1
|
Rout S, Mishra PR, Balamurugan AN, Ravi PK. Islet dimension and its impact on transplant outcome: A systematic review. World J Transplant 2025; 15:102383. [DOI: 10.5500/wjt.v15.i3.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Not all islet transplants desirably achieve insulin independence. This can be attributed to the microarchitecture and function of the islets influenced by their dimensions. Large islets enhance insulin secretion through paracrine effects but are more susceptible to hypoxic injury post-transplant, while small islets offer better viability and insulin independence. In vivo studies suggest large islets are essential for maintaining euglycemia, though smaller islets are typically preferred in transplantation for better outcomes.
AIM To document the impact of islet dimension on clinical and preclinical transplant outcomes to optimize procedures.
METHODS PubMed, Scopus and EMBASE platforms were searched for relevant literature up to 9 April 2024. Articles reported on either glucose-stimulated insulin-secreting (GSIS) capacity, islet viability and engraftment, or insulin independence based on the islet dimension were included. The risk of bias was measured using the Appraisal Tool for Cross-Sectional Studies. Extracted data was analyzed via a narrative synthesis.
RESULTS Nineteen studies were included in the review. A total of sixteen studies reported the GSIS, of which nine documented the increased insulin secretion in the small islet, where the majority reported insulin secretion per islet equivalent (IEQ). Seven studies documented increased GSIS in large-sized islets that measure insulin secretion per cell or islet. All the articles that compared small and large islets reported poor viability and engraftment of large islets.
CONCLUSION Small islets with a diameter < 125 µm have desired transplantation outcomes due to their better survival following isolation. Large-sized islets receive blood supply directly from arterioles in vivo to meet their higher metabolic demands. The large islet undergoes central necrosis soon after the isolation (devascularization); failing to maintain the viability and glucose stimuli leads to a decline in GSIS and the overall function of the islet. Improved preservation of large islets after islet isolation, enhances the islet yield (IEQ), thereby reducing the likelihood of failed islet isolation and potentially improves transplant outcome.
Collapse
Affiliation(s)
- Sipra Rout
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Pravash R Mishra
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| | - Appakalai N Balamurugan
- Wendy Novak Diabetes Institute, Norton Children's Research Institute, Norton Healthcare, Louisville, KY 40202, United States
- Division of Pediatric Endocrinology, Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY 40202, United States
| | - Praveen Kumar Ravi
- Department of Anatomy, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| |
Collapse
|
2
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
3
|
Xiong L, Chen L, Wu L, He W, Chen D, Peng Z, Li J, Zhu X, Su L, Li Y, Gong Y, Xiao H. Lipotoxicity-induced circGlis3 impairs beta cell function and is transmitted by exosomes to promote islet endothelial cell dysfunction. Diabetologia 2022; 65:188-205. [PMID: 34751796 DOI: 10.1007/s00125-021-05591-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS Lipotoxicity constitutes the major driving force for type 2 diabetes. Circular RNAs (circRNAs) play important roles in regulating beta cell function and exosomes are essential mediators of intercellular communication. The role of exosomal circRNAs in type 2 diabetes remains largely unknown. We aimed to examine whether lipotoxicity induces dysregulation of circRNAs in beta cell-derived exosomes and to determine the contribution of exosomal circRNAs to the development of type 2 diabetes. METHODS Exosomes were extracted from MIN6 cells treated with palmitate or BSA, and RNA sequencing was performed. CircGlis3 (Gli-similar 3) expression level was validated by qPCR. The impact of circGlis3 on beta cell function and the deleterious effects of exosomal circGlis3 on islet endothelial cells (islet ECs) were investigated in vitro and in vivo in human and mouse models by gain or loss of function assays. The molecular mechanism of circGlis3 was explored by RNA pull-down and immunoprecipitation assays. RESULTS Beta cell-derived exosomal circGlis3 was significantly upregulated under lipotoxic conditions, and exosomal circGlis3 levels were also elevated in the serum of mouse models of diabetes and participants with type 2 diabetes. CircGlis3 participated in lipotoxicity-induced beta cell dysfunction in vitro and in vivo. Moreover, beta cell-derived exosomal circGlis3 could be transferred to islet ECs and reduce the cell viability, cell migration and angiogenesis of islet ECs. Mechanistically, circGlis3 promoted the degradation of glucocorticoid modulatory element-binding protein 1 (GMEB1) by facilitating the interaction between GMEB1 and mindbomb E3 ubiquitin protein ligase 2 (MIB2), thus suppressing the phosphorylation of heat shock protein 27 (HSP27). CONCLUSIONS/INTERPRETATION Our study points to the involvement of circGlis3 in diabetes development, and exosomal circGlis3 transfer as a communication mode between beta cells and islet ECs, suggesting that circGlis3 might be a potential biomarker and therapeutic target for type 2 diabetes. DATA AVAILABILITY The RNA-sequencing data have been deposited in the NCBI Sequence Read Archive (SRA) database, with accession number PRJNA689673. Mass spectrometry data are available via ProteomeXchange with identifier PXD024693.
