1
|
Dupin C, Cissé A, Lemoine V, Turban A, Marie V, Mazille N, Soive S, Piau-Couapel C, Youenou B, Martins-Simoes P, Cattoir V, Tristan A, Donnio PY, Ménard G. Emergence and establishment of Staphylococcus haemolyticus ST29 in two neonatal intensive care units in Western France. J Hosp Infect 2025; 158:38-46. [PMID: 39828212 DOI: 10.1016/j.jhin.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE Since 2021, several reports of Staphylococcus haemolyticus outbreaks in neonatal intensive care units (NICUs) have been reported in France. The aim of this study was to understand how S. haemolyticus became established in the NICUs of two facilities which share the care of newborns. METHODS All positive S. haemolyticus clinical samples isolated between 2020 and 2023 and medical records were analysed. Phenotypic analyses consisted of typing using the quantitative antibiogram method and microbiological investigations using whole genome sequencing. Environmental samples and samples from the hands of healthcare workers (HCWs) were collected, with the same analyses undertaken if S. haemolyticus was identified. Observational studies of the hygiene practices of HCWs were also performed. RESULTS One hundred and sixteen neonates were positive for S. haemolyticus, of whom 44 (38%) were infected. The ST29 strain was highly predominant, and distinct clonal populations were identified. Transfers of newborns between the two centres, followed by cross-transmissions, could explain the dissemination of one population. Twenty-one environmental samples revealed the presence of the clones involved in neonates. One clonal population was also found on the hands of 15% of the HCWs sampled. Misconceptions about alcohol-based hand rub were observed, and daily disinfection of NICU equipment was not optimal. CONCLUSION Preliminary reports point to cross-transmission within and between the NICUs, either directly via the hands of HCWs or indirectly via contaminated environments, especially incubators. The ST29 lineage is identified in most NICUs, with the capacity to adapt locally and cause outbreaks.
Collapse
Affiliation(s)
- C Dupin
- CH Saint Brieuc, Laboratoire de Biologie Médicale, Saint Brieuc, France
| | - A Cissé
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
| | - V Lemoine
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
| | - A Turban
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
| | - V Marie
- CH Saint Brieuc, Unité de prévention et de contrôle des infections, Saint Brieuc, France
| | - N Mazille
- CHU Rennes, Service de Réanimation néonatale, Rennes, France
| | - S Soive
- CH Saint Brieuc, Service de Néonatologie, Saint Brieuc, France
| | - C Piau-Couapel
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France
| | - B Youenou
- Hospices Civils Lyon, Centre National de Référence des Staphylocoques, Lyon, France
| | - P Martins-Simoes
- Hospices Civils Lyon, Centre National de Référence des Staphylocoques, Lyon, France
| | - V Cattoir
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 Inserm BRM, University of Rennes, Rennes, France
| | - A Tristan
- Hospices Civils Lyon, Centre National de Référence des Staphylocoques, Lyon, France
| | - P Y Donnio
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 Inserm BRM, University of Rennes, Rennes, France
| | - G Ménard
- CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 Inserm BRM, University of Rennes, Rennes, France.
| |
Collapse
|
2
|
Aniba R, Dihmane A, Raqraq H, Ressmi A, Nayme K, Timinouni M, Barguigua A. Exploring staphylococcus in urinary tract infections: A systematic review and meta-analysis on the epidemiology, antibiotic resistance and biofilm formation. Diagn Microbiol Infect Dis 2024; 110:116470. [PMID: 39180785 DOI: 10.1016/j.diagmicrobio.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
This study aimed to determine the epidemiology, biofilm formation and antibiotic resistance of staphylococci collected worldwide in the context of UTIs. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Forty studies from 23 countries were selected for quantitative review. Electronic databases (PubMed, Scopus, Google Scholar, and Web of Sciences) were searched for articles published between 2010 and 2024 on the epidemiology, biofilm formation, and antibiotic resistance of uropathogenic staphylococci. Strict inclusion and exclusion standards were applied during the review of the articles. Forty articles were included in this systematic review. The prevalence of uropathogenic staphylococci varies from country to country, with the pooled prevalence of S. aureus and coagulase-negative staphylococci (CoNS) being 8.71 % (95 %CI: 6.145-11.69) and 13.17 % (95 %CI: 8.08-19.27) respectively. Among CoNS isolates, S. epidermidis was the most common with 19.3 % (95 %CI: 5.88-38.05). The prevalence of methicillin-resistant S. aureus isolates increased significantly from 23 % in 2010-2015 to 47 % in 2021-2024 (p = 0.03). S. haemolyticus is the most antibiotic-resistant species in CoNS, with 45 % of isolates resistant to methicillin, 33 % to gentamicin, and 29 % to tetracycline. Eighty-eight S. aureus strains were biofilm producers, including 35 % moderate biofilm producers and 48 % strong biofilm producers. The combined frequencies of icaA, clfA and fnbpA were 100, 99, and 89 %, respectively. The development of antibiotic resistance and biofilm formation by staphylococci involved in UTIs explains the need for periodic regional surveillance of these infections, which poses a serious public health problem.
