1
|
Rafał S, Magdalena D, Karol M, Bartłomiej S, Konrad K. Detection and accurate identification of Mycobacterium species by flow injection tandem mass spectrometry (FIA-MS/MS) analysis of mycolic acids. Sci Rep 2025; 15:13118. [PMID: 40240395 PMCID: PMC12003690 DOI: 10.1038/s41598-025-96867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Mycolic acids, long-chain α-alkyl, β-hydroxy fatty acids, are characteristic for the genus Mycobacterium and play a critical role in the structural integrity and pathogenicity of mycobacterial cell walls. The unique structural diversity of mycolic acids among various Mycobacterium species offers a reliable biomarker for taxonomic differentiation. In this study, we applied flow injection analysis coupled with tandem mass spectrometry (FIA-MS/MS) for a comprehensive profiling of mycolic acids. Our findings demonstrate that the structural diversity of mycolic acids can be effectively utilized to enhance the accuracy, sensitivity, and scalability of mycobacterial identification methods. This technique has a broad applications for the rapid identification of mycobacterial pathogens and determination of drug resistance. Particularly in clinical diagnostics it may lead to improvement of patient management and treatment outcomes. Additionally, the method holds promise for epidemiological surveillance, enabling the tracking of mycobacterial outbreaks, as well as applications in environmental microbiology for the detection and monitoring of mycobacteria in diverse ecosystems.
Collapse
Affiliation(s)
- Szewczyk Rafał
- DiMedical Clinical Medicine Center, DiMedical Sp. z o. o, Zeromskiego 52, 90-626, Lodz, Poland
- LabExperts Sp. z o. o, Sokola 14, 93-519, Lodz, Poland
| | - Druszczynska Magdalena
- DiMedical Clinical Medicine Center, DiMedical Sp. z o. o, Zeromskiego 52, 90-626, Lodz, Poland
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Majewski Karol
- DiMedical Clinical Medicine Center, DiMedical Sp. z o. o, Zeromskiego 52, 90-626, Lodz, Poland
| | - Szulc Bartłomiej
- DiMedical Clinical Medicine Center, DiMedical Sp. z o. o, Zeromskiego 52, 90-626, Lodz, Poland
| | - Kowalski Konrad
- DiMedical Clinical Medicine Center, DiMedical Sp. z o. o, Zeromskiego 52, 90-626, Lodz, Poland.
- Medical Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
2
|
Fatima Z, Chugh M, Nigam G, Hameed S. Quantification of mycolic acids in different mycobacterial species by standard addition method through liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124297. [PMID: 39299149 DOI: 10.1016/j.jchromb.2024.124297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria possess unique and robust lipid profile responsible for their pathogenesis and drug resistance. Mycolic acid (MA) represents an attractive diagnostic biomarker being absent in humans, inert and known to modulate host-pathogen interaction. Accurate measurement of MA is significant to design efficient therapeutics. Despite considerable advances in Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) based approaches, quantification of mycobacterial lipids including MA is still challenging mainly because of ion suppression effects due to complex matrix and non-availability of suitable internal standards for MA. The current study demonstrates the use of standard addition method (SAM) to circumvent this problem and provides a reliable and exhaustive analytical method to quantify mycobacterial MA based on reversed-phase ultra-high-performance liquid chromatography- mass spectrometry data acquisition. In this method, multiple reaction monitoring (MRM) has been applied, wherein 16 MRM channels or transitions have been chosen for quantification of alpha-, methoxy- and keto-MAs with C-24 and C-26 hydrocarbon chains that are actually best suited for TB diagnostics. We found that the overall methodological limit of detection and limit of quantification were in the range 0.05-0.71 ng/µl and 0.16-2.16 ng/µl. Taken together, SAM quantitative technique could serve as promising alternative for relative concentration determination of MA to aid medical research.
