1
|
Oliveira RI, de Oliveira IN, de Conto JF, de Souza AM, Batistuzzo de Medeiros SR, Egues SM, Padilha FF, Hernández-Macedo ML. Photocatalytic effect of N-TiO 2 conjugated with folic acid against biofilm-forming resistant bacteria. Heliyon 2023; 9:e22108. [PMID: 38027799 PMCID: PMC10658382 DOI: 10.1016/j.heliyon.2023.e22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotic resistance challenges the treatment of bacterial biofilm-related infections, but the use of nanoparticles as a treatment is a promising strategy to overcome bacterial infections. This study applied nitrogen-doped titanium dioxide (N-TiO2) conjugated with folic acid (FA) on biofilm-forming resistant bacteria. The photocatalytic effect of TiO2 nanoparticles (NPs) was studied under ultraviolet (UV), visible light, and dark conditions at 60, 120, and 180 min against planktonic cells and biofilms of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. TiO2 NPs were in the anatase phase, spherical shaped with sizes of 10-13 nm, and effectively doped and conjugated with N and FA. The FA-conjugated nanoparticles (N-TiO2-FA and FA-TiO2) were shown to have a bactericidal effect on all bacteria between 60 and 180 min under UV and visible light conditions. Concerning biofilms, N-TiO2-FA was shown to have a highly disruptive effect on all bacterial biofilms under UV irradiation at 180 min. Meanwhile, the nanoparticles did not show DNA damaging potential and they had no cytostatic effect, indicating that these NPs are biocompatible. In sum, nanoparticle conjugation with FA promoted photocatalytic effectiveness, revealing the promise this nanomaterial holds as a biocompatible antimicrobial agent.
Collapse
Affiliation(s)
- Raphaella I.S. Oliveira
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Iracema N. de Oliveira
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Juliana F. de Conto
- Laboratory of Materials Synthesis and Chromatography, Center for Studies in Colloidal Systems, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Augusto M. de Souza
- Department of Cell Biology and Genetics, Bioscience Center, Federal University of Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - Silvia R. Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Bioscience Center, Federal University of Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - Silvia M. Egues
- Laboratory of Materials Synthesis and Chromatography, Center for Studies in Colloidal Systems, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
- Graduate Program in Process Engineering, Tiradentes University, 49037-580 Aracaju, SE, Brazil
| | - Francine F. Padilha
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Maria L. Hernández-Macedo
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| |
Collapse
|
2
|
Mirzaei R, Yousefimashouf R, Arabestani MR, Sedighi I, Alikhani MY. The issue beyond resistance: Methicillin-resistant Staphylococcus epidermidis biofilm formation is induced by subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin. PLoS One 2022; 17:e0277287. [PMID: 36350834 PMCID: PMC9645612 DOI: 10.1371/journal.pone.0277287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcus epidermis is one of the most frequent causes of device-associated infections due to biofilm formation. Current reports noted that subinhibitory concentrations of antibiotics induce biofilm production in some bacteria. Accordingly, we evaluated the effect of exposure of different subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the biofilm formation of methicillin-resistant S. epidermidis (MRSE). Antimicrobial susceptibility testing and minimum inhibitory/bactericidal concentration of antimicrobial agents were determined. MRSE isolates were selected, and their biofilm formation ability was evaluated. The effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin, antibiotics selected among common choices in the clinic, on MRSE biofilm formation was determined by the microtitre method. Besides, the effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the expression of the biofilm-associated genes icaA and atlE was evaluated by Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR). Antimicrobial susceptibility patterns of MRSE strains showed a high level of resistance as follows: 80%, 53.3%, 33.3%, 33.3%, and 26.6%, for erythromycin, trimethoprim-sulfamethoxazole, tetracycline, clindamycin, and gentamicin, respectively. Besides, 73.3% of S. epidermidis strains were Multidrug-resistant (MDR). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were in the range of 0.5 to512 μg/mL and 1 to1024 μg/mL for cloxacillin, 0.125 to256 μg/mL and 1 to512 μg/mL for cefazolin, 0.125 to64 μg/mL and 4 to>1024 μg/mL for clindamycin, and 2 to32 μg/mL and 4 to32 μg/mL for vancomycin, respectively. The findings showed that subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin induce biofilm production in MRSE strains. In particular, the OD values of strains were in the range of 0.09-0.95, 0.05-0.86, and 0.06-1 toward cloxacillin, cefazolin, and clindamycin, respectively. On the other hand, exposure to subinhibitory vancomycin concentrations did not increase the biofilm formation in MRSE strains. The findings also demonstrated that sub-MIC of antibiotics up-regulated biofilm-associated genes. In particular, atlE and icaA were up-regulated 0.062 to 1.16 and 0.078 to 1.48 folds, respectively, for cloxacillin, 0.11 to 0.8, and 0.1 to 1.3 folds for cefazolin, 0.18 to 0.98, and 0.19 to 1.4 folds, respectively, for clindamycin. In contrast, the results showed that sub-MIC of vancomycin did not increase the biofilm-associated genes. These findings overall show that exposure to sub-MIC of traditional antibiotics can cause biofilm induction in MRSE, thereby increasing the survival and persistence on various surfaces that worsen the condition of comorbid infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Sedighi
- Department of Pediatrics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Martínez-Santos VI, Torres-Añorve DA, Echániz-Aviles G, Parra-Rojas I, Ramírez-Peralta A, Castro-Alarcón N. Characterization of Staphylococcus epidermidis clinical isolates from hospitalized patients with bloodstream infection obtained in two time periods. PeerJ 2022; 10:e14030. [PMID: 36213498 PMCID: PMC9541613 DOI: 10.7717/peerj.14030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background In recent years Staphylococcus epidermidis has been considered an important and frequent causative agent of health care-associated infections (HAIs), increasing the costs of hospitalization, morbidity, and mortality. Antibiotic resistance and biofilm formation are the most important obstacles in the treatment of infections caused by this microorganism. The aim of this work was to determine the most prevalent STs, as well as the antibiotic resistance profile and biofilm formation of S. epidermidis clinical isolates obtained from hospitalized patients in two hospitals in Acapulco, Guerrero in two time periods. Methods Twenty methicillin-resistant S. epidermidis strains isolated from patients with bacteremia in two hospitals in two time periods were analyzed. Identification and antibiotic susceptibility were performed using the Vitek automated system. Molecular confirmation of the identification and methicillin resistance was performed by duplex PCR of the mecA and nuc genes. Biofilm production was analyzed, and the clonal origin was determined by multilocus sequence typing (MLST). Results We identified 14 antibiotic resistance profiles as well as 13 sequence types (ST), including the new ST761. We also found that ST2 and ST23 were the most prevalent and, together with ST59, were found in both time periods. Seventeen of our clinical isolates were multidrug-resistant, but all of them were sensitive to linezolid and vancomycin, and this was not related to biofilm production. Additionally, we standardized a duplex PCR to identify methicillin-resistant S. epidermidis strains. In conclusion, S. epidermidis STs 2, 23, and 59 were found in both time periods. This study is the first report of S. epidermidis ST761. The clinical isolates obtained in this work showed a high multidrug resistance that is apparently not related to biofilm production.
