1
|
Fernández-Ruiz M, Castón JJ, Del Pozo JL, Carratalà J, Fortún J, Salavert M, Torre-Cisneros J, Aguado JM, Fernández Cruz A, Ventura A, Loeches B, Dueñas C, Tomás C, Navarro D, Oltra R, Resino-Foz E, García Vázquez E, Míguez E, Merino E, Braojos F, Martínez FJ, López-Medrano Pérez F, Machuca I, Cobo J, López Contreras J, Reguera JM, Ruiz Mesa JD, Tiraboschi J, Abella L, Masiá M, Del Toro López MD, Díaz López MD, Carrasco-Antón N, Merchante N, Muñoz P, Torres R, Rodríguez R, Mata-Forte T, Abril V. How can we optimize the diagnostic and therapeutic approach to pneumonia? Expert opinion-based recommendations. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:442-452. [PMID: 39112116 DOI: 10.1016/j.eimce.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 09/14/2024]
Abstract
Pneumonia continues to be one of the most frequent infectious syndromes and a relevant cause of death and health resources utilization. The OPENIN ("Optimización de procesos clínicos para el diagnóstico y tratamiento de infecciones") Group is composed of Infectious Diseases specialists and Microbiologists and aims at generating recommendations that can contribute to improve the approach to processes with high impact on the health system. Such task relies on a critical review of the available scientific evidence. The first Group meeting (held in October 2023) aimed at answering the following questions: Can we optimize the syndromic and microbiological diagnosis of pneumonia? Is it feasible to safely shorten the length of antibiotic therapy? And, is there any role for the immunomodulatory strategies based on the adjuvant use of steroids, macrolides or immunoglobulins? The present review summarizes the literature reviewed for that meeting and offers a series of expert recommendations.
Collapse
Affiliation(s)
- Mario Fernández-Ruiz
- Unidad de Enfermedades Infecciosas, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José Castón
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José Luis Del Pozo
- Servicio de Enfermedades Infecciosas, Servicio de Microbiología Clínica, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Enfermedades Infecciosas, Hospital Universitari de Bellvitge, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Miguel Salavert
- Unidad de Enfermedades Infecciosas, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Julián Torre-Cisneros
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Gestión Clínica de Enfermedades Infecciosas, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - José María Aguado
- Unidad de Enfermedades Infecciosas, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | - Carlos Dueñas
- Hospital Universitario Río Hortega, Valladolid, Spain
| | | | | | - Rosa Oltra
- Hospital Clínico Universitario, Valencia, Spain
| | | | | | - Enrique Míguez
- Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | | | | | | | | | | | - Javier Cobo
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Juan Tiraboschi
- Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Lucy Abella
- Hospital Universitario Nuestra Señora de La Candelaria, Tenerife, Spain
| | - Mar Masiá
- Hospital General Universitario de Elche, Alicante, Spain
| | | | | | | | | | - Patricia Muñoz
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Rafael Torres
- Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | | | | | | |
Collapse
|
2
|
Candel FJ, Salavert M, Estella A, Ferrer M, Ferrer R, Gamazo JJ, García-Vidal C, del Castillo JG, González-Ramallo VJ, Gordo F, Mirón-Rubio M, Pérez-Pallarés J, Pitart C, del Pozo JL, Ramírez P, Rascado P, Reyes S, Ruiz-Garbajosa P, Suberviola B, Vidal P, Zaragoza R. Ten Issues to Update in Nosocomial or Hospital-Acquired Pneumonia: An Expert Review. J Clin Med 2023; 12:6526. [PMID: 37892664 PMCID: PMC10607368 DOI: 10.3390/jcm12206526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Nosocomial pneumonia, or hospital-acquired pneumonia (HAP), and ventilator-associated pneumonia (VAP) are important health problems worldwide, with both being associated with substantial morbidity and mortality. HAP is currently the main cause of death from nosocomial infection in critically ill patients. Although guidelines for the approach to this infection model are widely implemented in international health systems and clinical teams, information continually emerges that generates debate or requires updating in its management. This scientific manuscript, written by a multidisciplinary team of specialists, reviews the most important issues in the approach to this important infectious respiratory syndrome, and it updates various topics, such as a renewed etiological perspective for updating the use of new molecular platforms or imaging techniques, including the microbiological diagnostic stewardship in different clinical