Collapse
Affiliation(s)
- Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India.
| | - Meenakshi Chugh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India; Amity Medical School, Amity University Haryana, Gurugram (Manesar) 122413, India
| | - Gaurav Nigam
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar) 122413, India.
| |
Collapse
|
3
|
Nikolaev VV, Lepekhina TB, Alliluev AS, Bidram E, Sokolov PM, Nabiev IR, Kistenev YV. Quantum Dot-Based Nanosensors for In Vitro Detection of Mycobacterium tuberculosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1553. [PMID: 39404280 PMCID: PMC11478040 DOI: 10.3390/nano14191553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Despite the existing effective treatment methods, tuberculosis (TB) is the second most deadly infectious disease, its carriers in the latent and active phases accounting for more than 20% of the world population. An effective method for controlling TB and reducing TB mortality is regular population screening aimed at diagnosing the latent form of TB and taking preventive and curative measures. Numerous methods allow diagnosing TB by directly detecting Mycobacterium tuberculosis (M.tb) biomarkers, including M.tb DNA, proteins, and specific metabolites or antibodies produced by the host immune system in response to M.tb. PCR, ELISA, immunofluorescence and immunochemical analyses, flow cytometry, and other methods allow the detection of M.tb biomarkers or the host immune response to M.tb by recording the optical signal from fluorescent or colorimetric dyes that are components of the diagnostic systems. Current research in biosensors is aimed at increasing the sensitivity of detection, a promising approach being the use of fluorescent quantum dots as brighter and more photostable optical tags. Here, we review current methods for the detection of M.tb biomarkers using quantum dot-based nanosensors and summarize data on the M.tb biomarkers whose detection can be made considerably more sensitive by using these sensors.
Collapse
Affiliation(s)
- Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Tatiana B. Lepekhina
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| | - Alexander S. Alliluev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
- Tomsk Phthisiopulmonology Medical Center, Rosa Luxemburg St., 634009 Tomsk, Russia
| | - Elham Bidram
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Pavel M. Sokolov
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor R. Nabiev
- Life Improvement by Future Technologies (LIFT) Center, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute (MEPhI), National Research Nuclear University, 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Laboratoire BioSpecT (BioSpectroscopie Translationnelle), Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, National Research Tomsk State University, 634050 Tomsk, Russia; (V.V.N.); (T.B.L.); (A.S.A.)
| |
Collapse
|
4
|
Liu Y, Kaffah N, Pandor S, Sartain MJ, Larrouy-Maumus G. Ion mobility mass spectrometry for the study of mycobacterial mycolic acids. Sci Rep 2023; 13:10390. [PMID: 37369807 DOI: 10.1038/s41598-023-37641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
Lipids are highly structurally diverse molecules involved in a wide variety of biological processes. The involvement of lipids is even more pronounced in mycobacteria, including the human pathogen Mycobacterium tuberculosis, which produces a highly complex and diverse set of lipids in the cell envelope. These lipids include mycolic acids, which are among the longest fatty acids in nature and can contain up to 90 carbon atoms. Mycolic acids are ubiquitously found in mycobacteria and are alpha branched and beta hydroxylated lipids. Discrete modifications, such as alpha, alpha', epoxy, methoxy, keto, and carboxy, characterize mycolic acids at the species level. Here, we used high precision ion mobility-mass spectrometry to build a database including 206 mass-resolved collision cross sections (CCSs) of mycolic acids originating from the strict human pathogen M. tuberculosis, the opportunistic strains M. abscessus, M. marinum and M. avium, and the nonpathogenic strain M. smegmatis. Primary differences between the mycolic acid profiles could be observed between mycobacterial species. Acyl tail length and modifications were the primary structural descriptors determining CCS magnitude. As a resource for researchers, this work provides a detailed catalogue of the mass-resolved collision cross sections for mycolic acids along with a workflow to generate and analyse the dataset generated.
Collapse
Affiliation(s)
- Yi Liu
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Nadhira Kaffah
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Zhuang Z, Sun L, Song X, Zhu H, Li L, Zhou X, Mi K. Trends and challenges of multi-drug resistance in childhood tuberculosis. Front Cell Infect Microbiol 2023; 13:1183590. [PMID: 37333849 PMCID: PMC10275406 DOI: 10.3389/fcimb.2023.1183590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) in children is a growing global health concern, This review provides an overview of the current epidemiology of childhood TB and DR-TB, including prevalence, incidence, and mortality. We discuss the challenges in diagnosing TB and DR-TB in children and the limitations of current diagnostic tools. We summarize the challenges associated with treating multi-drug resistance TB in childhood, including limitations of current treatment options, drug adverse effects, prolonged regimens, and managing and monitoring during treatment. We highlight the urgent need for improved diagnosis and treatment of DR-TB in children. The treatment of children with multidrug-resistant tuberculosis will be expanded to include the evaluation of new drugs or new combinations of drugs. Basic research is needed to support the technological development of biomarkers to assess the phase of therapy, as well as the urgent need for improved diagnostic and treatment options.