Collapse
Affiliation(s)
| | - David A. Torres-Añorve
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Gabriela Echániz-Aviles
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Isela Parra-Rojas
- Labotatorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Arturo Ramírez-Peralta
- Laboratorio de Investigación en Patometabolismo Microbiano, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
4
|
Jin Y, Wang Q, Zhang H, Zhao N, Yang Z, Wang H, Li M, Liu Q. Phenol-soluble modulin contributes to the dispersal of Staphylococcus epidermidis isolates from catheters. Front Microbiol 2022; 13:934358. [PMID: 35958143 PMCID: PMC9358717 DOI: 10.3389/fmicb.2022.934358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis (S. epidermidis), a human commensal, has been implicated in invasive infection in humans due to their ability to form biofilm. It is assumed that when a biofilm is dispersed it will subsequently cause a more severe infection. The clinical significance of S. epidermidis isolated from sterile body fluid (BF) remains unclear, and might be related to dispersal from catheter-associated biofilm infection. To evaluate this relationship, we evaluated S. epidermidis isolates from catheters (CA) or BF in hospitalized patients. Sequence type 2 (ST2) is the most prevalent type isolated from infection sites. Although the specific STs were also observed in isolates from different sites, we observed that the main sequence type was ST2, followed by ST59, among all the 114 isolates from different infection sites. Interestingly, ST2 strains isolated from BF exhibited significantly thicker biofilm than those from CA. The thicker biofilm was due to the higher expression of accumulation-associated protein (aap) but not intercellular adhesion (ica) operon. Moreover, the transcription of PSMδ and PSMε were significantly increased in ST2 strains isolated from BF. Although the bacterial loads on catheters were similar infected by CA- or BF-originated strains in mouse biofilm-associated infection model, we observed a higher CFU in peri-catheter tissues infected by ST2 clones isolated from BF, suggesting that S. epidermidis with thicker biofilm formation might be able to disperse. Taken together, our data suggested that S. epidermidis originated from diverse infection sites exhibited different biofilm forming capacity. The major ST2 clone isolated from BF exhibited thicker biofilm by increasing the expression of Aap. The higher expression of PSM of these strains may contribute to bacteria dispersal from biofilm and the following bacterial spread.
Collapse
|
5
|
Nunes SDO, Rosa HDS, Canellas ALB, Romanos MTV, Dos Santos KRN, Muricy G, Oelemann WMR, Laport MS. High reduction of staphylococcal biofilm by aqueous extract from marine sponge-isolated Enterobacter sp. Res Microbiol 2020; 172:103787. [PMID: 33049327 DOI: 10.1016/j.resmic.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are among the most important bacterial species responsible for biofilm formation on indwelling medical devices, including orthopaedic implants. The increasing resistance to antimicrobials, partly attributed to the ability to form biofilms, is a challenge for the development of new antimicrobial agents. In this study, the cell-free supernatant obtained from sponge-associated Enterobacter strain 84.3 culture inhibited biofilm formation (>65%) and dissociated mature biofilm (>85%) formed by S. aureus and S. epidermidis strains. The culture supernatant was subjected to solvent partitioning and the aqueous extract presented a concentration-dependent antibiofilm activity for each strain with a minimum biofilm eradication concentration (MBEC) ranging from 16 to 256 μg/mL. The effect of the aqueous extract on mature S. aureus biofilm was analyzed by confocal scanning laser microscopy, showing a significant reduction of the biofilm layer as well as diminished interactions among the cells. This extract is not toxic for mammalian cells (L929 cell line). Studies targeting substances with antibiofilm activity gained significant attention in recent years due to difficult-to-treat biofilm infections. Here, sponge-associated Enterobacter 84.3 proved to be a source of substances capable of eradicating staphylococcal biofilm, with potential medical use in the future.
Collapse
Affiliation(s)
- Suzanne de Oliveira Nunes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Heloisa da Silva Rosa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Maria Teresa Villela Romanos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Katia R N Dos Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Guilherme Muricy
- Museu Nacional, Universidade Federal Do Rio de Janeiro, Quinta da Boa Vista s/no., São Cristóvão, 20940-040, Rio de Janeiro, RJ, Brazil
| | - Walter M R Oelemann
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
6
|
Incidence and characteristics of methicillin-resistant coagulase-negative Staphylococcus aureus in peritoneal dialysis-associated peritonitis in a single center using molecular methods. Int Urol Nephrol 2020; 53:373-380. [PMID: 32804344 DOI: 10.1007/s11255-020-02605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Peritonitis is a serious complication of peritoneal dialysis and coagulase-negative Staphylococcus (CNS) is the most frequent cause of peritoneal dialysis (PD)-infections in many centers. This study aimed to investigate the molecular epidemiology of CNS isolated from PD-peritonitis in a Brazilian single center, focusing on the genetic determinants conferring methicillin resistance. METHODS Bacterial strains were isolated from peritoneal fluid of patients presenting PD-peritonitis, identified by phenotypic and molecular methods, and those identified as CNS were submitted to mecA detection, SCCmec, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS Over the 18-year period of this study (1995-2011), a total of 878 peritonitis episodes were diagnosed in this unit, 115 were caused by coagulase-negative staphylococci of which 72 by Staphylococcus epidermidis. mecA gene was detected in 55 CNS (47.8%), more frequently on the more recent years. SCCmec type III was the most frequent cassette, followed by SCCmec type IV and SCCmec type II. A diverstity of pulsotypes was observed among the S. epidermidis isolates, but five clusters (based on the 80% cutoff) were identified. Diversified sequence types (ST02, ST05, ST06, ST09, ST23, ST59 and ST371) were detected. CONCLUSIONS Detection of SCCmec type III among coagulase-negative Staphylococcus underscores the role of hospital environments as potential source of methicillin-resistant Staphylococcus causing peritonitis in PD patients.