settings and using appropriate rapid techniques on invasive respiratory specimens. It also reviews both Intensive Care Unit admission criteria and those of clinical stability to discharge, as well as those of therapeutic failure and rescue treatment options. An update on antibiotic therapy in the context of bacterial multiresistance, in aerosol inhaled treatment options, oxygen therapy, or ventilatory support, is presented. It also analyzes the out-of-hospital management of nosocomial pneumonia requiring complete antibiotic therapy externally on an outpatient basis, as well as the main factors for readmission and an approach to management in the emergency department. Finally, the main strategies for prevention and prophylactic measures, many of them still controversial, on fragile and vulnerable hosts are reviewed.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology and Infectious Diseases, Transplant Coordination, IdISSC & IML Health Research Institutes, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases Unit, La Fe (IIS) Health Research Institute, Hospital Universitario y Politécnico La Fe, 46026 València, Spain
| | - Angel Estella
- Intensive Medicine Service, Hospital Universitario de Jerez, 11407 Jerez, Spain
- Departamento de Medicina, INIBICA, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Miquel Ferrer
- UVIR, Servei de Pneumologia, Institut Clínic de Respiratori, Hospital Clínic de Barcelona, IDIBAPS, CibeRes (CB06/06/0028), Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Ricard Ferrer
- Intensive Medicine Service, Hospital Universitario Valle de Hebrón, 08035 Barcelona, Spain;
| | - Julio Javier Gamazo
- Servicio de Urgencias, Hospital Universitario de Galdakao, 48960 Bilbao, Spain;
| | | | | | | | - Federico Gordo
- Intensive Medicine Service, Hospital Universitario del Henares, 28822 Coslada, Spain;
| | - Manuel Mirón-Rubio
- Servicio de Hospitalización a Domicilio, Hospital Universitario de Torrejón, 28850 Torrejón de Ardoz, Spain;
| | - Javier Pérez-Pallarés
- Division of Respiratory Medicine, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain;
| | - Cristina Pitart
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic-University of Barcelona, CIBERINF, 08036 Barcelona, Spain;
| | - José Luís del Pozo
- Servicio de Enfermedades Infecciosas, Servicio de Microbiología, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Paula Ramírez
- Intensive Medicine Service, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Pedro Rascado
- Intensive Care Unit, Complejo Hospitalario Universitario Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Soledad Reyes
- Neumology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | | | - Borja Suberviola
- Intensive Medicine Service, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria IDIVAL, 39011 Santander, Spain;
| | - Pablo Vidal
- Intensive Medicine Service, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain;
| | - Rafael Zaragoza
- Intensive Care Unit, Hospital Dr. Peset, 46017 Valencia, Spain;
| |
Collapse
|
3
|
Clinical performance of the Xpert® Xpress Flu/RSV assay for the detection of Influenza A, B, and respiratory syncytial virus on ESwab™ medium. JOURNAL OF CLINICAL VIROLOGY PLUS 2022. [DOI: 10.1016/j.jcvp.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Liu YL, Xie TA, Lin GL, Deng W, Lin QR, Pan ZY, Fan SJ, Li ZX, Ouyang S, Zhu GD, Ji TX, Wu LJ, Xia Y, Guo XG. Diagnostic accuracy of Xpert Xpress Flu/RSV for detection of Influenza and Respiratory syncytial virus. Jpn J Infect Dis 2021; 75:183-191. [PMID: 34053954 DOI: 10.7883/yoken.jjid.2020.987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Xpert Xpress Flu/RSV is a fast and automated real-time nucleic acid amplification tool for detecting influenza virus and respiratory syncytial virus (RSV). The aim of this study was to verify the accuracy of Xpert Xpress Flu/RSV in detecting influenza virus and RSV. PubMed, EMBASE, Cochrane Library, and Web of Science were searched up to October 2020. The quality of original research was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 guidelines. Meta-DiSc 1.4 software was used to analyze the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and Summary receiver operating characteristic curve. Deek's funnel plot asymmetry test was used to evaluate the publication bias by Stata 12.0. Ten studies with 25 fourfold tables were included in this analysis. The sensitivity of Xpert Xpress Flu/RSV in detecting influenza A, influenza B, and RSV was 0.97, 0.98, 0.96, respectively, and the specificity was 0.97, 1.00, 1.00, respectively. Compared with other common clinical real-time reverse transcriptase PCR (RT-PCR), Xpert Xpress Flu/RSV is a valuable tool for diagnosing influenza virus and RSV with high sensitivity and specificity.
