
Abstract
Fructose is metabolized in the cytoplasm by the enzyme ketohexokinase (KHK), and excessive consumption may affect bone health. Previous work in calcium-restricted, growing mice demonstrated that fructose disrupted intestinal calcium transport. Thus, we hypothesized that the observed effects on bone were dependent on fructose metabolism and took advantage of a KHK knockout (KO) model to assess direct effects of high plasma fructose on the long bones of growing mice. Four groups (n = 12) of 4-week-old, male, C57Bl/6 background, congenic mice with intact KHK (wild-type, WT) or global knockout of both isoforms of KHK-A/C (KHK-KO), were fed 20% glucose (control diet) or fructose for 8 weeks. Dietary fructose increased by 40-fold plasma fructose in KHK-KO compared to the other three groups (p < 0.05). Obesity (no differences in epididymal fat or body weight) or altered insulin was not observed in either genotype. The femurs of KHK-KO mice with the highest levels of plasma fructose were shorter (2%). Surprisingly, despite the long-term blockade of KHK, fructose feeding resulted in greater bone mineral density, percent volume, and number of trabeculae as measured by µCT in the distal femur of KHK-KO. Moreover, higher plasma fructose concentrations correlated with greater trabecular bone volume, greater work-to-fracture in three-point bending of the femur mid-shaft, and greater plasma sclerostin. Since the metabolism of fructose is severely inhibited in the KHK-KO condition, our data suggest mechanism(s) that alter bone growth may be related to the plasma concentration of fructose.
Collapse
Affiliation(s)
- Edek A J Williams
- Department of Biomedical Engineering, Graduate School, Rutgers University, New Brunswick, NJ, USA
| | - Veronique Douard
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Hiroshi Inui
- Center for Research and Development of Bioresources & Department of Clinical Nutrition, College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Fabienne Devime
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xufei Zhang
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Kunihiro Kishida
- Department of Science and Technology On Food Safety, Kindai University, Wakayama, Japan
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - J Christopher Fritton
- Department of Biomedical Engineering, Graduate School, Rutgers University, New Brunswick, NJ, USA.
- Departments of Mechanical and Biomedical Engineering, Grove School of Engineering, The City College of New York, 160 Convent Avenue, Steinman Hall T401, New York, NY, 10031, USA.
| |
Collapse
|
16
|
Tükel HC, Delilbaşı E. Effects of metabolic syndrome on jawbones and bone metabolic markers in sucrose-fed rats. Odontology 2019; 107:457-464. [DOI: 10.1007/s10266-019-00422-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
|
17
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
18
|
Zhang Y, Chai D, Gao M, Xu B, Jiang G. Thermal ablation of separable microneedles for transdermal delivery of metformin on diabetic rats. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1517347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yang Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, China
| | - Dongning Chai
- Xiamen Lin Qiaozhi Women’s and Children’s Hospital, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Mengyue Gao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bin Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, China
| | - Guohua Jiang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Abstract
Accumulating evidence has shown that the risk of osteoporotic fractures is increased in patients with diabetes mellitus (DM). Thus, DM-induced bone fragility has been recently recognized as a diabetic complication. Because the fracture risk is independent of the reduction in bone mineral density, deterioration of the bone quality may be the main cause of bone fragility. Although its mechanism remains poorly understood, accumulated collagen cross-links of advanced glycation end-products (AGEs) and dysfunctions of osteoblast and osteocyte may be involved. Previous studies have suggested that various diabetes-related factors, such as chronic hyperglycemia, insulin, insulin-like growth factor-I, AGEs, and homocysteine, are associated with the risk of bone fragility caused by impaired bone formation and bone remodeling. Furthermore, several anti-diabetic drugs are known to affect bone metabolism and fracture risk. We herein review the association between DM and fracture risk as well as the mechanism of DM-induced bone fragility based on recent evidence.