Collapse
|
7
|
A Novel, Widespread qacA Allele Results in Reduced Chlorhexidine Susceptibility in Staphylococcus epidermidis. Antimicrob Agents Chemother 2019; 63:AAC.02607-18. [PMID: 30988144 DOI: 10.1128/aac.02607-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chlorhexidine gluconate (CHG) is a topical antiseptic widely used in health care settings. In Staphylococcus spp., the pump QacA effluxes CHG, while the closely related QacB cannot due to a single amino acid substitution. We characterized 1,050 cutaneous Staphylococcus isolates obtained from 173 pediatric oncology patients enrolled in a multicenter CHG bathing trial. CHG susceptibility testing revealed that 63 (6%) of these isolates had elevated CHG MICs (≥4 μg/ml). Screening of all 1,050 isolates for the qacA/B gene (the same qac gene with A or B allele) by restriction fragment length polymorphism (RFLP) yielded 56 isolates with a novel qacA/B RFLP pattern, qacA/B273 The CHG MIC was significantly higher for qacA/B273 -positive isolates (MIC50, 4 μg/ml; MIC range, 0.5 to 4 μg/ml) than for other qac groups: qacA-positive isolates (n = 559; MIC50, 1 μg/ml; MIC range, 0.5 to 4 μg/ml), qacB-positive isolates (n = 17; MIC50, 1 μg/ml; MIC range, 0.25 to 2 μg/ml), and qacA/B-negative isolates (n = 418, MIC50, 1 μg/ml; MIC range, 0.125 to 2 μg/ml) (P = 0.001). A high proportion of the qacA/B273 -positive isolates also displayed methicillin resistance (96.4%) compared to the other qac groups (24.9 to 61.7%) (P = 0.001). Whole-genome sequencing revealed that qacA/B273 -positive isolates encoded a variant of QacA with 2 amino acid substitutions. This new allele, named qacA4, was carried on the novel plasmid pAQZ1. The qacA4-carrying isolates belonged to the highly resistant Staphylococcus epidermidis sequence type 2 clone. By searching available sequence data sets, we identified 39 additional qacA4-carrying S. epidermidis strains from 5 countries. Curing an isolate of qacA4 resulted in a 4-fold decrease in the CHG MIC, confirming the role of qacA4 in the elevated CHG MIC. Our results highlight the importance of further studying qacA4 and its functional role in clinical staphylococci.
Collapse
|
8
|
Heilmann C, Ziebuhr W, Becker K. Are coagulase-negative staphylococci virulent? Clin Microbiol Infect 2018; 25:1071-1080. [PMID: 30502487 DOI: 10.1016/j.cmi.2018.11.012] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Progress in contemporary medicine is associated with an increasing number of immunocompromised individuals. In this vulnerable group, the underlying disease together with long-term hospitalization and the use of medical devices facilitate infections by opportunistic pathogens, of which coagulase-negative staphylococci (CoNS) represent a prime example. OBJECTIVES The diversity of CoNS with species- and strain-specific differences concerning virulence and clinical impact is highlighted. A focus is on the ability of CoNS to generate biofilms on biotic and abiotic surfaces, which enables skin and mucosa colonization as well as establishment of CoNS on indwelling foreign bodies. SOURCES Literature about the virulence of CoNS listed in PubMed was reviewed. CONTENT Most catheter-related and prosthetic joint infections as well as most other device-related infections are caused by CoNS, specifically by Staphylococcus epidermidis and Staphylococcus haemolyticus. A common theme of CoNS infections is a high antibiotic resistance rate, which often limits treatment options and contributes to the significant health and economic burden imposed by CoNS. IMPLICATIONS Breaching the skin barrier along with the insertion of medical devices offers CoNS opportunities to gain access to host tissues and to sustain there by forming biofilms on foreign body surfaces. Biofilms represent the perfect niche to protect CoNS from both the host immune response and the action of antibiotics. Their particular lifestyle, combined with conditions that facilitate host colonization and infection, has led to the growing impact of CoNS as pathogens. Moreover, CoNS may serve as hidden reservoirs for antibiotic resistance and virulence traits.