Collapse
Affiliation(s)
- Ye-Ling Liu
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Tian-Ao Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Geng-Ling Lin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Wei Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Qin-Rong Lin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Zhi-Yong Pan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Shu-Jin Fan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Zhen-Xing Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China
| | - Shi Ouyang
- Department of Infectious Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, China
| | - Guo-Dong Zhu
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, China
| | - Tian-Xing Ji
- Department of Clinical Medicine, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Li-Juan Wu
- Baoan Maternal and Child Health Hospital of Jinan University, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, China
| |
Collapse
|
5
|
Morris TC, Bird PW, Horvath-Papp E, Dhillon JK, May S, Tang JW. Xpert Xpress Flu/RSV: Validation and impact evaluation at a large UK hospital trust. J Med Virol 2021; 93:5146-5151. [PMID: 33559907 DOI: 10.1002/jmv.26860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
Despite vaccination programs and antivirals, influenza remains a prominent cause of morbidity and mortality. The Xpert Xpress Flu/respiratory syncytial virus (RSV) test is a leading influenza point-of-care test, but its evaluation has been limited to nasopharyngeal samples. In addition, the clinical impacts of Xpress Flu/RSV have not yet been quantified. We evaluated the performance of Xpress Flu/RSV at three locations in a UK Hospital Trust against an existing laboratory assay. Multiple upper respiratory tract sample types were included. In addition, we calculated time saved by Xpert, and the associations between Xpert use and rates of early patient isolation and antiviral prescription as recorded at the time of the laboratory result being telephoned out. A total of 642 patients were included in the diagnostic performance analysis. There were 177 laboratory-confirmed cases of influenza A, 7 influenza B and 86 RSV. For influenza A, sensitivity and specificity were 96.6% (95% confidence interval [CI]: 92.8%-98.8%) and 98.1% (CI: 96.4%-99.1%), respectively. This was sustained across all locations and sample types. The negative predictive value was 98.7% (CI: 97.2%-99.4%). The median amount of time saved was 27.1 h. Xpert use was associated with sixfold higher rates of isolation and threefold higher rates of antiviral prescribing by the time the laboratory result was available. Sensitivity for RSV was lower at 86.0% (95% CI: 76.9%-92.6%). Xpert Xpress Flu/RSV reliably detects influenza A infection and has significant clinical impacts. Cartridge optimization is required to enable accurate multiplexing, including from a range of sample types.
Collapse
Affiliation(s)
- Thomas C Morris
- Department of Infectious Diseases, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Paul W Bird
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva Horvath-Papp
- Department of Paediatrics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jasminder K Dhillon
- Point of Care Testing Team, Department of Pathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Shoshanna May
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Julian W Tang
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
6
|
Courtney SJ, Stromberg ZR, Kubicek-Sutherland JZ. Nucleic Acid-Based Sensing Techniques for Diagnostics and Surveillance of Influenza. BIOSENSORS-BASEL 2021; 11:bios11020047. [PMID: 33673035 PMCID: PMC7918464 DOI: 10.3390/bios11020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Influenza virus poses a threat to global health by causing seasonal outbreaks as well as three pandemics in the 20th century. In humans, disease is primarily caused by influenza A and B viruses, while influenza C virus causes mild disease mostly in children. Influenza D is an emerging virus found in cattle and pigs. To mitigate the morbidity and mortality associated with influenza, rapid and accurate diagnostic tests need to be deployed. However, the high genetic diversity displayed by influenza viruses presents a challenge to the development of a robust diagnostic test. Nucleic acid-based tests are more accurate than rapid antigen tests for influenza and are therefore better candidates to be used in both diagnostic and surveillance applications. Here, we review various nucleic acid-based techniques that have been applied towards the detection of influenza viruses in order to evaluate their utility as both diagnostic and surveillance tools. We discuss both traditional as well as novel methods to detect influenza viruses by covering techniques that require nucleic acid amplification or direct detection of viral RNA as well as comparing advantages and limitations for each method. There has been substantial progress in the development of nucleic acid-based sensing techniques for the detection of influenza virus. However, there is still an urgent need for a rapid and reliable influenza diagnostic test that can be used at point-of-care in order to enhance responsiveness to both seasonal and pandemic influenza outbreaks.