Collapse
Affiliation(s)
- Rafik Aniba
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco; Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| | - Asmaa Dihmane
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Habiba Raqraq
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Amina Ressmi
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Kaotar Nayme
- Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Mohammed Timinouni
- Laboratoire de Biotechnologie et bio-informatique: Ecole des Hautes Etudes de Biotechnologie et de santé (EHEB), Casablanca, Morocco
| | - Abouddihaj Barguigua
- Polydisciplinary Faculty, Department of Biology, Team of Biotechnology & Sustainable Development of Natural Resources, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
3
|
Magnan C, Morsli M, Salipante F, Thiry B, Attar JE, Maio MD, Safaria M, Tran TA, Dunyach-Remy C, Ory J, Richaud-Morel B, Sotto A, Pantel A, Lavigne JP. Emergence of multidrug-resistant Staphylococcus haemolyticus in neonatal intensive care unit in Southern France, a genomic study. Emerg Microbes Infect 2024; 13:2353291. [PMID: 38738561 PMCID: PMC11132433 DOI: 10.1080/22221751.2024.2353291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
An emergence of multidrug-resistant (MDR) Staphylococcus haemolyticus has been observed in the neonatal intensive care unit (NICU) of Nîmes University Hospital in southern France. A case-control analysis was conducted on 96 neonates, to identify risk factors associated with S. haemolyticus infection, focusing on clinical outcomes. Forty-eight MDR S. haemolyticus strains, isolated from neonates between October 2019 and July 2022, were investigated using routine in vitro procedures and whole-genome sequencing. Additionally, five S. haemolyticus isolates from adult patients were sequenced to identify clusters circulating within the hospital environment. The incidence of neonatal S. haemolyticus was significantly associated with low birth weight, lower gestational age, and central catheter use (p < 0.001). Sepsis was the most frequent clinical manifestation in this series (20/46, 43.5%) and was associated with five deaths. Based on whole-genome analysis, three S. haemolyticus genotypes were predicted: ST1 (6/53, 11%), ST25 (3/53, 5.7%), and ST29 (44/53, 83%), which included the subcluster II-A, predominantly emerging in the neonatal department. All strains were profiled in silico to be resistant to methicillin, erythromycin, aminoglycosides, and fluoroquinolones, consistent with in vitro antibiotic susceptibility tests. Moreover, in silico prediction of biofilm formation and virulence-encoding genes supported the association of ST29 with severe clinical outcomes, while the persistence in the NICU could be explained by the presence of antiseptic and heavy metal resistance-encoding genes. The clonality of S. haemolyticus ST29 subcluster II-A isolates confirms healthcare transmission causing severe infections. Based on these results, reinforced hygiene measures are necessary to eradicate the nosocomial transmission of MDR strains.
Collapse
Affiliation(s)
- Chloé Magnan
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Madjid Morsli
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Florian Salipante
- Department of Biostatistics, Epidemiology, Public Health and Innovation in Methodology, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Blandine Thiry
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Julie El Attar
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Massimo Di Maio
- Neonatal Pediatrics Department, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Maryam Safaria
- Neonatal Pediatrics Department, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Tu-Anh Tran
- Department of Paediatrics, CHU Nîmes, Nîmes, France
| | - Catherine Dunyach-Remy
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Jérôme Ory
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Brigitte Richaud-Morel
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Albert Sotto
- VBIC, Univ Montpellier, INSERM U1047, Department of Infectious Diseases, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Alix Pantel
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| | - Jean-Philippe Lavigne
- VBIC, Univ Montpellier, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, Univ. Montpellier, Nîmes, France
| |
Collapse
|
4
|
C Silva-de-Jesus A, Rossi CC, Pereira-Ribeiro PM, Guaraldi AL, Giambiagi-deMarval M. Unusual carriage of virulence genes sasX/sesI/shsA by nosocomial Staphylococcus haemolyticus from Brazil. Future Microbiol 2023; 18:407-414. [PMID: 37213139 DOI: 10.2217/fmb-2022-0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/24/2023] [Indexed: 05/23/2023] Open
Abstract
Background: Staphylococcus haemolyticus is an emerging threat in the nosocomial environment but only some virulence factors are known. Materials & methods: The frequency of the sasX gene (or orthologues sesI/shsA), encoding an invasiveness-related surface-associated protein, in S. haemolyticus was detected in different hospitals in Rio de Janeiro. Results: 9.4% of strains were sasX/sesI/shsA-positive, some were in the context of the ΦSPβ-like prophage and devoid of CRISPR systems, indicating potential transferability of their virulence genes. Gene sequencing evidenced that Brazilian S. haemolyticus harbored sesI, instead of the usual sasX, while S. epidermidis had sasX instead of sesI, suggesting horizontal acquisition. Conclusion: The contexts of Brazilian sasX/sesI/shsA favor transfer, which is alarming given the difficulty in treating infections caused by S. haemolyticus.