Collapse
Affiliation(s)
- C Heilmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - W Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - K Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
9
|
Qi X, Jin Y, Duan J, Hao Z, Wang S, Guo Y, Lv J, Hu L, Wang L, Yu F. SesI May Be Associated with the Invasiveness of Staphylococcus epidermidis. Front Microbiol 2018; 8:2574. [PMID: 29354100 PMCID: PMC5758504 DOI: 10.3389/fmicb.2017.02574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus epidermidis is a commensal bacterium which widely colonizes in human skin and mucous membrane and rarely causes clinically manifested infections. S. epidermidis surface protein I (SesI) is considered to be the major virulence factor of S. epidermidis infection, but its pathogenesis is not clear. Here, we demonstrated that the prevalence of sesI among S. epidermidis invasive isolates (20.8%, 26/125) was significantly higher than that among colonizing isolates (3.8%, 4/106). The positive rates of biofilm-associated genes (aap, icaA, IS256) and resistance-associated genes mupA among the sesI-positive isolates were significantly higher than those among sesI-negative isolates (p < 0.05). And antimicrobial susceptibility testing showed that the resistance rates of sesI-positive isolates to ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole were significantly higher than those among sesI-negative isolates. Interestingly, 80.8% (21/26) of sesI-positive isolates belong to ST2 determined by MLST, while ST2 was not found among any of the 99 sesI-negative invasive isolates, indicating that there is a strong association between carriage of sesI and ST2 clone. In order to further study the role of sesI gene in pathogenesis, the sesI gene mutant (S. epidermidis RP62AΔsesI) and complementary expression strain (S. epidermidis RP62AΔsesI-C) were successfully constructed. All experimental data indicated that sesI may promote S. epidermidis to adhere and aggregate, but it had no obvious effect on the mature stage of biofilm formation. Taken together, these results suggest that sesI, along with antimicrobial and other biofilm-associated genes enables S. epidermidis easier for colonization and adhesion and contributes to the spread of S. epidermidis, especially ST2 clone.
Collapse
Affiliation(s)
- Xiuqin Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ye Jin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihao Hao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingnan Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longhua Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Devang Divakar D, Muzaheed, Aldeyab SS, Alfawaz SA, AlKheraif AA, Ahmed Khan A. High proportions of Staphylococcus epidermidis in dental caries harbor multiple classes of antibiotics resistance, significantly increase inflammatory interleukins in dental pulps. Microb Pathog 2017; 109:29-34. [PMID: 28506885 DOI: 10.1016/j.micpath.2017.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/01/2022]
Abstract
Staphylococcus epidermidis is one of most prevalent in dental caries or dental pulp which has the capability of horizontal genetic transfer between different bacterial species in the oropharynx, suggesting that it may evolve with the dissemination of resistant determinants, This study was performed to molecularly characterize and differentiate S. epidermidis isolated from dental caries and healthy individual. Also, two important cytokines in inflammation were assayed caused due to S. epidermidis of health and dental caries sources. Dental caries strains were more resistant with high MIC 50 and MIC 90 value. These isolates also showed the presence of mecA gene and another virulence gene i. e sea and seb comparatively more than healthy individual isolates. SCCmec types, III and IV was more prevalent in dental caries isolates where an as healthy individual was more non-typable. Additionally, the quantity of IL-1β and IL-8 caused due to dental caries isolates was seen more which indicate dental caries isolates are able to induce. This study showed that S. epidermidis a normal flora of oropharyngeal are more diverse to those strains which cause dental caries. S. epidermidis owns a prodigious genetic plasticity that permits to obtain, lose or regulate genetic elements that provide compensations to improve its colonization in the host.
Collapse
Affiliation(s)
- Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; Department of Oral Medicine and Radiology, KVG Dental College and Hospital, Sullia, Karnataka, India.
| | - Muzaheed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, PO Box 2435, University of Dammam, Dammam 31441, Saudi Arabia
| | - Sultan Salem Aldeyab
- King Abdulaziz Medical City, Dental College, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Abdulaziz Abdullah AlKheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Aftab Ahmed Khan
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
11
|
Oliveira CFD, Cavanagh JP, Fredheim EGA, Reiter KC, Rieger A, Klingenberg C, d'Azevedo PA, Sollid JE. Coagulase-negative staphylococci in Southern Brazil: looking toward its high diversity. Rev Soc Bras Med Trop 2017; 49:292-9. [PMID: 27384825 DOI: 10.1590/0037-8682-0015-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Coagulase-negative staphylococci (CoNS) are the most prevalent pathogens in nosocomial infections and may serve as a reservoir of mobile genetic elements such as the staphylococcal cassette chromosome mec (SCCmec) encoding methicillin resistance. Molecular characterization of SCCmec types combined with advanced molecular typing techniques may provide essential information for understanding the evolution and epidemiology of CoNS infections. We therefore aimed to investigate the SCCmec distribution, multidrug-resistance (MDR), and biofilm formation in CoNS blood culture isolates from a hospital in Southern Brazil. METHODS We analyzed 136 CoNS blood culture isolates obtained during 2002-2004 from patients admitted to a tertiary care hospital in Brazil. SCCmec types I to V were determined using multiplex PCR. The clonal relationship of Staphylococcus epidermidis was determined using pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Molecular epidemiological data were interpreted along with data on biofilm formation, presence of the icaD gene, and MDR. RESULTS The most prevalent species were S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis harboring mainly SCCmec types II, III, and V. Overall, the presence of multiple SCCmec was associated with non-MDR, except for S. epidermidis. S. epidermidis isolates showed a high prevalence of icaD, but had low phenotypic biofilm formation. PFGE and MLST revealed high genetic diversity in the S. epidermidis population. CONCLUSIONS Our results suggest a major shift in SCCmec types within a short period and reveal a different behavior of S. epidermidis with regard to the association between the presence of multiple SCCmec types and MDR profile.