Collapse
|
7
|
Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID Now to Roche cobas for the Rapid Detection of SARS-CoV-2. J Clin Virol 2020; 128:104428. [PMID: 32434706 PMCID: PMC7217789 DOI: 10.1016/j.jcv.2020.104428] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has created an urgent and unprecedented need for rapid large-scale diagnostic testing to inform timely patient management. However, robust data are lacking on the relative performance of available rapid molecular tests across a full range of viral concentrations. OBJECTIVE This study aimed to compare two recently-authorized rapid tests, Cepheid Xpert Xpress SARS-CoV-2 and Abbott ID Now SARS-CoV-2, to the Roche cobas SARS-CoV-2 assay for samples with low, medium, and high viral concentrations. STUDY DESIGN A total of 113 nasopharyngeal swabs from remnant patient samples were tested, including 88 positives spanning the full range of observed Ct values on the cobas assay. RESULTS Compared to cobas, the overall positive agreement was 73.9% with ID Now and 98.9% with Xpert. Negative agreement was 100% and 92.0% for ID Now and Xpert, respectively. Both ID Now and Xpert showed 100% positive agreement for medium and high viral concentrations (Ct value <30). However, for Ct values >30, positive agreement was 34.3% for ID Now and 97.1% for Xpert. CONCLUSIONS While Xpert showed high agreement with cobas across a wide range of viral concentrations, this study highlights an important limitation of ID Now for specimens collected in viral or universal transport media with low viral concentrations. Further studies are needed to evaluate the performance of ID Now for direct swabs.
Collapse
Affiliation(s)
- Marie C Smithgall
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioana Scherberkova
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan Whittier
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel A Green
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Farfour E, Roux A, Ballester M, Gagneur L, Renaux C, Jolly E, Vasse M. Improved performances of the second generation of the ID NOW influenza A&B 2® and comparison with the GeneXpert®. Eur J Clin Microbiol Infect Dis 2020; 39:1681-1686. [DOI: 10.1007/s10096-020-03905-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/07/2020] [Indexed: 11/30/2022]
|
9
|
O'Connell S, Conlan C, Reidy M, Stack C, Mulgrew A, Baruah J. The impact of point-of-care testing for influenza A and B on patient flow and management in a medical assessment unit of a general hospital. BMC Res Notes 2020; 13:143. [PMID: 32156298 PMCID: PMC7063764 DOI: 10.1186/s13104-020-04986-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 01/14/2023] Open
Abstract
Objectives Timely implementation of influenza infection control and treatment can significantly reduce the impact on Hospital resources and patient management when demand is at peak. Turnaround times of Laboratory based screening tests for the diagnosis of influenza may have an impact on the implementation of infection control measures and treatment. In this study the objectives included determining the correlation between the Abbott ID NOW point-of-care testing (POCT) instrument using the Influenza A&B2 test and the laboratory based GeneXpert Flu+RSV kit. In addition the impact of the POCT instrument on the prescription of antivirals and antibiotics was evaluated by comparing with practice when the instrument was not in place. Results The results of the correlation study with a cohort of 54 patients revealed the Abbott ID NOW POCT has 92% sensitivity for the detection of Influenza A, while specificity was 100% for both Influenza A and B. The impact of the POCT instrument on the frequency of prescription of antivirals and amount of antibiotics consumed (33% reduction in antibiotic consumption in a cohort of 65 (2017) and 61 (2018)) was significant. In addition the average patient length of Hospital stay was significantly reduced from 5.26 days to 3.73 days.
Collapse
Affiliation(s)
- S O'Connell
- Pathology Department, Bon Secours Hospital, Strand Street, Tralee, Co. Kerry, Ireland. .,Shannon Applied Biotechnology Centre, Institute of Technology Tralee, Tralee, Co. Kerry, Ireland.