Collapse
Affiliation(s)
- Ana C Silva-de-Jesus
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ciro C Rossi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Paula Ma Pereira-Ribeiro
- Centro Biomédico, Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, RJ, Brazil
| | - Ana Lm Guaraldi
- Centro Biomédico, Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, RJ, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
6
|
Westberg R, Stegger M, Söderquist B. Molecular Epidemiology of Neonatal-Associated Staphylococcus haemolyticus Reveals Endemic Outbreak. Microbiol Spectr 2022; 10:e0245222. [PMID: 36314976 PMCID: PMC9769988 DOI: 10.1128/spectrum.02452-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus haemolyticus is a major cause of late-onset sepsis in neonates, and endemic clones are often multidrug-resistant. The bacteria can also act as a genetic reservoir for more pathogenic bacteria. Molecular epidemiology is important in understanding bacterial pathogenicity and preventing infection. To describe the molecular epidemiology of S. haemolyticus isolated from neonatal blood cultures at a Swedish neonatal intensive care unit (NICU) over 4 decades, including antibiotic resistance genes (ARGs), virulence factors, and comparison to international isolates. Isolates were whole-genome sequenced, and single nucleotide polymorphisms in the core genome were used to map the relatedness. The occurrence of previously described ARGs and virulence genes were investigated. Disc diffusion and gradient tests were used to determine phenotypic resistance. The results revealed a clonal outbreak of S. haemolyticus at this NICU during the 1990s. Multidrug resistance was present in 28 (82%) of all isolates and concomitant resistance to aminoglycoside and methicillin occurred in 27 (79%). No isolates were vancomycin resistant. Genes encoding ARGs and virulence factors occurred frequently. The isolates in the outbreak were more homogenous in their genotypic and phenotypic patterns. Genotypic and phenotypic resistance combinations were consistent. Pathogenic traits previously described in S. haemolyticus occurred frequently in the present isolates, perhaps due to the hospital selection pressure resulting in epidemiological success. The clonal outbreak revealed by this study emphasizes the importance of adhering to hygiene procedures in order to prevent future endemic outbreaks. IMPORTANCE This study investigated the relatedness of Staphylococcus haemolyticus isolated from neonatal blood and revealed a clonal outbreak in the 1990s at a Swedish neonatal intensive care unit. The outbreak clone has earlier been isolated in Japan and Norway. Virulence and antibiotic resistance genes previously associated with clinical S. haemolyticus were frequently occuring in the present study as well. The majority of the isolates were multidrug-resistant. These traits should be considered important for S. haemolyticus epidemiological success and are probably caused by the hospital selection pressure. Thus, this study emphasizes the importance of restrictive antibiotic use and following the hygiene procedures, to prevent further antibiotic resistance spread and future endemic outbreaks.
Collapse
Affiliation(s)
- Ronja Westberg
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marc Stegger
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
7
|
Cangui-Panchi SP, Lizbeth Ñacato-Toapanta A, Enríquez-Martínez LJ, Reyes J, Garzon-Chavez D, Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: a systematic review. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100175. [DOI: 10.1016/j.crmicr.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Uejima Y, Suganuma E, Ohnishi T, Takei H, Furuichi M, Sato S, Kawano Y, Kitajima I, Niimi H. Prospective Study of the Detection of Bacterial Pathogens in Pediatric Clinical Specimens Using the Melting Temperature Mapping Method. Microbiol Spectr 2022; 10:e0019822. [PMID: 35674438 PMCID: PMC9241829 DOI: 10.1128/spectrum.00198-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
The melting temperature (Tm) mapping method is a novel technique that uses seven primer sets without sequencing to detect dominant bacteria. This method can identify pathogenic bacteria in adults within 3 h of blood collection without using conventional culture methods. However, no studies have examined whether pathogenic bacteria can be detected in clinical specimens from pediatric patients with bacterial infections. Here, we designed a new primer set for commercial use, constructed a database with more bacterial species, and examined the agreement rate of bacterial species in vitro. Moreover, we investigated whether our system could detect pathogenic bacteria from pediatric patients using the Tm mapping method and compared the detection rates of the Tm mapping and culture methods. A total of 256 pediatric clinical specimens from 156 patients (94 males and 62 females; median age, 2 years [<18 years of age]) were used. The observed concordance rates between the Tm mapping method and the culture method for both positive and negative samples were 76.4% (126/165) in blood samples and 79.1% (72/91) in other clinical specimens. The Tm mapping detection rate was higher than that of culture using both blood and other clinical specimens. In addition, using the Tm mapping method, we identified causative bacteria in pediatric clinical specimens quicker than when using blood cultures. Hence, the Tm mapping method could be a useful adjunct for diagnosing bacterial infections in pediatric patients and may be valuable in antimicrobial stewardship for patients with bacterial infections, especially in culture-negative cases. IMPORTANCE This study provides novel insights regarding the use of the melting temperature (Tm) mapping method to identify the dominant bacteria in samples collected from pediatric patients. We designed a new set of primers for commercial use and developed a database of different bacteria that can be identified using these primers. We show that the Tm mapping method could identify bacteria from blood samples and other clinical specimens. Moreover, we provide evidence that the Tm mapping method has a higher detection rate than that of the culture-based methods and can achieve a relatively high agreement rate. We believe that our study makes a significant contribution to this field because rapid identification of the source of bacterial infections can drastically improve patient outcomes and impede the development of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoji Uejima
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Eisuke Suganuma
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
| | - Takuma Ohnishi
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