Collapse
Affiliation(s)
- Caio Fernando de Oliveira
- Programa de Pós Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
| | - Jorunn Pauline Cavanagh
- Paediatric Research Group, Dept. of Clinical Medicine, Faculty of Health Sciences, UiT-The Artic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Elizabeth G Aarag Fredheim
- Paediatric Research Group, Dept. of Clinical Medicine, Faculty of Health Sciences, UiT-The Artic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Keli Cristine Reiter
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brasil
| | - Alexandre Rieger
- Laboratório de Biotecnologia e Genética, Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brasil
| | - Claus Klingenberg
- Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Pedro Alves d'Azevedo
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brasil
| | - Johanna Ericson Sollid
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT-The Artic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Salgueiro VC, Iorio NLP, Ferreira MC, Chamon RC, Dos Santos KRN. Methicillin resistance and virulence genes in invasive and nasal Staphylococcus epidermidis isolates from neonates. BMC Microbiol 2017; 17:15. [PMID: 28086793 PMCID: PMC5237318 DOI: 10.1186/s12866-017-0930-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023] Open
Abstract
Background Staphylococcus epidermidis is an opportunistic pathogen involved in hospital-acquired infections, particularly in those related to medical devices. This study characterized 50 genetically unrelated S. epidermidis isolates from bloodstream infections (BSIs, n = 31) and nares (n = 19) of neonates in relation to staphylococcal chromosomal cassette mec (SCCmec) type, biofilm production and associated genes, and the arginine catabolic mobile elements (ACME), in order to detect virulence factors that could discriminate a potential invasiveness isolate or predict an increasing pathogenicity. Results Isolates from both groups showed no difference for biofilm production and ACME genes detection. However, BSI isolates harbored more frequently the sdrF and sesI genes (p < 0.05), whereas biofilm producer isolates were associated with presence of the aap gene. The sdrF gene was also significantly more in the biofilm producer isolates from BSI. The SCCmec type IV and the ccr2 complex were related to BSI isolates (p < 0.05), while 83% of the nasal isolates were non-typeable for the SCCmec elements, with the mec complex and ccr undetectable as the most frequent profile. Conclusions Despite the great clonal diversity displayed by S. epidermidis isolates from neonates, BSI isolates harbored more frequently the sdrF and sesI adhesin genes, while nasal isolates were very variable in SCCmec composition. These aspects could be advantageous to improve colonization in the host increasing its pathogenicity.
Collapse
Affiliation(s)
- Vivian Carolina Salgueiro
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil
| | - Natalia Lopes Pontes Iorio
- Departamento de Ciências Básicas, Universidade Federal Fluminense, R. Dr. Silvio Henrique Braune, no 22, Nova Friburgo, Rio de Janeiro, Brazil
| | - Marcelle Cristina Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil
| | - Raiane Cardoso Chamon
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil
| | - Kátia Regina Netto Dos Santos
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av Carlos Chagas Filho, no 373, CCS, Bloco I, Sala 010, Cidade Universitária, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Tolo I, Thomas JC, Fischer RSB, Brown EL, Gray BM, Robinson DA. Do Staphylococcus epidermidis Genetic Clusters Predict Isolation Sources? J Clin Microbiol 2016; 54:1711-1719. [PMID: 27076664 PMCID: PMC4922092 DOI: 10.1128/jcm.03345-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/07/2016] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous colonizer of human skin and a common cause of medical device-associated infections. The extent to which the population genetic structure of S. epidermidis distinguishes commensal from pathogenic isolates is unclear. Previously, Bayesian clustering of 437 multilocus sequence types (STs) in the international database revealed a population structure of six genetic clusters (GCs) that may reflect the species' ecology. Here, we first verified the presence of six GCs, including two (GC3 and GC5) with significant admixture, in an updated database of 578 STs. Next, a single nucleotide polymorphism (SNP) assay was developed that accurately assigned 545 (94%) of 578 STs to GCs. Finally, the hypothesis that GCs could distinguish isolation sources was tested by SNP typing and GC assignment of 154 isolates from hospital patients with bacteremia and those with blood culture contaminants and from nonhospital carriage. GC5 was isolated almost exclusively from hospital sources. GC1 and GC6 were isolated from all sources but were overrepresented in isolates from nonhospital and infection sources, respectively. GC2, GC3, and GC4 were relatively rare in this collection. No association was detected between fdh-positive isolates (GC2 and GC4) and nonhospital sources. Using a machine learning algorithm, GCs predicted hospital and nonhospital sources with 80% accuracy and predicted infection and contaminant sources with 45% accuracy, which was comparable to the results seen with a combination of five genetic markers (icaA, IS256, sesD [bhp], mecA, and arginine catabolic mobile element [ACME]). Thus, analysis of population structure with subgenomic data shows the distinction of hospital and nonhospital sources and the near-inseparability of sources within a hospital.
Collapse
Affiliation(s)
- Isaiah Tolo
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Rebecca S B Fischer
- Center for Infectious Disease, University of Texas Health Science Center, Houston, Texas, USA
| | - Eric L Brown
- Center for Infectious Disease, University of Texas Health Science Center, Houston, Texas, USA
| | - Barry M Gray
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - D Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
14
|
Gutiérrez D, Briers Y, Rodríguez-Rubio L, Martínez B, Rodríguez A, Lavigne R, García P. Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-phiIPLA7 as an Anti-biofilm Agent in Staphylococcal Species. Front Microbiol 2015; 6:1315. [PMID: 26635776 PMCID: PMC4658415 DOI: 10.3389/fmicb.2015.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/09/2015] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are important causative agents of hospital-acquired infections and bacteremia, likely due to their ability to form biofilms. The production of a dense exopolysaccharide (EPS) matrix enclosing the cells slows the penetration of antibiotic down, resulting in therapy failure. The EPS depolymerase (Dpo7) derived from bacteriophage vB_SepiS-phiIPLA7, was overexpressed in Escherichia coli and characterized. A dose dependent but time independent response was observed after treatment of staphylococcal 24 h-biofilms with Dpo7. Maximum removal (>90%) of biofilm-attached cells was obtained with 0.15 μM of Dpo7 in all polysaccharide producer strains but Dpo7 failed to eliminate polysaccharide-independent biofilm formed by S. aureus V329. Moreover, the pre-treatment of polystyrene surfaces with Dpo7 reduced the biofilm biomass by 53–85% in the 67% of the tested strains. This study supports the use of phage-encoded EPS depolymerases to prevent and disperse staphylococcal biofilms, thereby making bacteria more susceptible to the action of antimicrobials.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| | - Yves Briers