Collapse
Affiliation(s)
- Zengfang Zhuang
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Sun
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Xiaorui Song
- Henan International Joint Laboratory of Children’s Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Hanzhao Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lianju Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xintong Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kaixia Mi
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Henan International Joint Laboratory of Children’s Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Valdemar-Aguilar CM, Manisekaran R, Acosta-Torres LS, López-Marín LM. Spotlight on mycobacterial lipid exploitation using nanotechnology for diagnosis, vaccines, and treatments. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102653. [PMID: 36646193 PMCID: PMC9839462 DOI: 10.1016/j.nano.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Tuberculosis (TB), historically the most significant cause of human morbidity and mortality, has returned as the top infectious disease worldwide, under circumstances worsened by the COVID-19 pandemic's devastating effects on public health. Although Mycobacterium tuberculosis, the causal agent, has been known of for more than a century, the development of tools to control it has been largely neglected. With the advancement of nanotechnology, the possibility of engineering tools at the nanoscale creates unique opportunities to exploit any molecular type. However, little attention has been paid to one of the major attributes of the pathogen, represented by the atypical coat and its abundant lipids. In this review, an overview of the lipids encountered in M. tuberculosis and interest in exploiting them for the development of TB control tools are presented. Then, the amalgamation of nanotechnology with mycobacterial lipids from both reported and future works are discussed.
Collapse
Affiliation(s)
- Carlos M. Valdemar-Aguilar
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico.
| | - Laura S. Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, Predio el Saucillo y el Potrero, Comunidad de los Tepetates, 37689 León, Mexico
| | - Luz M. López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, 76230 Querétaro, Mexico,Corresponding authors
| |
Collapse
|
7
|
Weng Y, Shepherd D, Liu Y, Krishnan N, Robertson BD, Platt N, Larrouy-Maumus G, Platt FM. Inhibition of the Niemann-Pick C1 protein is a conserved feature of multiple strains of pathogenic mycobacteria. Nat Commun 2022; 13:5320. [PMID: 36085278 PMCID: PMC9463166 DOI: 10.1038/s41467-022-32553-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/04/2022] [Indexed: 11/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) survives and replicates within host macrophages (MΦ) and subverts multiple antimicrobial defense mechanisms. Previously, we reported that lipids shed by pathogenic mycobacteria inhibit NPC1, the lysosomal membrane protein deficient in the lysosomal storage disorder Niemann-Pick disease type C (NPC). Inhibition of NPC1 leads to a drop in lysosomal calcium levels, blocking phagosome-lysosome fusion leading to mycobacterial survival. We speculated that the production of specific cell wall lipid(s) that inhibit NPC1 could have been a critical step in the evolution of pathogenicity. We therefore investigated whether lipid extracts from clinical Mtb strains from multiple Mtb lineages, Mtb complex (MTBC) members and non-tubercular mycobacteria (NTM) inhibit the NPC pathway. We report that inhibition of the NPC pathway was present in all clinical isolates from Mtb lineages 1, 2, 3 and 4, Mycobacterium bovis and the NTM, Mycobacterium abscessus and Mycobacterium avium. However, lipid extract from Mycobacterium canettii, which is considered to resemble the common ancestor of the MTBC did not inhibit the NPC1 pathway. We conclude that the evolution of NPC1 inhibitory mycobacterial cell wall lipids evolved early and post divergence from Mycobacterium canettii-related mycobacteria and that this activity contributes significantly to the promotion of disease.
Collapse
Affiliation(s)
- Yuzhe Weng
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Dawn Shepherd
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nitya Krishnan
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Brian D Robertson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Flowers Building, London, SW7 2AZ, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
8
|
Brandenburg J, Heyckendorf J, Marwitz F, Zehethofer N, Linnemann L, Gisch N, Karaköse H, Reimann M, Kranzer K, Kalsdorf B, Sanchez-Carballo P, Weinkauf M, Scholz V, Malm S, Homolka S, Gaede KI, Herzmann C, Schaible UE, Hölscher C, Reiling N, Schwudke D. Tuberculostearic Acid-Containing Phosphatidylinositols as Markers of Bacterial Burden in Tuberculosis. ACS Infect Dis 2022; 8:1303-1315. [PMID: 35763439 PMCID: PMC9274766 DOI: 10.1021/acsinfecdis.2c00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
One-fourth of the
global human population is estimated to be infected
with strains of the Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB). Using
lipidomic approaches, we show that tuberculostearic acid (TSA)-containing
phosphatidylinositols (PIs) are molecular markers for infection with
clinically relevant MTBC strains and signify bacterial burden. For
the most abundant lipid marker, detection limits of ∼102 colony forming units (CFUs) and ∼103 CFUs
for bacterial and cell culture systems were determined, respectively.