| | - Haruka Takei
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
| | - Mihoko Furuichi
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
| | - Satoshi Sato
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
| | - Yutaka Kawano
- Division of Infectious Diseases and Immunology, Saitama Children’s Medical Center, Saitama, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Kwarteng A, Wireko S, Asiedu SO, Kini P, Aglomasa BC, Amewu EKA, Asiedu E, Boahen KG, Amato KR, Obiri-Yeboah D. Shift in the skin microbiome among individuals presenting with filarial lymphedema compared to non-filarial healthy individuals in Ghana. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Influence of Sub-Inhibitory Dosage of Cefotaxime on Multidrug Resistant Staphylococcus haemolyticus Isolated from Sick Neonatal Care Unit. Antibiotics (Basel) 2022; 11:antibiotics11030360. [PMID: 35326823 PMCID: PMC8944431 DOI: 10.3390/antibiotics11030360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus haemolyticus has emerged to be a frequently encountered late-onset sepsis pathogen among newborn infants. Critical care of neonates involves substantial usage of antibiotics and these pathogens are often exposed to sub-optimal doses of antibiotics which can augment maintenance of selection determinants and a range of physiological effects, prime among them being biofilm formation. Therefore, in this study, the outcome of a sub-inhibitory dosage of a commonly prescribed third-generation antibiotic, cefotaxime (CTX), on multidrug resistant (MDR) S. haemolyticus, was investigated. A total of 19 CTX-resistant, MDR and 5 CTX-susceptible strains isolated from neonates were included. Biofilm-forming abilities of S. haemolyticus isolates in the presence of sub-optimal CTX (30 μg/mL) were determined by crystal violet assays and extracellular DNA (eDNA) quantitation. CTX was found to significantly enhance biofilm production among the non-susceptible isolates (p-valueWilcoxintest—0.000008) with an increase in eDNA levels (p-valueWilcoxintest—0.000004). Further, in the absence of antibiotic selection in vitro, populations of MDR isolates, JNM56C1 and JNM60C2 remained antibiotic non-susceptible after >500 generations of growth. These findings demonstrate that sub-optimal concentration of CTX induces biofilm formation and short-term non-exposure to antibiotics does not alter non-susceptibility among S. haemolyticus isolates under the tested conditions.
Collapse
|
11
|
Saroha T, Chaudhry V, Patil PB. Novel insights into the role of the mobilome in ecological diversification and success of Staphylococcus haemolyticus as an opportunistic pathogen. Microb Genom 2022; 8. [PMID: 35072602 PMCID: PMC8914361 DOI: 10.1099/mgen.0.000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus haemolyticus is a species of coagulase-negative staphylococci that has primarily been studied as a human skin microbiome member and an emerging nosocomial pathogen. Here, we present the first complete genome of S. haemolyticus strains SE3.9, SE3.8 and SE2.14 reported as an endophyte of rice seed. Detailed investigation of the genome dynamics of strains from diverse origins revealed an expanded genome size in clinical isolates, and a role of many insertion sequence (IS) elements in strain diversification. Interestingly, several of the IS elements are also unique or enriched in a particular habitat. Comparative studies also revealed the potential movement of mobile elements from rice endophytic S. haemolyticus to strains from other pathogenic species such as Staphylococcus aureus. The study highlights the importance of ecological studies in the systematic understanding of genome plasticity and management of medically important Staphylococcus species.
Collapse
Affiliation(s)
- Tanu Saroha
- Bacterial Genomics and Evolution Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vasvi Chaudhry
- Bacterial Genomics and Evolution Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India.,Present address: Department of Microbial Interactions, Centre for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tubingen, University of Tubingen, Tubingen, Germany
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
12
|
Wireko S, Asiedu SO, Kini P, Aglomasa BC, Amewu EKA, Asiedu E, Osei-Akoto F, Boahen KG, Obiri-Yeboah D, Amato KR, Kwarteng A. Prevalence of Methicillin-Resistant Staphylococcus Species Among Filarial Lymphedema Patients in Ahanta West District of Ghana. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.786378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundFilarial pathologies such as lymphedema may be associated with complications such as chronic non-healing wounds. Nonetheless, the role of bacterial population colonizing the lymphedematous legs has been posited to worsen the conditions of those living with the infection. These bacteria are usually composed of staphylococcal species partly because they are commensals. Thus, this present study sought to type the methicillin-resistant Staphylococcus aureus (MRSA) prevalence among individuals presenting with filarial lymphedema, particularly as MRSA tends to affect treatments options.MethodsWe recruited individuals (n = 321) with stages I–VII of lymphedema in a cross-sectional study in the Ahanta West district of the Western Region of Ghana. Swabs from lymphedematous limb ulcers, pus, and cutaneous surfaces were cultured using standard culture-based techniques. The culture isolates were later identified using Matrix-assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry.ResultsA total of 192 Staphylococci species were isolated, with an overall prevalence of 39.7% (95% CI: 35%–44%; N = 483). S. hominis was the most prevalent species (23.95%), followed by S. haemolyticus (20.83%), S. epidermidis (15.10%), S. aureus (10.41%), and S. saprophyticus (9.32%). The remaining 20.34% were distributed among S. wanneri, S. sciuri, S. pasteuri, S. xylosus, S. simulans, S. cohnii, S. caprae, S. lugdunensis, and S. capitis. MRSA, containing mecA gene, was detected in 21 out of 31 Staphylococci isolates tested, with an overall prevalence of 68% (95% CI: 51%–84%). In addition, a virulent gene, Panton–Valentine leukocidin (PVL), which is usually associated with S. aureus, was detected in 20/31 (64.5%) S. aureus in the study.ConclusionThese results suggest that MRSA species may pose a challenge to the treatment of filarial lymphedema with antibiotics particularly, as doxycycline is currently being piloted in some endemic areas to treat the infection. Thus, intensive antimicrobial resistance surveillance should be conducted in endemic areas by health authorities to forestall the dilemma of multidrug resistance not only against lymphatic filariasis (LF) infection but other diseases.