- Laboratory of Gene Technology, KU Leuven Heverlee, Belgium ; Laboratory of Applied Biotechnology, Ghent University Ghent, Belgium
| | - Lorena Rodríguez-Rubio
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain ; Laboratory of Gene Technology, KU Leuven Heverlee, Belgium
| | - Beatriz Martínez
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| | - Ana Rodríguez
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven Heverlee, Belgium
| | - Pilar García
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| |
Collapse
|
15
|
Hung WC, Chen HJ, Lin YT, Tsai JC, Chen CW, Lu HH, Tseng SP, Jheng YY, Leong KH, Teng LJ. Skin Commensal Staphylococci May Act as Reservoir for Fusidic Acid Resistance Genes. PLoS One 2015; 10:e0143106. [PMID: 26581090 PMCID: PMC4651549 DOI: 10.1371/journal.pone.0143106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
We analyzed the occurrence and mechanisms of fusidic acid resistance present in staphylococci isolated from 59 healthy volunteers. The fingers of the volunteers were screened for the presence of staphylococci, and the collected isolates were tested for resistance to fusidic acid. A total of 34 fusidic acid resistant staphylococcal strains (all were coagulase-negative) were isolated from 22 individuals (22/59, 37.3%). Examination of the resistance genes revealed that acquired fusB or fusC was present in Staphylococcus epidermidis, Staphylococcus capitis subsp. urealyticus, Staphylococcus hominis subsp. hominis, Staphylococcus warneri and Staphylococcus haemolyticus. Resistance islands (RIs) carrying fusB were found in S. epidermidis and S. capitis subsp. urealyticus, while staphylococcal chromosome cassette (SCC)-related structures harboring fusC were found in S. hominis subsp. hominis. Genotypic analysis of S. epidermidis and S. hominis subsp. hominis indicated that the fus elements were disseminated in diverse genetic strain backgrounds. The fusC elements in S. hominis subsp. hominis strains were highly homologous to SCCfusC in the epidemic sequence type (ST) 239/SCCmecIII methicillin-resistant S. aureus (MRSA) or the pseudo SCCmec in ST779 MRSA. The presence of acquired fusidic acid resistance genes and their genetic environment in commensal staphylococci suggested that the skin commensal staphylococci may act as reservoir for fusidic acid resistance genes.
Collapse
Affiliation(s)
- Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Jan Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tzu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jui-Chang Tsai
- Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Yu Jheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kin Hong Leong
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Theophilus PAS, Victoria MJ, Socarras KM, Filush KR, Gupta K, Luecke DF, Sapi E. Effectiveness of Stevia Rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro. Eur J Microbiol Immunol (Bp) 2015; 5:268-80. [PMID: 26716015 PMCID: PMC4681354 DOI: 10.1556/1886.2015.00031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
Lyme disease is a tick-borne multisystemic disease caused by Borrelia burgdorferi. Administering antibiotics is the primary treatment for this disease; however, relapse often occurs when antibiotic treatment is discontinued. The reason for relapse remains unknown, but recent studies suggested the possibilities of the presence of antibiotic resistant Borrelia persister cells and biofilms. In this study, we evaluated the effectiveness of whole leaf Stevia extract against B. burgdorferi spirochetes, persisters, and biofilm forms in vitro. The susceptibility of the different forms was evaluated by various quantitative techniques in addition to different microscopy methods. The effectiveness of Stevia was compared to doxycycline, cefoperazone, daptomycin, and their combinations. Our results demonstrated that Stevia had significant effect in eliminating B. burgdorferi spirochetes and persisters. Subculture experiments with Stevia and antibiotics treated cells were established for 7 and 14 days yielding, no and 10% viable cells, respectively compared to the above-mentioned antibiotics and antibiotic combination. When Stevia and the three antibiotics were tested against attached biofilms, Stevia significantly reduced B. burgdorferi forms. Results from this study suggest that a natural product such as Stevia leaf extract could be considered as an effective agent against B. burgdorferi.
Collapse
Affiliation(s)
- P A S Theophilus
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| | - M J Victoria
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| | - K M Socarras
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| | - K R Filush
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| | - K Gupta
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| | - D F Luecke
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| | - E Sapi
- Department of Biology and Environmental Science, University of New Haven, West Haven , CT, USA
| |
Collapse
|
17
|
de Araujo AR, Quelemes PV, Perfeito MLG, de Lima LI, Sá MC, Nunes PHM, Joanitti GA, Eaton P, Soares MJDS, de Souza de Almeida Leite JR. Antibacterial, antibiofilm and cytotoxic activities of Terminalia fagifolia Mart. extract and fractions. Ann Clin Microbiol Antimicrob 2015; 14:25. [PMID: 25902872 PMCID: PMC4406121 DOI: 10.1186/s12941-015-0084-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The methicillin resistance of bacteria from the genus Staphylococcus and its ability to form biofilms are important factors in pathogenesis of these microorganisms. Thus, the search for new antimicrobials agents, especially from plants, has been intensified. In this context, Terminalia species have been the subject of research for many pharmacological activities. In this study we evaluated the antibacterial, antibiofilm and cytotoxic activities of the ethanol extract (EtE) from Terminalia fagifolia stem bark as well as that of three fractions of the extract (AqF, HaF and WSF). METHODS We determined the minimum inhibitory concentration (MIC) by microdilution in 96-well plates, where the strains were exposed to serial dilutions of the ethanol extract and fractions, ranging from 12.5 to 400 μg/mL. We then determined the minimum bactericidal concentration (MBC), seeding the inoculum (10 μL) with concentrations equal to or greater than the MIC in Mueller-Hinton agar. To test the antibiofilm activity biofilm formation was induced in the presence of concentrations equivalent to 1/2, 1/4 and 1/8 of the MIC extract or fraction tested. In addition, the effect of the EtE and the fractions on cell viability was tested by the MTT assay on human MCF-7 breast cancer and mouse fibroblast NIH/3T3. To obtain high-resolution images of the effect of the aqueous fraction on the bacterial morphology, atomic force microscopy (AFM) imaging of treated S. aureus cells was performed. RESULTS We observed antibacterial activity of EtE and fractions with MICs ranging from 25-200 μg/mL and MBCs ranging from 200-400 μg/mL. Regarding antibiofilm activity, both the EtE as the AqF, HaF and WSF fractions showed significant inhibition of the biofilm formation, with inhibition of biofilms formation of over 80% for some strains. The EtE and fractions showed a moderate cytotoxicity in cell line NIH/3T3 viability and potential antitumoral activity on human breast cancer cell line MCF-7. The microscopic images obtained revealed morphological changes to the S. aureus ATCC 29213 surface caused by AqF, as well as significant size alterations. CONCLUSIONS The results show potential antibacterial, antibiofilm and antitumoral activities of the ethanol extract and fractions of T. fagifolia.
