1
|
Ahmad Najib M, Winter A, Mustaffa KMF, Ong EBB, Selvam K, Khalid MF, Awang MS, Abd Manaf A, Bustami Y, Aziah I. Isolation and characterization of DNA aptamers against the HlyE antigen of Salmonella Typhi. Sci Rep 2024; 14:28416. [PMID: 39557915 PMCID: PMC11574307 DOI: 10.1038/s41598-024-78685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Aptamers have emerged as prominent ligands in clinical diagnostics because they provide various advantages over antibodies, such as quicker generation time, reduced manufacturing costs, minimal batch-to-batch variability, greater modifiability, and improved thermal stability. In the present study, we isolated and characterized DNA aptamers that can specifically bind to the hemolysin E (HlyE) antigen of Salmonella Typhi for future development of typhoid diagnostic tests. The DNA aptamers against Salmonella Typhi HlyE were isolated using systematic evolution of ligands by exponential enrichment (SELEX), and their binding affinity and specificity were assessed utilizing enzyme-linked oligonucleotide assay (ELONA). A total of 11 distinct aptamers were identified, and the binding affinities and species selectivities of the three most probable aptamers were determined. Kd values were obtained in the nanomolar range, with the highest affinity of 83.6 nM determined for AptHlyE97. In addition, AptHlyE11, AptHlyE45 and AptHlyE97 clearly distinguished S. Typhi HlyE from other tested bacteria, such as Salmonella Paratyphi A, Salmonella Paratyphi B, Shigella flexneri, Klebsiella pneumonia and Escherichia coli, therefore displaying desirable specificity. These novel aptamers could be used as diagnostic ligands for the future development of inexpensive and effective point-of-care tests for typhoid surveillance, especially in developing countries of the tropics and subtropics.
Collapse
Affiliation(s)
- Mohamad Ahmad Najib
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Anja Winter
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Pulau Pinang, 11800, Malaysia
| | - Kasturi Selvam
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Pulau Pinang, 11800, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia.
| |
Collapse
|
2
|
Chin CF, Lai JY, Choong YS, Anthony AA, Ismail A, Lim TS. Delineation of B-cell Epitopes of Salmonella enterica serovar Typhi Hemolysin E: Potential antibody therapeutic target. Sci Rep 2017; 7:2176. [PMID: 28526816 PMCID: PMC5438399 DOI: 10.1038/s41598-017-01987-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Hemolysin E (HlyE) is an immunogenic novel pore-forming toxin involved in the pathogenesis of typhoid fever. Thus, mapping of B-cell epitopes of Salmonella enterica serovar Typhi (S. Typhi) is critical to identify key immunogenic regions of HlyE. A random 20-mer peptide library was used for biopanning with enriched anti-HlyE polyclonal antibodies from typhoid patient sera. Bioinformatic tools were used to refine, analyze and map the enriched peptide sequences against the protein to identify the epitopes. The analysis identified both linear and conformational epitopes on the HlyE protein. The predicted linear GAAAGIVAG and conformational epitope PYSQESVLSADSQNQK were further validated against the pooled sera. The identified epitopes were then used to isolate epitope specific monoclonal antibodies by antibody phage display. Monoclonal scFv antibodies were enriched for both linear and conformational epitopes. Molecular docking was performed to elucidate the antigen-antibody interaction of the monoclonal antibodies against the epitopes on the HlyE monomer and oligomer structure. An in-depth view of the mechanistic and positional characteristics of the antibodies and epitope for HlyE was successfully accomplished by a combination of phage display and bioinformatic analysis. The predicted function and structure of the antibodies highlights the possibility of utilizing the antibodies as neutralizing agents for typhoid fever.