Collapse
|
13
|
Pain M, Hjerde E, Klingenberg C, Cavanagh JP. Comparative Genomic Analysis of Staphylococcus haemolyticus Reveals Key to Hospital Adaptation and Pathogenicity. Front Microbiol 2019; 10:2096. [PMID: 31552006 PMCID: PMC6747052 DOI: 10.3389/fmicb.2019.02096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus haemolyticus is a skin commensal gaining increased attention as an emerging pathogen of nosocomial infections. However, knowledge about the transition from a commensal to an invasive lifestyle remains sparse and there is a paucity of studies comparing pathogenicity traits between commensal and clinical isolates. In this study, we used a pan-genomic approach to identify factors important for infection and hospital adaptation by exploring the genomic variability of 123 clinical isolates and 46 commensal S. haemolyticus isolates. Phylogenetic reconstruction grouped the 169 isolates into six clades with a distinct distribution of clinical and commensal isolates in the different clades. Phenotypically, multi-drug antibiotic resistance was detected in 108/123 (88%) of the clinical isolates and 5/46 (11%) of the commensal isolates (p < 0.05). In the clinical isolates, we commonly identified a homolog of the serine-rich repeat glycoproteins sraP. Additionally, three novel capsular polysaccharide operons were detected, with a potential role in S. haemolyticus virulence. Clinical S. haemolyticus isolates showed specific signatures associated with successful hospital adaption. Biofilm forming S. haemolyticus isolates that are resistant to oxacillin (mecA) and aminoglycosides (aacA-aphD) are most likely invasive isolates whereas absence of these traits strongly indicates a commensal isolate. We conclude that our data show a clear segregation of isolates of commensal origin, and specific genetic signatures distinguishing the clinical isolates from the commensal isolates. The widespread use of antimicrobial agents has probably promoted the development of successful hospital adapted clones of S. haemolyticus clones through acquisition of mobile genetic elements or beneficial point mutations and rearrangements in surface associated genes.
Collapse
Affiliation(s)
- Maria Pain
- Pediatric Infections Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT The Arcic University of Norway, Tromsø, Norway
| | - Claus Klingenberg
- Pediatric Infections Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Infections Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
14
|
Pereira-Ribeiro PM, Sued-Karam BR, Faria YV, Nogueira BA, Colodette SS, Fracalanzza SE, Duarte JL, Júnior RH, Mattos-Guaraldi AL. Influence of antibiotics on biofilm formation by different clones of nosocomial Staphylococcus haemolyticus. Future Microbiol 2019; 14:789-799. [PMID: 31271299 DOI: 10.2217/fmb-2018-0230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus haemolyticus is the most common organism among clinical isolatesof methicillin-resistant staphylococci. Aim: This study evaluated the ability to produce biofilm with the presence of the antibiotics (1/4 minimum inhibitory concentrations) of S. haemolyticus strains isolated from blood culture. Methods: Clonal distribution was assessed in pulsed-field gel electrophoresis. PCR assays were performed to detect mecA, icaA, aap, atlE, atl, fbp genes. S. haemolyticus strains grown in the presence of the antibiotics were investigated for biofilm formation on glass, polystyrene and catheter surfaces. Results: Biofilm formation was independent of the presence of the icaA and mecA genes, pulsed-field gel electrophoresis type. Vancomycin, oxacillin, moxifloxacin, rifampicin, teicoplanin, tigecycline and linezolid did not inhibit biofilm formation on abiotic surfaces. Conclusion: This study demonstrated that the biofilm formation process is complex and may not be related to ica gene carriage. Furthermore, in this study the biofilm formation was increased in the presence of antimicrobial agents.