Collapse
Affiliation(s)
- Alyne Rodrigues de Araujo
- Center for Research on Medicinal Plants, Federal University of Piauí, Piauí, Brazil. .,Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, Parnaíba, Piauí, Brazil.
| | - Patrick Veras Quelemes
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, Parnaíba, Piauí, Brazil.
| | - Márcia Luana Gomes Perfeito
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, Parnaíba, Piauí, Brazil.
| | - Luíza Ianny de Lima
- Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, Parnaíba, Piauí, Brazil. .,Campus Ceilândia, University of Brasília, Brasília, Brazil.
| | - Melka Coêlho Sá
- Federal University of Rio Grande do Norte, Rio Grande do Norte, Brazil.
| | | | | | - Peter Eaton
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| | | | - José Roberto de Souza de Almeida Leite
- Center for Research on Medicinal Plants, Federal University of Piauí, Piauí, Brazil. .,Biodiversity and Biotechnology Research Center, Biotec, Federal University of Piauí, Parnaíba, Piauí, Brazil.
| |
Collapse
|
18
|
Characterization of ocular methicillin-resistant Staphylococcus epidermidis isolates belonging predominantly to clonal complex 2 subcluster II. J Clin Microbiol 2014; 52:1412-7. [PMID: 24523473 DOI: 10.1128/jcm.03098-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis is an abundant member of the microbiota of the human skin and wet mucosa, which is commonly associated with sight-threatening infections in eyes with predisposing factors. Ocular S. epidermidis has become notorious because of its capability to form biofilms on different ocular devices and due to the evolving rates of antimicrobial resistance. In this study, the molecular epidemiology of 30 ocular methicillin-resistant S. epidermidis (MRSE) isolates was assessed using multilocus sequence typing (MLST). Antimicrobial resistance, accessory gene-regulator and staphylococcal cassette chromosome mec (SCCmec) types, biofilm formation, and the occurrence of biofilm-associated genes were correlated with MLST clonal complexes. Sequence types (STs) frequently found in the hospital setting were rarely found in our collection. Overall, 12 different STs were detected with a predominance of ST59 (30%), ST5 and ST6 (13.3% each). Most of the isolates (93.3%) belonged to the clonal complex 2 (CC2) and grouped mainly within subcluster CC2-II (92.9%). Isolates grouped within this subcluster were frequently biofilm producers (92.3%) with a higher occurrence of the aap (84.5%) and bhp (46.1%) genes compared to icaA (19.2%). SCCmec type IV (53.8%) was predominant within CC2-II strains, while 38.4% were nontypeable. In addition, CC2-II strains were frequently multidrug resistant (80.7%) and demonstrated to be particularly resistant to ciprofloxacin (80.8%), ofloxacin (77%), azithromycin (61.5%), and gentamicin (57.7%). Our findings demonstrate the predominance of a particular MRSE cluster causing ocular infections, which was associated with high rates of antimicrobial resistance and particularly the carriage of biofilm-related genes coding for proteinaceous factors implicated in biofilm accumulation.
Collapse
|
19
|
Differing lifestyles of Staphylococcus epidermidis as revealed through Bayesian clustering of multilocus sequence types. INFECTION GENETICS AND EVOLUTION 2013; 22:257-64. [PMID: 23816539 DOI: 10.1016/j.meegid.2013.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/23/2022]
Abstract
Staphylococcus epidermidis is part of the normal bacterial flora of human skin and a leading cause of infections associated with indwelling medical devices. Previous phylogenetic analyses of subgenomic data have been unable to distinguish between S. epidermidis strains with nosocomial or commensal lifestyles, despite the identification of specific phenotypes and accessory genes that may contribute to such lifestyles. To attempt to better define the population structure of this species, the international S. epidermidis multilocus sequence typing database was analyzed with the Bayesian clustering programs STRUCTURE and BAPS. A total of six genetic clusters (GCs) were identified. A local population of S. epidermidis from clinical specimens was classified according to these six GCs, and further characterized for antibiotic susceptibilities, biofilm, and various genetic markers. GC5 was abundant and significantly enriched for isolates that were resistant to four classes of antibiotics, high biofilm production, and positive for the virulence markers icaA, IS256, and sesD/bhp, indicating its potential clinical relevance. In contrast, GC2 was rare and contained the only isolates positive for the putative commensal marker, fdh. GC1 and GC6 were abundant but not significantly associated with any of the examined characteristics, except for sesF/aap and GC6. GC3 was rare and identified as a potential genetic sink that received, but did not donate, core genetic material from other GCs. In conclusion, population genetics analyses were essential for identifying clusters of strains that may differ in their adaptation to nosocomial or commensal lifestyles. These results provide a new, population genetics framework for studying S. epidermidis.
Collapse
|
20
|
Mertens A, Ghebremedhin B. Genetic determinants and biofilm formation of clinical Staphylococcus epidermidis isolates from blood cultures and indwelling devises. Eur J Microbiol Immunol (Bp) 2013; 3:111-9. [PMID: 24265927 DOI: 10.1556/eujmi.3.2013.2.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 04/07/2013] [Indexed: 11/19/2022] Open
Abstract
For a long time, Staphylococcus epidermidis, as a member of the coagulase-negative staphylococci, was considered as part of the physiological skin flora of the human being with no pathogenic significance. Today, we know that S. epidermidis is one of the most prevalent causes for implant-associated and nosocomial infections. We performed pheno- and genotypic analysis (ica, IS256, SCCmec types, agr groups) of biofilm formation in 200 isolates. Fifty percent were genetically ica-positive and produced biofilm. Among all studied isolates, agr II and III and SCCmec type I were the most prevalent, whereas within the selected multi-resistant isolates (29%), agr I and III and SCCmec type II dominated. SCCmec type I and mecA-negative S. epidermidis isolates were associated with agr II. The majority of the blood culture and biopsy isolates were assigned to agr III and SCCmec type I, whereas agr II was predominantly detected in mecA-negative S. epidermidis isolated from catheter and implant materials. MLST analysis revealed the major clonal lineages of ST2, ST5, ST10, and ST242 (total 13 STs). ST2 isolates from blood cultures were icaA/D-positive and harbored SCCmec types II and III and IS256, whereas the icaA/D- and IS256-positive ST23 isolates were assigned to SCCmec types I and IV.