| | - C Conlan
- Pharmacy Department, Bon Secours Hospital, Strand Street, Tralee, Co. Kerry, Ireland
| | - M Reidy
- Infection Control Department, Bon Secours Hospital, Strand Street, Tralee, Co. Kerry, Ireland
| | - C Stack
- Pharmacy Department, Bon Secours Hospital, Strand Street, Tralee, Co. Kerry, Ireland
| | - A Mulgrew
- Consultant Respiratory Physician, Bon Secours Hospital, Strand Street, Tralee, Co. Kerry, Ireland
| | - J Baruah
- Pathology Department, Bon Secours Hospital, Strand Street, Tralee, Co. Kerry, Ireland
| |
Collapse
|
10
|
Comparison of the ID Now Influenza A & B 2, Cobas Influenza A/B, and Xpert Xpress Flu Point-of-Care Nucleic Acid Amplification Tests for Influenza A/B Virus Detection in Children. J Clin Microbiol 2020; 58:JCM.01611-19. [PMID: 31941689 PMCID: PMC7041562 DOI: 10.1128/jcm.01611-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/06/2020] [Indexed: 02/02/2023] Open
Abstract
Early diagnosis of influenza (Flu) is critical for patient management and infection control. The ID Now influenza A & B 2 (ID Now) assay (Abbott Laboratories), Cobas influenza A/B nucleic acid test (LIAT; Roche Molecular Systems, Inc.), and Xpert Xpress Flu (Xpert; Cepheid) are rapid, point-of-care molecular assays for Flu virus detection. The study aim was to compare the performances of these three commercially available Clinical Laboratory Improvement Amendments (CLIA)-waived Flu virus assays. Early diagnosis of influenza (Flu) is critical for patient management and infection control. The ID Now influenza A & B 2 (ID Now) assay (Abbott Laboratories), Cobas influenza A/B nucleic acid test (LIAT; Roche Molecular Systems, Inc.), and Xpert Xpress Flu (Xpert; Cepheid) are rapid, point-of-care molecular assays for Flu virus detection. The study aim was to compare the performances of these three commercially available Clinical Laboratory Improvement Amendments (CLIA)-waived Flu virus assays. We prospectively enrolled 201 children <18 years old from January to April 2018 and collected nasopharyngeal swab specimens in viral medium. Aliquots were frozen for testing on different diagnostic platforms, as per the manufacturers’ instructions. CDC Flu A/B PCR was used as a reference method to evaluate the performances of these three platforms. Among the 201 specimens tested, the CDC Flu A/B PCR assay detected Flu A/B virus in 107 samples (Flu A virus, 73 samples; Flu B virus, 36 samples; dual Flu A/B virus positive, 2 samples), while the ID Now virus detected 102 samples (Flu A virus, 69 samples; Flu B virus, 37 samples; dual Flu A/B virus positive, 4 samples; invalid rate, 1/201 [0.5%]), the LIAT detected 112 samples (Flu A virus, 74 samples; Flu B virus, 38 samples; invalid rate, 11/201 [5.5%]), and the Xpert assay detected 112 samples (Flu A virus, 76 samples; Flu B virus, 36 samples; invalid rate, 6/201 [3.0%]). The overall sensitivities for the ID Now assay, LIAT, and Xpert assay for Flu A virus detection (93.2%, 100%, and 100%, respectively) and Flu B virus detection (97.2%, 94.4%, and 91.7%, respectively) were comparable. The specificity for Flu A and B virus detection by all methods was >97%. These molecular assays had higher sensitivity than did a historical standard-of-care test from the BD Veritor antigen test (Flu A virus, 79.5%; Flu B virus, 66.7%).
Collapse
|
11
|
Abstract
The clinical microbiology laboratory relies on traditional diagnostic methods such as culturing, Gram stains, and biochemical testing. Receipt of a high-quality specimen with an appropriate test order is integral to accurate testing. Recent technological advancements have led to decreased time to results and improved diagnostic accuracy. Examples of advancements discussed in this chapter include automation of bacterial culture processing and incubation, as well as introduction of mass spectrometry for the proteomic identification of microorganisms. In addition, molecular testing is increasingly common in the clinical laboratory. Commercially available multiplex molecular assays simultaneously test for a broad array of syndromic-related pathogens, providing rapid and sensitive diagnostic results. Molecular advancements have also transformed point-of-care (POC) microbiology testing, and molecular POC assays may largely supplant traditional rapid antigen testing in the future. Integration of new technologies with traditional testing methods has led to improved quality and value in the clinical microbiology laboratory. After reviewing this chapter, the reader will be able to:List key considerations for specimen collection for microbiology testing. Discuss the advantages and limitations of automation in the clinical microbiology laboratory. Describe the evolution of microorganism identification methods. Discuss the benefits and limitations of molecular microbiology point-of-care testing. Summarize currently available multiplex molecular microbiology testing options.
Collapse
|
12
|
Abstract
The timely and accurate diagnosis of respiratory virus infections has the potential to optimize downstream (posttesting) use of limited health care resources, including antibiotics, antivirals, ancillary testing, and inpatient and emergency department beds. Cost-effective algorithms for respiratory virus testing must take into consideration numerous factors, including which patients should be tested, what testing should be performed (for example, antigen testing versus reverse transcription-PCR testing or influenza A/B testing versus testing with a comprehensive respiratory virus panel), and the turnaround time necessary to achieve the desired posttesting outcomes. Despite the clinical impact of respiratory virus infections, the cost-effectiveness of respiratory virus testing is incompletely understood. In this article, we review the literature pertaining to the cost-effectiveness of respiratory virus testing in pediatric and adult patient populations, in emergency department, outpatient, and inpatient clinical settings. Furthermore, we consider the cost-effectiveness of a variety of testing methods, including rapid antigen tests, direct fluorescent antibody assays, and nucleic acid amplification tests.