Collapse
Affiliation(s)
- Paula Ma Pereira-Ribeiro
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | - Bruna R Sued-Karam
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | - Yuri V Faria
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | - Barbara A Nogueira
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | - Sabrina S Colodette
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | | | - José Lmb Duarte
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | - Raphael H Júnior
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana L Mattos-Guaraldi
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM/UERJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
15
|
Genetic Relatedness of Staphylococcus haemolyticus in Gut and Skin of Preterm Neonates and Breast Milk of Their Mothers. Pediatr Infect Dis J 2019; 38:308-313. [PMID: 29613973 DOI: 10.1097/inf.0000000000002056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Staphylococcus haemolyticus is a common colonizer and cause of late-onset sepsis (LOS) in preterm neonates. By describing genetic relatedness, we aimed to determine whether mother's breast milk (BM) is a source of S. haemolyticus colonizing neonatal gut and skin and/or causing LOS. METHODS S. haemolyticus was isolated from stool and skin swabs of 49 BM-fed preterm neonates admitted to neonatal intensive care unit, 20 healthy BM-fed term neonates and BM of mothers once a week and typed by multilocus variable number tandem repeat analysis and multilocus sequence typing. Virulence-related genes were determined by polymerase chain reaction. RESULTS Compared with term neonates, S. haemolyticus colonized more commonly gut (35% vs. 89.9%; P < 0.001) and skin (50% vs. 91.8%; P < 0.001) of preterm neonates and mothers' BM (15% vs. 38.8%). Isolates from preterm compared with term neonates and their mothers carried more commonly the mecA gene (83.5% vs. 5.4%; P < 0.001) and IS256 (52.4% vs. 2.7%; P < 0.001) and belonged to clonal complex 29 (89.1% vs. 63%; P = 0.014). Only 7 (14.3%) preterm and 3 (15%) term neonates were colonized in gut or on skin with multilocus variable number tandem repeat analysis types indistinguishable from those in BM. Most frequent multilocus variable number tandem repeat analysis types belonged to sequence type 3 or 42, comprised 71.1%-78.4% of isolates from preterm neonates/mothers and caused all 7 LOS episodes. LOS-causing strain colonized the gut of 4/7 and the skin of 5/7 neonates, but not BM, before onset of LOS. CONCLUSIONS S. haemolyticus colonizing gut and skin or causing LOS in preterm neonates rarely originate from BM but are mecA-positive strains adapted to hospital environment.
Collapse
|
16
|
Clinical features, outcomes, and molecular characteristics of an outbreak of Staphylococcus haemolyticus infection, among a mass-burn casualty patient group, in a tertiary center in northern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:847-855. [PMID: 30166249 DOI: 10.1016/j.jmii.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/PURPOSE We reported an outbreak of Staphylococcus haemolyticus (SH) infection in a group of young patients (mean age 21.6) simultaneously hospitalized due to a mass-burn incident. This study analyzed the clinical features of these patients and the microbiological characteristics of the outbreak. METHODS All 50 patients hospitalized for burns were enrolled, and their clinical differences were analyzed based on culture results. A drug sensitivity test and pulsed-field gel electrophoresis (PFGE) were conducted to analyze the microbiological difference between SH isolates from the mass-burn casualty patients (the study group) and SH isolates from other patients hospitalized during the same period (the control group) with the intention of identifying the strain of SH outbreak. RESULTS Patients with isolated SH (N = 36) had a significantly higher disease severity (higher revised Baux score, APACHE II score, and concurrent bacteremia rate), and a significantly poorer clinical outcome (longer ICU and hospital stay, and longer MV usage). Significant differences in the phenotype (antibiotics drug sensitivity test) and genotype (PFGE typing) were observed between the study and control groups. The dominant PFGE type C identified among the study group was related to poorer outcomes in a subgroup analysis. CONCLUSION A dominant PFGE type of SH infection was found in these mass-burn casualty patients. Pathogenesis or virulence factors may have contributed to our results. Further study of isolated SH should be conducted.
Collapse
|
17
|
Hosseinkhani F, Tammes Buirs M, Jabalameli F, Emaneini M, van Leeuwen WB. High diversity in SCCmec elements among multidrug-resistant Staphylococcus haemolyticus strains originating from paediatric patients; characterization of a new composite island. J Med Microbiol 2018; 67:915-921. [PMID: 29873628 DOI: 10.1099/jmm.0.000776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Staphylococcus haemolyticus has emerged as a highly antimicrobial-resistant healthcare-associated pathogen, in particular for patients admitted to neonatal intensive care. The objective of this study was to study the nature of SCCmec types among MDR-SH strains isolated from paediatric patients. METHODOLOGY S. haemolyticus strains (n=60) were isolated from paediatric patients. Antibiotic resistance patterns were established using the disk agar diffusion and micro-broth dilution methods. SCCmec typing was performed using whole-genome sequencing (WGS) and an additional PCR analysis. RESULTS All S. haemolyticus isolates demonstrated multidrug resistance. Using WGS, various novel mec types and combinations of SCCmec types were found, including a new composite island [SCCmec type V (Vd)+SCC cad/ars/cop] comprising 30 % of the strains. SCCmec type V was identified in 23 % of the isolates. A combination of the mecA gene enclosed by two copies of IS431 and absence of the mecRI and ccr genes was identified in 11 strains. In total, mecA regulatory genes were absent in all SH isolates used in this study. CONCLUSION A high diversity of SCCmec elements with the prevalence of a new composite island was determined among MRSH strains. The structure of the composite island represented by MDR-SH strains in this study, in combination with the presence of a restriction-modification system type III, is described for the first time in this study. The presence of an 8 bp direct repeat (DR) and the sequences flanking the DR may support the integration of the mecA gene complex as a composite transposon (IS431-mecA-IS431) independently from recombinase genes.