Collapse
Affiliation(s)
- Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Chen
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liting Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiman He
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dubo Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zishan Peng
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaonan Zhu
- Department of Pharmacology, Zhong‑Shan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong, China
| | - Lei Su
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingying Gong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ihezie SA, Mathew IE, McBride DW, Dienel A, Blackburn SL, Thankamani Pandit PK. Epigenetics in blood-brain barrier disruption. Fluids Barriers CNS 2021; 18:17. [PMID: 33823899 PMCID: PMC8025355 DOI: 10.1186/s12987-021-00250-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
The vessels of the central nervous system (CNS) have unique barrier properties. The endothelial cells (ECs) which comprise the CNS vessels contribute to the barrier via strong tight junctions, specific transporters, and limited endocytosis which combine to protect the brain from toxins and maintains brain homeostasis. Blood-brain barrier (BBB) leakage is a serious secondary injury in various CNS disorders like stroke, brain tumors, and neurodegenerative disorders. Currently, there are no drugs or therapeutics available to treat specifically BBB damage after a brain injury. Growing knowledge in the field of epigenetics can enhance the understanding of gene level of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. In this brief review, we summarize the epigenetic mechanisms or regulators that have a protective or disruptive role for components of BBB, along with the promising approaches to regain the integrity of BBB.
Collapse
Affiliation(s)
- Stephanie A Ihezie
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Iny Elizebeth Mathew
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Spiros L Blackburn
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA
| | - Peeyush Kumar Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St. MSB 7.147, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Wang Y, Wang JW, Li Y, Tian XH, Feng XS, Zhang SC, Liu PJ, Xue WJ, Zheng J, Ding XM. Bone marrow-derived mesenchymal stem cells improve rat islet graft revascularization by upregulating ISL1. STEM CELLS (DAYTON, OHIO) 2021; 39:1033-1048. [PMID: 33754392 DOI: 10.1002/stem.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Revascularization of the islet transplant is a crucial step that defines the success rate of patient recovery. Bone marrow-derived mesenchymal stem cells (BMSCs) have been reported to promote revascularization; however, the underlying cellular mechanism remains unclear. Moreover, our liquid chromatography-tandem mass spectrometry results showed that BMSCs could promote the expression of insulin gene enhancer binding protein-1 (ISL1) in islets. ISL1 is involved in islets proliferation and plays a potential regulatory role in the revascularization of islets. This study identifies the ISL1 protein as a potential modulator in BMSCs-mediated revascularization of islet grafts. We demonstrated that the survival rate and insulin secretion of islets were increased in the presence of BMSCs, indicating that BMSCs promote islet revascularization in a coculture system and rat diabetes model. Interestingly, we also observed that the presence of BMSCs led to an increase in ISL1 and vascular endothelial growth factor A (VEGFA) expression in both islets and the INS-1 rat insulinoma cell line. In silico protein structure modeling indicated that ISL1 is a transcription factor that has four binding sites with VEGFA mRNA. Further results showed that overexpression of ISL1 increased both the abundance of VEGFA transcripts and protein accumulation, while inhibition of ISL1 decreased the abundance of VEGFA. Using a ChIP-qPCR assay, we demonstrated that direct molecular interactions between ISL1 and VEGFA occur in INS-1 cells. Together, these findings reveal that BMSCs promote the expression of ISL1 in islets and lead to an increase in VEGFA in islet grafts. Hence, ISL1 is a potential target to induce early revascularization in islet transplantation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jing-Wen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yang Li
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Hui Tian
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xin-Shun Feng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Shu-Cong Zhang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wu-Jun Xue
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xiao-Ming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
6
|