We developed a targeted lipid assay, which can be performed within
a day including sample preparation—roughly 30-fold faster than
in conventional methods based on bacterial culture. This indirect
and culture-free detection approach allowed us to determine pathogen
loads in infected murine macrophages, human neutrophils, and murine
lung tissue. These marker lipids inferred from mycobacterial PIs were
found in higher levels in peripheral blood mononuclear cells of TB
patients compared to healthy individuals. Moreover, in a small cohort
of drug-susceptible TB patients, elevated levels of these molecular
markers were detected at the start of therapy and declined upon successful
anti-TB treatment. Thus, the concentration of TSA-containing PIs can
be used as a correlate for the mycobacterial burden in experimental
models and in vitro systems and may prospectively also provide a clinically
relevant tool to monitor TB severity.
Collapse
Affiliation(s)
- Julius Brandenburg
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jan Heyckendorf
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Franziska Marwitz
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Nicole Zehethofer
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Lara Linnemann
- Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Hande Karaköse
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Maja Reimann
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Katharina Kranzer
- National Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Barbara Kalsdorf
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Patricia Sanchez-Carballo
- Division of Clinical Infectious Disease, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Clinical Tuberculosis Center, 23845 Borstel, Germany
| | - Michael Weinkauf
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Verena Scholz
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Sven Malm
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Susanne Homolka
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Karoline I Gaede
- BioMaterialBank Nord, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christian Herzmann
- Center for Clinical Studies, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Ulrich E Schaible
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Division of Cellular Microbiology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christoph Hölscher
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany.,German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany.,German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| |
Collapse
|
9
|
Magdalena D, Michal S, Marta S, Magdalena KP, Anna P, Magdalena G, Rafał S. Targeted metabolomics analysis of serum and Mycobacterium tuberculosis antigen-stimulated blood cultures of pediatric patients with active and latent tuberculosis. Sci Rep 2022; 12:4131. [PMID: 35260782 PMCID: PMC8904507 DOI: 10.1038/s41598-022-08201-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022] Open
Abstract
Profound tuberculosis (TB)-induced metabolic changes reflected in the blood metabolomic profile may provide an opportunity to identify specific markers of Mycobacterium tuberculosis infection. Using targeted liquid chromatography tandem mass spectrometry, we compared the levels of 30 small metabolites, including amino acids and derivatives, and small organic compounds in serum and M.tb antigen-stimulated whole blood cultures of active TB children, latent TB (LTBI) children, nonmycobacterial pneumonia (NMP) children, and healthy controls (HCs) to assess their potential as biomarkers of childhood TB. We found elevated levels of leucine and kynurenine combined with reduced concentrations of citrulline and glutamine in serum and blood cultures of TB and LTBI groups. LTBI status was additionally associated with a decrease in valine levels in blood cultures. The NMP metabolite profile was characterized by an increase in citrulline and glutamine and a decrease in leucine, kynurenine and valine concentrations. The highest discriminatory potential for identifying M.tb infection was observed for leucine detected in serum and kynurenine in stimulated blood cultures. The use of targeted metabolomics may reveal metabolic changes in M.tb-infected children, and the obtained results are a proof of principle of the usefulness of metabolites in the auxiliary diagnosis of TB in children.