Collapse
Affiliation(s)
- Chai Fung Chin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Amy Amilda Anthony
- Institute for Research in Molecular Medicine, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
3
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
4
|
Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen. Toxicon 2016; 117:94-101. [DOI: 10.1016/j.toxicon.2016.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/30/2016] [Accepted: 04/12/2016] [Indexed: 12/29/2022]
|
5
|
Chin KL, Redhuan NEM, Balaram P, Phua KK, Ong EBB. Detection of Salivary IgA Antibodies Against the HlyE Antigen as a Diagnosis of Typhoid Fever. J Clin Diagn Res 2016; 10:DM01-3. [PMID: 27504289 DOI: 10.7860/jcdr/2016/17801.7909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/05/2016] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The Salmonella typhi (S. typhi) haemolysin E protein (HlyE) has been shown to be a sensitive and specific antigen for the detection of typhoid fever through the detection of anti-HlyE antibodies in sera. Saliva can also be a useful diagnostic fluid as it also contains antibodies against bacterial pathogens. AIM This study aims to evaluate the potential detection of salivary anti-HlyE antibodies as a diagnosis of typhoid fever. MATERIALS AND METHODS Saliva was collected from acute typhoid patients (n=16) who presented at Hospital Universiti Sains Malaysia with prolonged fever of more than five days and were positive for S. Typhi blood culture. Saliva was also collected from convalescent typhoid patients (n=11), patients with other febrile fevers (n=15), and from healthy individuals (n=25). An ELISA was developed to detect the presence of IgA antibodies against HlyE in the saliva of typhoid patients. RESULTS The acute typhoid group had a higher mean absorbance value of 1.496 compared to the convalescent typhoid (0.538), other febrile fevers (0.678), and healthy individuals (0.457) group. CONCLUSION This study demonstrated the utility of salivary anti-HlyE IgA antibody as a biomarker for the diagnosis of typhoid fever. Follow-up studies with a larger sample size will allow the optimization of the sensitivity and specificity of the assay. This non-invasive method can be useful for mass screening programs.
Collapse
Affiliation(s)
- Kai Ling Chin
- PhD Student, Institute for Research in Molecular Medicine, Universiti Sains , Malaysia, 11800 Pulau Pinang, Malaysia
| | - Nur Eliyana Mohd Redhuan
- PhD Student, School of Veterinary Medicine, Universiti Malaysia Kelantan , Kota Bharu, Kelantan, Malaysia
| | - Prabha Balaram
- Former Professor, Institute for Research in Molecular Medicine, Universiti Sains , Malaysia, 11800 Pulau Pinang, Malaysia
| | - Kia Kien Phua
- Professor, Institute for Research in Molecular Medicine, Universiti Sains , Malaysia, 11800 Pulau Pinang, Malaysia
| | - Eugene Boon Beng Ong
- Lecturer, Institute for Research in Molecular Medicine, Universiti Sains , Malaysia, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Ong EBB, Ignatius J, Anthony AA, Aziah I, Ismail A, Lim TS. Multi-isotype antibody responses against the multimeric Salmonella Typhi recombinant hemolysin E antigen. Microbiol Immunol 2015; 59:43-7. [PMID: 25399538 DOI: 10.1111/1348-0421.12211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/16/2014] [Accepted: 11/11/2014] [Indexed: 11/27/2022]
Abstract
The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.
Collapse
Affiliation(s)
- Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Malaysia
| | | | | | | | | | | |
Collapse
|
7
|
Green J, Rolfe MD, Smith LJ. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. Virulence 2014; 5:794-809. [PMID: 25603427 PMCID: PMC4601167 DOI: 10.4161/viru.27794] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Key Words
- AIP, autoinducer peptide
- Arc, Aerobic respiratory control
- FNR
- FNR, fumarate nitrate reduction regulator
- GAF, cGMP-specific phosphodiesterase-adenylyl cyclase-FhlA domain
- Isc, iron–sulfur cluster biosynthesis machinery
- Mycobacterium tuberculosis
- NOX, NADPH oxidase
- PAS, Per-Amt-Sim domain
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- Staphylococcus aureus
- TB, tuberculosis
- WhiB-like proteins
- iNOS, inducible nitric oxide synthase
- iron–sulfur cluster
- nitric oxide sensors
- oxygen sensors
Collapse
Affiliation(s)
- Jeffrey Green
- a Krebs Institute; Molecular Biology & Biotechnology; University of Sheffield ; Western Bank , Sheffield , UK
| | | | | |
Collapse
|