Alhayaza R, Haque E, Karbasiafshar C, Sellke FW, Abid MR. The Relationship Between Reactive Oxygen Species and Endothelial Cell Metabolism. Front Chem 2020; 8:592688. [PMID: 33330380 PMCID: PMC7732658 DOI: 10.3389/fchem.2020.592688] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) has been the leading cause of death for many decades, highlighting the importance of new research and treatments in the field. The role of hypoxia and subsequent free radical production [reactive oxygen species (ROS)] have become an area of particular interest in CVD. Interestingly, our laboratory and other laboratories have recently reported positive roles of subcellular ROS in modulating endothelial cell (EC) metabolism, proliferation, and angiogenesis. This bidirectional relationship between ROS and EC metabolism, as well as functional changes, continues to be an area of active research. Interestingly, ECs have been shown to rely on anaerobic processes for ATP generation, despite their direct access to oxygen. This paradox has proven to be beneficial as the major reliance on glycolysis produces ATP faster, preserves oxygen, and results in reduced ROS levels in contrast to oxidative phosphorylation. This review will address the relationship between ROS and carbohydrate, lipid, and nitrogen metabolism in ECs, and their effects on EC phenotype such as sprouting angiogenesis.
Collapse
Affiliation(s)
- Raid Alhayaza
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Emaan Haque
- Alfaisal University School of Medicine, Riyadh, Saudi Arabia
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Alpert Medical School, Providence, RI, United States
| |
Collapse
|
7
|
Narayanan S, Bhutiani N, Adamson DT, Jones CM. Pancreatectomy, Islet Cell Transplantation, and Nutrition Considerations. Nutr Clin Pract 2020; 36:385-397. [PMID: 33002260 DOI: 10.1002/ncp.10578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic islet transplantation is a reliable approach for treating insulin-deficient diabetes. This established β-cell replacement approach has shown considerable improvements in the last 2 decades. It has helped achieve metabolic homeostasis and safe outcomes for a subset of patients with type 1 diabetes and severe pancreatitis. Nutrition support, until recently, was considered as a secondary factor, merely identified as a means of providing all the necessary nutrients for such patients. However, new literature suggests that several factors, such as the route, timing, quantity, and composition of all the nutrients administered, have key disease-altering properties and are vital during the perioperative management of such patients. This review will highlight the benefits of performing the clinical islet transplantation on a subgroup of patients with type 1 diabetes and pancreatitis and summarize new data that identify the pivotal role of nutrition support as a critical intervention in their management.
Collapse
Affiliation(s)
- Siddharth Narayanan
- Division of Transplantation, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Neal Bhutiani
- Division of Transplantation, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Dylan T Adamson
- Division of Transplantation, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Christopher M Jones
- Division of Transplantation, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Oxidation of HDAC4 by Nox4-derived H 2O 2 maintains tube formation by endothelial cells. Redox Biol 2020; 36:101669. [PMID: 32818796 PMCID: PMC7452117 DOI: 10.1016/j.redox.2020.101669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
NADPH oxidases produce reactive oxygen species that differ in localization, type and concentration. Within the Nox family only Nox4 produces H2O2 which can directly oxidize cysteine residues. With this post-translational modification, activity, stability, localization and protein-protein interactions of the affected protein is altered. Nox4 controls differentiation, cellular homeostasis and prevents inflammation. Therefore, is likely that epigenetic mechanisms contribute to the effects of Nox4. One group of epigenetic modifiers are class IIa histone deacetylases (HDACs). We hypothesize that Nox4-derived H2O2 oxidizes HDACs and analyzed whether HDACs can be differentially oxidized by Nox4. As an artificial system, we utilized HEK293 cells, overexpressing Nox4 in a tetracycline-inducible manner. HDAC4 was oxidized upon Nox4 overexpression. Additionally, Nox4 overexpression increased HDAC4 phosphorylation on Ser632. H2O2 disrupted HDAC4/Mef2A complex, which de-represses Mef2A. In endothelial cells such as HUVECs and HMECs, overexpression of HDAC4 significantly reduced tube formation. Overexpression of a redox insensitive HDAC4 had no effect on endothelial tube formation. Treatment with H2O2, induction of Nox4 expression by treatment of the cells with TGFβ and co-overexpression of Nox4 not only induced phosphorylation of HDAC4, but also restored the repressive effect of HDAC4 for tube formation, while overexpression of a redox dead mutant of Nox4 did not. Taken together, Nox4 oxidizes HDAC4, increases its phosphorylation, and eventually ensures proper tube formation by endothelial cells.