Collapse
|
13
|
Martinot M, Greigert V, Gravier S, Klein S, Eyriey M, Pachart A, Kaiser JD, Zadeh MM, De Briel D, Gottwalles Y, Thibaud E. Positive Impact of a Point-of-Care Molecular Influenza Test in the Emergency Department During the 2017-2018 Seasonal Influenza Epidemic. Open Forum Infect Dis 2019; 6:5541691. [PMID: 31363768 PMCID: PMC6667710 DOI: 10.1093/ofid/ofz312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023] Open
Abstract
During the 2017-2018 flu epidemic, the point-of-care Alere-i (n = 72) and reverse transcription polymerase chain reaction (n = 106) tests were compared. Patients in the point-of-care group were administered oseltamivir significantly more rapidly (9 hours vs 23 hours), they spent less time in the emergency department, and they had lower rates of antibiotic administration and hospitalization.
Collapse
Affiliation(s)
- Martin Martinot
- Infectious and Tropical Diseases, Department Medecine E, Hôpitaux Civils de Colmar, Colmar, France
| | - Valentin Greigert
- Infectious and Tropical Diseases, Department Medecine E, Hôpitaux Civils de Colmar, Colmar, France.,Parasitology Department, Strasbourg University, Strasbourg, France
| | - Simon Gravier
- Infectious and Tropical Diseases, Department Medecine E, Hôpitaux Civils de Colmar, Colmar, France
| | - Stephane Klein
- Infectious and Tropical Diseases, Department Medecine E, Hôpitaux Civils de Colmar, Colmar, France
| | - Magali Eyriey
- Clinical Research Department Hôpitaux Civils de Colmar, Colmar, France
| | - Anne Pachart
- Clinical Research Department Hôpitaux Civils de Colmar, Colmar, France
| | | | - Mahsa Mohseni Zadeh
- Infectious and Tropical Diseases, Department Medecine E, Hôpitaux Civils de Colmar, Colmar, France
| | | | | | - Eric Thibaud
- Emergency Department, Hôpitaux Civils de Colmar, Colmar, France
| |
Collapse
|
14
|
Babady NE, Dunn JJ, Madej R. CLIA-waived molecular influenza testing in the emergency department and outpatient settings. J Clin Virol 2019; 116:44-48. [PMID: 31102924 DOI: 10.1016/j.jcv.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Respiratory tract infections are a common cause of visits to emergency departments and outpatient settings. Infections with influenza viruses A and B in particular, are responsible for significant morbidity and mortality in both pediatric and adult populations worldwide. A significant number of influenza diagnoses occur in the emergency departments with many being performed using rapid influenza diagnostic tests (RIDT) which have sensitivities as low as 30% depending on the specific RIDT and patient population. More recently, rapid molecular tests for the detection of influenza viruses A and B have become commercially available as point-of-care platforms. In the United States, several of these new tests are approved by the Food and Drug Administration as CLIA-waived tests. In this report, we review the data on the analytical and clinical performance of RIDTs and CLIA-waived molecular tests, present and discuss potential key challenges and opportunities for implementation of CLIA-waived molecular tests at or near point of care in the emergency departments and outpatient settings.