Collapse
Affiliation(s)
- Druszczynska Magdalena
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Seweryn Michal
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | | | - Kowalewska-Pietrzak Magdalena
- Regional Specialized Hospital of Tuberculosis, Lung Diseases, and Rehabilitation in Lodz, Okolna 181, 91-520, Lodz, Poland
| | - Pankowska Anna
- Regional Specialized Hospital of Tuberculosis, Lung Diseases, and Rehabilitation in Lodz, Okolna 181, 91-520, Lodz, Poland
| | - Godkowicz Magdalena
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Szewczyk Rafał
- , Labexperts sp z o. o. Piekarnicza 5, 80-126, Gdansk, Poland
| |
Collapse
|
10
|
Blevins MS, Klein DR, Brodbelt JS. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2019; 91:6820-6828. [PMID: 31026154 PMCID: PMC6628200 DOI: 10.1021/acs.analchem.9b01038] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Subtle structural features in bacterial lipids such as unsaturation elements can have vast biological implications. Cyclopropane rings have been correlated with tolerance to a number of adverse conditions in bacterial phospholipids. They have also been shown to play a major role in Mycobacterium tuberculosis ( M. tuberculosis or Mtb) pathogenesis as they occur in mycolic acids (MAs) in the mycobacterial cell. Traditional collisional activation methods allow elucidation of basic structural features of lipids but fail to reveal the presence and position of cyclopropane rings. Here, we employ 213 nm ultraviolet photodissociation mass spectrometry (UVPD-MS) for structural characterization of cyclopropane rings in bacterial phospholipids and MAs. Upon UVPD, dual cross-ring C-C cleavages on both sides of the cyclopropane ring are observed for cyclopropyl lipids, resulting in diagnostic pairs of fragment ions spaced 14 Da apart, thus enabling cyclopropane localization. These diagnostic pairs of ions corresponding to dual cross-ring cleavage are observed in both negative and positive ion modes and afford localization of multiple cyclopropane rings within a single lipid. This method was integrated with liquid chromatography (LC) for LC/UVPD-MS analysis of cyclopropyl glycerophospholipids in Escherichia coli ( E. coli) and for analysis of MAs in Mycobacterium bovis ( M. bovis) and M. tuberculosis lipid extracts.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Dustin R. Klein
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
11
|
du Preez I, Luies L, Loots DT. The application of metabolomics toward pulmonary tuberculosis research. Tuberculosis (Edinb) 2019; 115:126-139. [PMID: 30948167 DOI: 10.1016/j.tube.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
In the quest to identify novel biomarkers for pulmonary tuberculosis (TB), high-throughput systems biology approaches such as metabolomics has become increasingly widespread. Such biomarkers have not only successfully been used for better disease characterization, but have also provided new insights toward the future development of improved diagnostic and therapeutic approaches. In this review, we give a summary of the metabolomics studies done to date, with a specific focus on those investigating various aspects of pulmonary TB, and the infectious agent responsible, Mycobacterium tuberculosis. These studies, done on a variety of sample matrices, including bacteriological culture, sputum, blood, urine, tissue, and breath, are discussed in terms of their intended research outcomes or future clinical applications. Additionally, a summary of the research model, sample cohort, analytical apparatus and statistical methods used for biomarker identification in each of these studies, is provided.
Collapse
Affiliation(s)
- Ilse du Preez
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Laneke Luies
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
12
|
MacLean E, Broger T, Yerlikaya S, Fernandez-Carballo BL, Pai M, Denkinger CM. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol 2019; 4:748-758. [PMID: 30804546 DOI: 10.1038/s41564-019-0380-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Millions of cases of tuberculosis (TB) go undiagnosed each year. Better diagnostic tools are urgently needed. Biomarker-based or multiple marker biosignature-based tests, ideally performed on blood or urine, for the detection of active TB might help to meet target product profiles proposed by the World Health Organization for point-of-care testing. We conducted a systematic review to summarize evidence on proposed biomarkers and biosignatures and evaluate their quality and level of evidence. We screened the titles and abstracts of 7,631 citations and included 443 publications that fulfilled the inclusion criteria and were published in 2010-2017. The types of biomarkers identified included antibodies, cytokines, metabolic activity markers, mycobacterial antigens and volatile organic compounds. Only 47% of studies reported a culture-based reference standard and diagnostic sensitivity and specificity. Forty-four biomarkers (4%) were identified in high-quality studies and met the target product profile minimum criteria, of which two have been incorporated into commercial assays. Of the 44 highest-quality biomarkers, 24 (55%) were multiple marker biosignatures. No meta-analyses were performed owing to between-study heterogeneity. In conclusion, TB biomarker discovery studies are often poorly designed and findings are rarely confirmed in independent studies. Few markers progress to a further developmental stage. More validation studies that consider the intended diagnostic use cases and apply rigorous design are needed. The extracted data from this review are currently being used by FIND as the foundation of a dynamic database in which biomarker data and developmental status will be presented.