Collapse
Affiliation(s)
- Farideh Hosseinkhani
- Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, Leiden, the Netherlands
| | - Matthias Tammes Buirs
- Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, Leiden, the Netherlands
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Willem B van Leeuwen
- Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, Leiden, the Netherlands
| |
Collapse
|
18
|
Soeorg H, Metsvaht T, Eelmäe I, Metsvaht HK, Treumuth S, Merila M, Ilmoja ML, Lutsar I. Coagulase-Negative Staphylococci in Human Milk From Mothers of Preterm Compared With Term Neonates. J Hum Lact 2017; 33:329-340. [PMID: 28418807 DOI: 10.1177/0890334417691505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Human milk is the preferred nutrition for neonates and a source of bacteria. Research aim: The authors aimed to characterize the molecular epidemiology and genetic content of staphylococci in the human milk of mothers of preterm and term neonates. METHODS Staphylococci were isolated once per week in the 1st month postpartum from the human milk of mothers of 20 healthy term and 49 preterm neonates hospitalized in the neonatal intensive care unit. Multilocus variable-number tandem-repeats analysis and multilocus sequence typing were used. The presence of the mecA gene, icaA gene of the ica-operon, IS 256, and ACME genetic elements was determined by PCR. RESULTS The human milk of mothers of preterm compared with term neonates had higher counts of staphylococci but lower species diversity. The human milk of mothers of preterm compared with term neonates more often contained Staphylococcus epidermidis mecA (32.7% vs. 2.6%), icaA (18.8% vs. 6%), IS 256 (7.9% vs. 0.9%), and ACME (15.4% vs. 5.1%), as well as Staphylococcus haemolyticus mecA (90.5% vs. 10%) and IS 256 (61.9% vs. 10%). The overall distribution of multilocus variable-number tandem-repeats analysis (MLVA) types and sequence types was similar between the human milk of mothers of preterm and term neonates, but a few mecA-IS 256-positive MLVA types colonized only mothers of preterm neonates. Maternal hospitalization within 1 month postpartum and the use of an arterial catheter or antibacterial treatment in the neonate increased the odds of harboring mecA-positive staphylococci in human milk. CONCLUSION Limiting exposure of mothers of preterm neonates to the hospital could prevent human milk colonization with more pathogenic staphylococci.
Collapse
Affiliation(s)
- Hiie Soeorg
- 1 Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tuuli Metsvaht
- 2 Paediatric Intensive Care Unit, Clinic of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Imbi Eelmäe
- 2 Paediatric Intensive Care Unit, Clinic of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Hanna Kadri Metsvaht
- 1 Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Sirli Treumuth
- 1 Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mirjam Merila
- 3 Neonatal Unit, Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mari-Liis Ilmoja
- 4 Department of Anaesthesiology and Intensive Care, Tallinn Children's Hospital, Tallinn, Estonia
| | - Irja Lutsar
- 1 Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Sued BPR, Pereira PMA, Faria YV, Ramos JN, Binatti VB, Santos KRND, Seabra SH, Hirata R, Vieira VV, Mattos-Guaraldi AL, Pereira JAA. Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Mem Inst Oswaldo Cruz 2017; 112:188-195. [PMID: 28225903 PMCID: PMC5319369 DOI: 10.1590/0074-02760160381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. OBJECTIVES In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. METHODS The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. FINDINGS ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. MAIN CONCLUSIONS Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces.
Collapse
Affiliation(s)
- Bruna Pinto Ribeiro Sued
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | | | - Yuri Vieira Faria
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | - Juliana Nunes Ramos
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Vanessa Batista Binatti
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | | | - Sérgio Henrique Seabra
- Centro Universitário Estadual da Zona Oeste, Laboratório de Tecnologia em Bioquímica e Microscopia, Rio de Janeiro, RJ, Brasil
| | - Raphael Hirata
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Rio de Janeiro, RJ, Brasil
| | - Verônica Viana Vieira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil.,Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
20
|
Panda S, Jena S, Sharma S, Dhawan B, Nath G, Singh DV. Identification of Novel Sequence Types among Staphylococcus haemolyticus Isolated from Variety of Infections in India. PLoS One 2016; 11:e0166193. [PMID: 27824930 PMCID: PMC5100990 DOI: 10.1371/journal.pone.0166193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/24/2016] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to determine sequence types of 34 S. haemolyticus strains isolated from a variety of infections between 2013 and 2016 in India by MLST. The MEGA5.2 software was used to align and compare the nucleotide sequences. The advanced cluster analysis was performed to define the clonal complexes. MLST analysis showed 24 new sequence types (ST) among S. haemolyticus isolates, irrespective of sources and place of isolation. The finding of this study allowed to set up an MLST database on the PubMLST.org website using BIGSdb software and made available at http://pubmlst.org/shaemolyticus/. The data of this study thus suggest that MLST can be used to study population structure and diversity among S. haemolyticus isolates.