Collapse
Affiliation(s)
- Ippei Kanazawa
- Internal Medicine 1, Shimane University Faculty of Medicine, Japan
| | | |
Collapse
|
20
|
Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One 2018; 13:e0192416. [PMID: 29420594 PMCID: PMC5805301 DOI: 10.1371/journal.pone.0192416] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the effects of metabolic syndrome (MetS) induced by high-carbohydrate high-fat (HCHF) diet on bone mineral density (BMD), histomorphometry and remodelling markers in male rats. Twelve male Wistar rats aged 12 weeks old were randomized into two groups. The normal group was given standard rat chow while the HCHF group was given HCHF diet to induce MetS. Abdominal circumference, blood glucose, blood pressure, and lipid profile were measured for the confirmation of MetS. Bone mineral density, histomorphometry and remodelling markers were evaluated for the confirmation of bone loss. The HCHF diet caused central obesity, hyperglycaemia, hypertension, and dyslipidaemia in male rats. No significant difference was observed in whole body bone mineral content and BMD between the normal and HCHF rats (p>0.05). For bone histomorphometric parameters, HCHF diet-fed animals had significantly lower osteoblast surface, osteoid surface, osteoid volume, and significantly higher eroded surface; resulting in a reduction in trabecular bone volume (p<0.05). Feeding on HCHF diet caused a significantly higher CTX-1 level (p<0.05), but did not cause any significant change in osteocalcin level compared to normal rats (p>0.05). In conclusion, HCHF diet-induced MetS causes imbalance in bone remodelling, leading to the deterioration of trabecular bone structure.
Collapse
|
21
|
Chen M, Yang F, Kang J, Gan H, Lai X, Gao Y. Discovery of molecular mechanism of a clinical herbal formula upregulating serum HDL-c levels in treatment of metabolic syndrome by in vivo and computational studies. Bioorg Med Chem Lett 2017; 28:174-180. [PMID: 29196136 DOI: 10.1016/j.bmcl.2017.11.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Decreased HDL cholesterol (HDL-c) is considered as an independent risk factor of cardiovascular disease in metabolic syndrome (Mets). Wendan decoction (WDD), a famous clinical traditional Chinese medicine formula in Mets in China, which can obviously up-regulate serum HDL-c levels in Mets. However, till now, the molecular mechanism of up-regulation still remained unclear. In this study, an integrated approach that combined serum ABCA1 in vivo assay, QSAR modeling and molecular docking was developed to explore the molecular mechanism and chemical substance basis of WDD upregulating HDL-c levels. Compared with Mets model group, serum ABCA1 and HDL-c levels intervened by two different doses of WDD for two weeks were significantly up-regulated. Then, kohonen and LDA were applied to develop QSAR models for ABCA1 up-regulators based flavonoids. The derived QSAR model produced the overall accuracy of 100%, a very powerful tool for screening ABCA1 up-regulators. The QSAR model prediction revealed 67 flavonoids in WDD were ABCA1 up-regulators. Finally, they were subjected to the molecular docking to understand their roles in up-regulating ABCA1 expression, which led to discovery of 23 ABCA1 up-regulators targeting LXR beta. Overall, QSAR modeling and docking studies well accounted for the observed in vivo activities of ABCA1 affected by WDD.
Collapse
Affiliation(s)
- Meimei Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China; College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China.
| | - Jie Kang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Huijuan Gan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xinmei Lai
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Yuxing Gao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
22
|
Chen M, Yang F, Kang J, Gan H, Lai X, Gao Y. Metabolomic investigation into molecular mechanisms of a clinical herb prescription against metabolic syndrome by a systematic approach. RSC Adv 2017. [DOI: 10.1039/c7ra09779d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study provided an effective and comprehensive approach for understanding the pathophysiological mechanisms of Mets and therapeutic mechanisms of WDD in treatment of Mets.
Collapse
Affiliation(s)
- Meimei Chen
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
- College of Traditional Chinese Medicine
| | - Fafu Yang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- China
| | - Jie Kang
- College of Traditional Chinese Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- China
| | - Huijuan Gan
- College of Traditional Chinese Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- China
| | - Xinmei Lai
- College of Traditional Chinese Medicine
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- China
| | - Yuxing Gao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|