Collapse
Affiliation(s)
- Emily MacLean
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Québec, Canada
| | | | | | | | - Madhukar Pai
- McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | | |
Collapse
|
13
|
Druszczynska M, Wawrocki S, Szewczyk R, Rudnicka W. Mycobacteria-derived biomarkers for tuberculosis diagnosis. Indian J Med Res 2018; 146:700-707. [PMID: 29664027 PMCID: PMC5926340 DOI: 10.4103/ijmr.ijmr_1441_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis (TB) remains an escalating problem worldwide. The current diagnostic methods do not always guarantee reliable diagnosis. TB treatment is a time-consuming process that requires the use of several chemotherapeutics, to which mycobacteria are becoming increasingly resistant. This article focuses on the potential utility of biomarkers of mycobacterial origin with potential implications for TB diagnosis. Properly standardized indicators could become new diagnostic tools, improving and streamlining the identification of Mycobacterium tuberculosis infection and the implementation of appropriate therapy. These markers can also potentially provide a quick confirmation of effectiveness of new anti-mycobacterial drugs and TB vaccines, leading to a possible application in practice.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology & Infectious Biology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| | - Sebastian Wawrocki
- Department of Immunology & Infectious Biology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| | - Rafal Szewczyk
- Department of Industrial Microbiology & Biotechnology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| | - Wieslawa Rudnicka
- Department of Immunology & Infectious Biology, Faculty of Biology & Environmental Protection, Institute of Microbiology, Biotechnology & Immunology, University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
15
|
Mühlig A, Bocklitz T, Labugger I, Dees S, Henk S, Richter E, Andres S, Merker M, Stöckel S, Weber K, Cialla-May D, Popp J. LOC-SERS: A Promising Closed System for the Identification of Mycobacteria. Anal Chem 2016; 88:7998-8004. [DOI: 10.1021/acs.analchem.6b01152] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anna Mühlig
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Ines Labugger
- Alere Technologies
GmbH, Löbstedter Strasse 103-105, 07743 Jena, Germany
| | - Stefan Dees
- Alere Technologies
GmbH, Löbstedter Strasse 103-105, 07743 Jena, Germany
| | - Sandra Henk
- Alere Technologies
GmbH, Löbstedter Strasse 103-105, 07743 Jena, Germany
| | - Elvira Richter
- MVZ Laboratory Dr. Limbach & Kollegen GbR, Im Breitspiel 15, 69126 Heidelberg, Germany
| | | | | | - Stephan Stöckel
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Karina Weber
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745 Jena, Germany
- Institute
for Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
16
|
Two-Year Follow-up Study of Mycobacterium tuberculosis Antigen-Driven IFN-γ Responses and Macrophage sCD14 Levels After Tuberculosis Contact. Indian J Microbiol 2016; 56:205-13. [PMID: 27570313 DOI: 10.1007/s12088-016-0571-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
Clinical data regarding the prediction of active tuberculosis (TB) development in close TB contacts are scarce. To address this problem, we performed a 2-year follow-up study of Mycobacterium tuberculosis (M.tb) antigen-driven IFN-gamma responses and serum levels of soluble macrophage CD14 receptor in individuals with recent or prolonged M.tb exposure. Between June 2011 and June 2013, we studied 60 healthy Polish adults with recent household or long-term work TB contact and individuals without known M.tb exposure. All of them underwent baseline and repeated testing with IGRA (IFN-gamma release assay) and serum sCD14 ELISA quantification. Frequencies of IGRA results differed at the baseline and follow-up testing. IGRA reversions were noticed in almost one-third of Work TB Contacts and no participants from the Household TB Contact group. IGRA conversions were found in 40 % of Household TB Contacts. No correlation between the IGRA result and the sCD14 level was observed. IFN-γ variability has important implications for clinical practice and requires caution in interpreting the results to distinguish new infections from nonspecific inter-individual variations in cytokine responses. The impairment of IFN-γ response in some individuals with prolonged M.tb exposure representing a resistant immune status does not allow considering IGRA results as reliable and credible. Monitoring the serum sCD14 level can reduce the likelihood of a false prediction of active TB development in close TB contacts showing an M.tb-specific increase in the IFN-gamma production in repeated IGRA testing.
Collapse
|
17
|
Cheng K, Chui H, Domish L, Hernandez D, Wang G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl 2016; 10:346-57. [PMID: 26751976 PMCID: PMC5067657 DOI: 10.1002/prca.201500086] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Abstract
Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS‐based diagnosis methods for bacteria identification and typing have been created, not only on well‐accepted MALDI‐TOF‐MS‐based fingerprint matches, but also on solving the insufficiencies of MALDI‐TOF‐MS‐based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS‐based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria.