Collapse
Affiliation(s)
- Sasmita Panda
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | - Smrutiti Jena
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, LV Prasad Eye Institute, Kallam Anji Reddy Campus, LV Prasad Marg, Banjara Hills, Hyderabad-500034, India
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Durg Vijai Singh
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
- * E-mail: ;
| |
Collapse
|
21
|
Martínez-Meléndez A, Morfín-Otero R, Villarreal-Treviño L, Camacho-Ortíz A, González-González G, Llaca-Díaz J, Rodríguez-Noriega E, Garza-González E. Molecular epidemiology of coagulase-negative bloodstream isolates: detection of Staphylococcus epidermidis ST2, ST7 and linezolid-resistant ST23. Braz J Infect Dis 2016; 20:419-28. [PMID: 27393769 PMCID: PMC9425499 DOI: 10.1016/j.bjid.2016.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 05/01/2016] [Accepted: 05/27/2016] [Indexed: 11/26/2022] Open
|
22
|
Czekaj T, Ciszewski M, Szewczyk EM. Staphylococcus haemolyticus - an emerging threat in the twilight of the antibiotics age. MICROBIOLOGY-SGM 2015; 161:2061-8. [PMID: 26363644 DOI: 10.1099/mic.0.000178] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Staphylococcus haemolyticus is one of the most frequent aetiological factors of staphylococcal infections. This species seems to lack the important virulence attributes described in other staphylococci. However, studies have shown that the presence of various enzymes, cytolysins and surface substances affects the virulence of S. haemolyticus. Nevertheless, none of them has been identified as crucial and determinative. Despite this, S. haemolyticus is, after Staphylococcus epidermidis, the second most frequently isolated coagulase-negative staphylococcus from clinical cases, notably from blood infections, including sepsis. This raises the question of what is the reason for the increasing clinical significance of S. haemolyticus? The most important factor might be the ability to acquire multiresistance against available antimicrobial agents, even glycopeptides. The unusual genome plasticity of S. haemolyticus strains manifested by a large number of insertion sequences and identified SNPs might contribute to its acquisition of antibiotic resistance. Interspecies transfer of SCCmec cassettes suggests that S. haemolyticus might also be the reservoir of resistance genes for other staphylococci, including Staphylococcus aureus. Taking into consideration the great adaptability and the ability to survive in the hospital environment, especially on medical devices, S. haemolyticus becomes a crucial factor in nosocomial infections caused by multiresistant staphylococci.
Collapse
Affiliation(s)
- Tomasz Czekaj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, 90-235 Łódź, Poland
| | - Marcin Ciszewski
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, 90-235 Łódź, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Łódź, Pomorska 137, 90-235 Łódź, Poland
| |
Collapse
|
23
|
Ruzauskas M, Siugzdiniene R, Klimiene I, Virgailis M, Mockeliunas R, Vaskeviciute L, Zienius D. Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: a cross-sectional study. Ann Clin Microbiol Antimicrob 2014; 13:56. [PMID: 25431281 PMCID: PMC4247881 DOI: 10.1186/s12941-014-0056-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/19/2014] [Indexed: 11/17/2022] Open
Abstract
Background Among coagulase-negative staphylococci, Staphylococcus haemolyticus is the second most frequently isolated species from human blood cultures and has the highest level of antimicrobial resistance. This species has zoonotic character and is prevalent both in humans and animals. Recent studies have indicated that methicillin-resistant S. haemolyticus (MRSH) is one of the most frequent isolated Staphylococcus species among neonates in intensive care units. The aim of this study was to determine the presence of MRSH in different groups of companion animals and to characterize isolates according their antimicrobial resistance. Methods Samples (n = 754) were collected from healthy and diseased dogs and cats, female dogs in pure-breed kennels, healthy horses, and kennel owners. Classical microbiological tests along with molecular testing including PCR and 16S rRNA sequencing were performed to identify MRSH. Clonality of the isolates was assessed by Pulsed Field Gel Electrophoresis using the SmaI restriction enzyme. Antimicrobial susceptibility testing was performed using the broth micro-dilution method. Detection of genes encoding antimicrobial resistance was performed by PCR. Statistical analysis was performed using the R Project of Statistical Computing, “R 1.8.1” package. Results From a total of 754 samples tested, 12 MRSH isolates were obtained. No MRSH were found in horses and cats. Eleven isolates were obtained from dogs and one from a kennel owner. Ten of the dog isolates were detected in pure-breed kennels. The isolates demonstrated the same clonality only within separate kennels. The most frequent resistances of MRSH isolates was demonstrated to benzylpenicillin (91.7%), erythromycin (91.7%), gentamicin (75.0%), tetracycline (66.7%), fluoroquinolones (41.7%) and co-trimoxazole (41.7%). One isolate was resistant to streptogramins. All isolates were susceptible to daptomycin, rifampin, linezolid and vancomycin. The clone isolated from the kennel owner and one of the dogs was resistant to beta-lactams, macrolides, gentamicin and tetracycline. Conclusions Pure-breed kennels keeping 6 or more females were determined to be a risk factor for the presence of MRSH strains. MRSH isolated from companion animals were frequently resistant to some classes of critically important antimicrobials, although they remain susceptible to antibiotics used exclusively in human medicine.
Collapse
Affiliation(s)
- Modestas Ruzauskas
- Microbiology and Virology Institute, Lithuanian University of Health Sciences, Mickeviciaus g, 9, Kaunas LT44307, Lithuania.
| | | | | | | | | | | | | |
Collapse
|