Collapse
|
9
|
Aller MA, Blanco-Rivero J, Arias N, Santamaria L, Arias J. The Lymphatic Headmaster of the Mast Cell-Related Splanchnic Inflammation in Portal Hypertension. Cells 2019; 8:cells8070658. [PMID: 31261968 PMCID: PMC6678304 DOI: 10.3390/cells8070658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Portal hypertension is a common complication of liver disease, either acute or chronic. Consequently, in chronic liver disease, such as the hypertensive mesenteric venous pathology, the coexisting inflammatory response is classically characterized by the splanchnic blood circulation. However, a vascular lymphatic pathology is produced simultaneously with the splanchnic arterio-venous impairments. The pathological increase of the mesenteric venous pressure, by mechanotransduction of the venous endothelium hyperpressure, causes an inflammatory response involving the subendothelial mast cells and the lymphatic endothelium of the intestinal villi lacteal. In portal hypertension, the intestinal lymphatic inflammatory response through the development of mesenteric-systemic lymphatic collateral vessels favors the systemic diffusion of substances with a molecular pattern associated with damage and pathogens of intestinal origin. When the chronic hepatic insufficiency worsens the portal hypertensive inflammatory response, the splanchnic lymphatic system transports the hyperplasied intestinal mast cells to the mesenteric lymphatic complex. Then, an acquired immune response regulating a new hepato-intestinal metabolic scenario is activated. Therefore, reduction of the hepatic metabolism would reduce its key centralized functions, such as the metabolic, detoxifying and antioxidant functions which would try to be substituted by their peroxisome activity, among other functions of the mast cells.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonomous University of Madrid, 28049 Madrid, Spain
- Instituto de Investigación Biomédica La Paz (IdIPAZ), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red (Ciber) de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London WC2R 2LS, UK
- INEUROPA (Instituto de Neurociencias del Principado de Asturias), 33003 Oviedo, Spain
| | - Luis Santamaria
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, 28029 Madrid, Spain
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Xu L, Guo Y, Huang Y, Xu Y, Lu Y, Wang Z. Hydrogel materials for the application of islet transplantation. J Biomater Appl 2019; 33:1252-1264. [PMID: 30791850 DOI: 10.1177/0885328219831391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus is a serious disease comprising approximately 10% of all diabetes cases, and the global incidence of type 1 diabetes mellitus is steadily rising without any promise of a cure in the near future. Although islet transplantation has proven to be an effective means of treating type 1 diabetes mellitus and promoting insulin independence in patients, its widespread implementation has been severely constrained by instances of post-transplantation islet cell death, rejection, and severe adverse immune responses. Islet encapsulation is an active area of research aimed at shielding implanted islets from immunological rejection and inflammation while still allowing for effective insulin and nutrient exchange with donor cells. Given their promising physical and chemical properties, hydrogels have been a major subject of focus in the field of islet transplantation and encapsulation technology, offering promising advances towards immunologically privileged islet implants. The present review therefore summarizes the current state of research regarding the use of hydrogels in the context of islet transplantation, including both natural molecular hydrogels and artificial polymer hydrogels, with the goal of understanding the current strengths and weaknesses of this treatment strategy.
Collapse
Affiliation(s)
- Liancheng Xu
- Suqian First Hospital, Suqian, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Xu
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|