Collapse
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Huixia Chui
- Henan Centre of Disease Control and Prevention, Henan Province, P. R. China
| | - Larissa Domish
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Drexler Hernandez
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Crick PJ, Guan XL. Lipid metabolism in mycobacteria--Insights using mass spectrometry-based lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:60-67. [PMID: 26515252 DOI: 10.1016/j.bbalip.2015.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022]
Abstract
Diseases including tuberculosis and leprosy are caused by species of the Mycobacterium genus and are a huge burden on global health, aggravated by the emergence of drug resistant strains. Mycobacteria have a high lipid content and complex lipid profile including several unique classes of lipid. Recent years have seen a growth in research focused on lipid structures, metabolism and biological functions driven by advances in mass spectrometry techniques and instrumentation, particularly the use of electrospray ionization. Here we review the contributions of lipidomics towards the advancement of our knowledge of lipid metabolism in mycobacterial species.
Collapse
Affiliation(s)
- Peter J Crick
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland; University of Basel, CH-4000 Basel, Switzerland
| | - Xue Li Guan
- Swiss Tropical and Public Health Institute, CH-4051 Basel, Switzerland; University of Basel, CH-4000 Basel, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
19
|
Thanna S, Sucheck SJ. Targeting the trehalose utilization pathways of Mycobacterium tuberculosis. MEDCHEMCOMM 2015; 7:69-85. [PMID: 26941930 PMCID: PMC4770839 DOI: 10.1039/c5md00376h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an epidemic disease and the growing burden of multidrug-resistant (MDR) TB world wide underlines the need to discover new drugs to treat the disease. Mycobacterium tuberculosis (Mtb) is the etiological agent of most cases of TB. Mtb is difficult to treat, in part, due to the presence of a sturdy hydrophobic barrier that prevents penetration of drugs through the cell wall. Mtb can also survive in a non-replicative state for long periods of time avoiding the action of common antibiotics. Trehalose is an essential metabolite in mycobacteria since it plays key roles in cell wall synthesis, transport of cell wall glycolipids, and energy storage. It is also known for its stress protective roles such as: protection from desiccation, freezing, starvation and osmotic stress in bacteria. In this review we discuss the drug discovery efforts against enzymes involved in the trehalose utilization pathways (TUPs) and their likelihood of becoming drug targets.
Collapse
Affiliation(s)
- Sandeep Thanna
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, 2801 W. Bancroft Street, MS602, Toledo, OH, USA 43606
| |
Collapse
|
20
|
Fleurbaaij F, van Leeuwen HC, Klychnikov OI, Kuijper EJ, Hensbergen PJ. Mass Spectrometry in Clinical Microbiology and Infectious Diseases. Chromatographia 2015. [DOI: 10.1007/s10337-014-2839-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Actinomyces naeslundiiLung Infection Diagnosed by Polymerase Chain Reaction Coupled with Electrospray-Ionization Mass Spectrometry. Ann Am Thorac Soc 2014; 11:1163-5. [DOI: 10.1513/annalsats.201405-219le] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Mycolic Acids as Markers of Osseous Tuberculosis in the Neolithic Skeleton from Kujawy Region (Central Poland). ANTHROPOLOGICAL REVIEW 2014. [DOI: 10.2478/anre-2014-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The subject of analysis is the male skeleton from a double burial of the Globular Amphora Culture, derived from the Neolithic site at Brześć Kujawski in Kujawy region (central Poland). Within the spine of the individual advanced lesions are observed (destruction of the vertebral bodies, symptoms of the periostitis in the thoracic region) which are characteristic of skeletal tuberculosis. To check whether the observed morphological changes resulted from infection with Mycobacterium tuberculosis (M.tb), the bone material was tested positively for the presence of mycolic acids, the specific components of the cell wall of pathogenic M.tb bacilli, by mass spectrometry.
Collapse
|
23
|
Abstract
ABSTRACT
Lipidomics is a distinct subspecialty of metabolomics concerned with hydrophobic molecules that organize into membranes. Most of the lipid classes present in
Mycobacterium tuberculosis
are found only in
Actinobacteria
and show extreme structural diversity. This article highlights the conceptual basis and the practical challenges associated with the mass spectrometry–based lipidomic study of
M. tuberculosis
to solve basic questions about the virulence of this lipid-laden organism.
Collapse
|