Collapse
|
21
|
Molecular analysis of Staphylococcus epidermidis strains isolated from community and hospital environments in China. PLoS One 2013; 8:e62742. [PMID: 23675424 PMCID: PMC3652868 DOI: 10.1371/journal.pone.0062742] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
Background Staphylococcus epidermidis is a common cause of nosocomial infections worldwide. This study analyzed the differences in genetic endowment and clonal lineages with pathogenesis and resistance traits of S. epidermidis isolates collected from community and hospital environments (patients and healthcare staff) of the same ecological niche, time period, and geographical location in China. Methodology/Principal Findings Molecular epidemiology and population analysis showed that nasal colonization rates of S. epidermidis in the community of Shanghai area of China and in healthcare personnel were 44.8% (methicillin-resistant S. epidermidis, MRSE: 17.2%) and 61.3% (MRSE: 30.0%), respectively. 86.7% of clinical isolates were MRSE. Among the strains studied, 44 sequence types (STs) were identified with 91.7% belonging to clonal complex 2 (CC2). Only 40.8% isolates from patients were also found in healthy individuals. MRSE-ST2-SCCmecIII was the predominant clone in clinical isolates, almost resistant to all antibiotics tested. Biofilm-related genes IS256 and icaA were detected in majority of the predominant clinical MRSE-ST2 clone with a 40.5% biofilm-positive rate. No ST2 isolate was found in community setting. We found a high prevalence of arginine catabolic mobile element (ACME) (74.1%). The prevalence of ACME-arc and ACME-opp3 clusters was 71.6% and 32.4%, respectively. Methicillin-sensitive S. epidermidis (MSSE) isolates harbored more ACME (83.3%) than MRSE isolates (67.7%), and there was no association between ACME and SCCmec types. An association was found between low-level ACME presence and invasive infections. Conclusions/Significance We observed a high level of diversity within S. epidermidis in this study, with CC2 as the dominant clonal complex in both community and hospital settings. Only 40.8% of the isolates from patients were also found in healthy individuals. Contrary to that biofilm formation and multiple antibiotic resistance were associated closely with pathogenicity of S. epidermidis, ACME was more likely to be an indicator for colonization rather than a virulence factor.
Collapse
|
22
|
Ferreira CM, Naveca FG, Ferreira WA, de Oliveira CMC, Barbosa MDGV. Novel methicillin-resistant coagulase-negative Staphylococcus clone isolated from patients with haematological diseases at the Blood Bank Centre of Amazon, Brazil. Mem Inst Oswaldo Cruz 2013; 108:233-8. [PMID: 23579805 DOI: 10.1590/0074-0276108022013017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus remains a severe public health problem worldwide. This research was intended to identify the presence of methicillin-resistant coagulase-negative staphylococci clones and their staphylococcal cassette chromosome mec (SCCmec)-type isolate from patients with haematologic diseases presenting bacterial infections who were treated at the Blood Bank of the state of Amazonas in Brazil. Phenotypic and genotypic tests, such as SCCmec types and multilocus sequence typing (MLST), were developed to detect and characterise methicillin-resistant isolates. A total of 26 Gram-positive bacteria were isolated, such as: Staphylococcus epidermidis (8/27), Staphylococcus intermedius (4/27) and Staphylococcus aureus (4/27). Ten methicillin-resistant staphylococcal isolates were identified. MLST revealed three different sequence types: S. aureus ST243, S. epidermidis ST2 and a new clone of S. epidermidis, ST365. These findings reinforce the potential of dissemination presented by multi-resistant Staphylococcus and they suggest the introduction of monitoring actions to reduce the spread of pathogenic clonal lineages of S. aureus and S. epidermidis to avoid hospital infections and mortality risks.
Collapse
|
23
|
Campanile F, Mongelli G, Bongiorno D, Adembri C, Ballardini M, Falcone M, Menichetti F, Repetto A, Sabia C, Sartor A, Scarparo C, Tascini C, Venditti M, Zoppi F, Stefani S. Worrisome trend of new multiple mechanisms of linezolid resistance in staphylococcal clones diffused in Italy. J Clin Microbiol 2013; 51:1256-9. [PMID: 23345292 PMCID: PMC3666802 DOI: 10.1128/jcm.00098-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 01/14/2013] [Indexed: 01/03/2023] Open
Abstract
In order to assess the frequency of clinically relevant linezolid-resistant staphylococcal isolates, and the role of linezolid in maintaining and coselecting multiple resistance mechanisms (cfr, 23S rRNA, L3/L4 mutations), a prospective Italian study was performed from 2010 to 2011 to confirm the diffusion of three major multidrug-resistant clones (ST2, ST5, ST23).
Collapse
Affiliation(s)
| | | | | | - Chiara Adembri
- Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
| | | | | | | | | | - Carla Sabia
- University of Modena and Reggio, Modena, Italy
| | - Assunta Sartor
- Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Claudio Scarparo
- Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | | | - Federica Zoppi
- Azienda Ospedaliera Universitaria Careggi, Firenze, Italy
| | | |
Collapse
|
24
|
Caracterización de cepas de Staphylococcus epidermidis y S. haemolyticus resistentes a meticilina y linezolid en un hospital español. Enferm Infecc Microbiol Clin 2013; 31:136-41. [DOI: 10.1016/j.eimc.2012.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022]
|