Collapse
Affiliation(s)
- N Esther Babady
- Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - James J Dunn
- Texas Children's Hospital, Houston, TX, United States
| | | |
Collapse
|
15
|
Eigner U, Reucher S, Hefner N, Staffa-Peichl S, Kolb M, Betz U, Holfelder M, Spier G, Pfefferle S, Lütgehetmann M. Clinical evaluation of multiplex RT-PCR assays for the detection of influenza A/B and respiratory syncytial virus using a high throughput system. J Virol Methods 2019; 269:49-54. [PMID: 30946852 DOI: 10.1016/j.jviromet.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Lower respiratory tract infections are a major threat to public health systems worldwide, with RSV and influenza being the main agents causing hospitalization. In outbreak situations, high-volume respiratory testing is needed. In this study, we evaluated the analytical and clinical performance of a pre-designed primer/probe set for the simultaneous multiplex detection of both viruses on a high-throughput platform, the cobas® 6800, using the "open channel" of the system for integration of lab-developed assays for the detection of influenza and RSV. RESULTS Using the influenza/RSV qPCR Assay with swabs, LoD (95%) in TCID50/mL for influenza-A was 0.009, influenza-B 0.003, RSV-A 0.202, and RSV-B 0.009. Inter-run variability (3xLoD) was low (<1 Ct for all targets). Of 371 clinical respiratory specimens analyzed, results were concordant for 358 samples. The calculated sensitivity and specificity of the assay were 98.3% and 98.4% for Flu-A, 100% and 98.5% for Flu-B, and 98.6% and 99.7% for RSV. All quality assessment panel specimens (N = 63, including avian influenza strains) were correctly identified. None of the tested microorganisms showed cross-reactivity. CONCLUSION Compared with CE-IVD assays, the assay evaluated here showed good analytical and clinical sensitivity and specificity with broad coverage of different virus strains. It offers high-throughput capacity with low hands-on time, facilitating the laboratory management of large respiratory outbreaks.
Collapse
Affiliation(s)
- Ulrich Eigner
- MVZ Laboratory Dr. Limbach, Heidelberg, Germany; University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Svenja Reucher
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | | | | | - Ulrike Betz
- MVZ Laboratory Dr. Limbach, Heidelberg, Germany
| | | | - Gene Spier
- Roche Molecular Systems, Pleasanton, CA, USA
| | | | | |
Collapse
|
16
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68:e1-e47. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
17
|
Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, Gravenstein S, Hayden FG, Harper SA, Hirshon JM, Ison MG, Johnston BL, Knight SL, McGeer A, Riley LE, Wolfe CR, Alexander PE, Pavia AT. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis 2019; 68. [PMID: 30566567 PMCID: PMC6653685 DOI: 10.1093/cid/ciy866 10.1093/cid/ciz044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
These clinical practice guidelines are an update of the guidelines published by the Infectious Diseases Society of America (IDSA) in 2009, prior to the 2009 H1N1 influenza pandemic. This document addresses new information regarding diagnostic testing, treatment and chemoprophylaxis with antiviral medications, and issues related to institutional outbreak management for seasonal influenza. It is intended for use by primary care clinicians, obstetricians, emergency medicine providers, hospitalists, laboratorians, and infectious disease specialists, as well as other clinicians managing patients with suspected or laboratory-confirmed influenza. The guidelines consider the care of children and adults, including special populations such as pregnant and postpartum women and immunocompromised patients.
Collapse
Affiliation(s)
- Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry H Bernstein
- Division of General Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York
| | - John S Bradley
- Division of Infectious Diseases, Rady Children's Hospital
- University of California, San Diego
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle Children's Hospital
| | - Thomas M File
- Division of Infectious Diseases Summa Health, Northeast Ohio Medical University, Rootstown
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stefan Gravenstein
- Providence Veterans Affairs Medical Center and Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville
| | - Scott A Harper
- Office of Public Health Preparedness and Response, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jon Mark Hirshon
- Department of Emergency Medicine, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - B Lynn Johnston
- Department of Medicine, Dalhousie University, Nova Scotia Health Authority, Halifax, Canada
| | - Shandra L Knight
- Library and Knowledge Services, National Jewish Health, Denver, Colorado
| | - Allison McGeer
- Division of Infection Prevention and Control, Sinai Health System, University of Toronto, Ontario, Canada
| | - Laura E Riley
- Department of Maternal-Fetal Medicine, Massachusetts General Hospital, Boston
| | - Cameron R Wolfe
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina
| | - Paul E Alexander
- McMaster University, Hamilton, Ontario, Canada
- Infectious Diseases Society of America, Arlington, Virginia
| | - Andrew T Pavia
- Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City
| |
Collapse
|
18
|
Zou X, Chang K, Wang Y, Li M, Zhang W, Wang C, Lu B, Xiong Z, Han J, Zhang Y, Zhao J, Cao B. Comparison of the Cepheid Xpert Xpress Flu/RSV assay and commercial real-time PCR for the detection of influenza A and influenza B in a prospective cohort from China. Int J Infect Dis 2019; 80:92-97. [PMID: 30634045 DOI: 10.1016/j.ijid.2018.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The Xpert Xpress Flu/RSV assay is released by FDA for rapid detection of influenza A (FluA), influenza B (FluB), and respiratory syncytial virus (RSV). This study aimed to evaluate its clinical performance in comparison to that of the RT-PCR assay cleared by China FDA (CFDA-PCR). METHODS Nasopharyngeal specimens were collected from patients and tested by the two assays side by side. Discordant results were tested with a laboratory-developed real-time PCR for resolution. Viral load in the sample was quantified with a droplet digital PCR. RESULTS A total of 658 specimens were involved and gave 94.7%-99.1% agreement between the two assays. The Xpert assay showed higher sensitivity for FluA (100% vs. 89.8%) and FluB detection (100% vs. 95.3%), and also higher accuracy (98.9% vs. 95.7%) for FluA than the CDFA-PCR. The positive and negative predictive values (NPV) for the three viruses ranged from 90.5% to 100% in the two assays, with higher NPV for FluA and FluB in Xpert assay. Moreover, the Xpert Ct values showed a linear correlation with virus titer in specimens tested. CONCLUSION Overall, the Xpert assay is a reliable and sensitive tool for the detection of FluA, FluB and RSV in our clinical settings.
Collapse
Affiliation(s)
- Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Kang Chang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Mengxue Li
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Wang Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Chunlei Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Zhujia Xiong
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Jiajing Han
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Yulin Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Jiankang Zhao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, China-Japan Friendship Hospital, China; Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| | | |
Collapse
|
19
|
Detection of Influenza A and B Viruses and Respiratory Syncytial Virus by Use of Clinical Laboratory Improvement Amendments of 1988 (CLIA)-Waived Point-of-Care Assays: a Paradigm Shift to Molecular Tests. J Clin Microbiol 2018; 56:JCM.00367-18. [PMID: 29695519 DOI: 10.1128/jcm.00367-18] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An accurate laboratory diagnosis of influenza, respiratory syncytial virus (RSV), and other respiratory viruses can help to guide patient management, antiviral therapy, infection prevention strategies, and epidemiologic monitoring. Influenza has been the primary driver of rapid laboratory testing due to its morbidity and mortality across all ages, the availability of antiviral therapy, which must be given early to have an effect, and the constant threat of new pandemic strains. Over the past 30 years, there has been an evolution in viral diagnostic testing, from viral culture to rapid antigen detection, and more recently, to highly sensitive nucleic acid amplification tests (NAAT), as well as a trend to testing at the point of care (POC). Simple rapid antigen immunoassays have long been the mainstay for POC testing for influenza A and B viruses and respiratory syncytial virus (RSV) but have been faulted for low sensitivity. In 2015, the first POC NAAT for the detection of influenza was approved by the Food and Drug Administration (FDA), ushering in a new era. In 2017, the FDA reclassified rapid influenza diagnostic tests (RIDTs) from class I to class II devices with new minimum performance standards and a requirement for annual reactivity testing. Consequently, many previously available RIDTs can no longer be purchased in the United States. In this review, recent developments in Clinical Laboratory Improvement Amendments of 1988 (CLIA)-waived testing for respiratory virus infections will be presented, with the focus on currently available FDA-cleared rapid antigen and molecular tests primarily for influenza A and B viruses and RSV.
Collapse
|
20
|
Wang H, Deng J, Tang YW. Profile of the Alere i Influenza A & B assay: a pioneering molecular point-of-care test. Expert Rev Mol Diagn 2018; 18:403-409. [PMID: 29688086 PMCID: PMC6153442 DOI: 10.1080/14737159.2018.1466703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The Alere i Influenza A & B assay incorporates the Nicking Enzyme Amplification Reaction technique on the Alere i instrument to detect and differentiate influenza virus (Flu) A and B nucleic acids in specific specimens. Areas covered: The Alere i Influenza A & B assay was cleared by the US Food and Drug Administration for use with nasal swabs (NS) and nasopharyngeal swabs, either directly or in viral transport medium. Notably, direct use on NS was the first ever CLIA-waived nucleic acid-based test. Previously published evaluations have reported sensitivities and specificities of 55.2-100% and 62.5-100% for Flu A and 45.2-100% and 53.6-100% for Flu B, respectively. Expert commentary: The Alere i Influenza A & B assay provides a rapid and simple platform for detection and differentiation of Flu A and B. Efforts are expected to further improve sensitivity and user-friendliness for effective and widespread use in the true point-of-care setting.
Collapse
Affiliation(s)
- Hongmei Wang
- Division of Infectious Diseases, Shenzhen Children Hospital, Shenzhen, China
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jikui Deng
- Division of Infectious Diseases, Shenzhen Children Hospital, Shenzhen, China
| | - Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|