1
|
Rodríguez-Goncer I, Ruiz-Arabi E, Herrera S, Sabé N, Los-Arcos I, Silva JT, Pérez-Nadales E, Machuca I, Álvarez R, Valerio M, Castón JJ, Aguilera V, Bodro M, Cano Á, Cantón R, Carmona P, Carratalà J, Cordero E, Cruzado JM, Fariñas MC, Fernández-Ruiz M, Fondevila C, Fortún J, García-Cosío MD, Gutiérrez-Dalmau A, Iturbe D, Justo I, Len O, López-Medrano F, López Oliva MO, Martín-Dávila P, Martínez-Martínez L, Mazuecos A, Mirabet S, Muñoz P, Oliver A, Pérez-Sáez MJ, Rodríguez-Gómez J, San-Juan R, Sánchez-Céspedes J, Solé A, Vidal Verdú E, Villa J, Torre-Cisneros J, Aguado JM. Management of multidrug-resistant gram-negative bacilli infections in adult solid organ transplant recipients: GESITRA-IC/SEIMC, CIBERINFEC, and SET recommendations update. Transplant Rev (Orlando) 2025; 39:100937. [PMID: 40414085 DOI: 10.1016/j.trre.2025.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Multidrug-resistant (MDR) Gram-negative bacilli (GNB) infections in solid organ transplant (SOT) recipients continue to pose a significant threat despite advances in diagnostics and treatments. The last international consensus guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the management of MDR GNB in adult solid organ transplant (SOT) recipients were published in 2018, underscoring the need for an update to incorporate recent advances, particularly the availability of new drugs that may improve the current standard of care. A working group consisting of members from the Study Group of Infection in Transplantation and Immunocompromised Hosts (GESITRA-IC) of SEIMC, the Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC) and the Spanish Society of Transplantation (SET) developed consensus-based recommendations for managing MDR GNB infections during the transplant procedure. Recommendations were categorized based on evidence quality and strength, utilizing the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The final recommendations were endorsed through a consensus meeting and approved by the expert panel.
Collapse
Affiliation(s)
- Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain.
| | - Elisa Ruiz-Arabi
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Sabina Herrera
- Infectious Diseases Department. Transplant Coordination Service. Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona (IDIBAPS), Spain
| | - Nuria Sabé
- Infectious Diseases Department, Bellvitge University Hospital, Bellvitge. Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - Ibai Los-Arcos
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - José Tiago Silva
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain
| | - Elena Pérez-Nadales
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain
| | - Isabel Machuca
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Rocío Álvarez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Maricela Valerio
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department. Hospital Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Juan José Castón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Victoria Aguilera
- Liver Transplantation and Hepatology Unit, Hospital Universitari i Politécnic La Fe, Valencia, Spain; Center for Biomedical Research in Liver and Digestive Diseases (CIBERehd). Instituto de Salud Carlos III, Spain
| | - Marta Bodro
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department. Transplant Coordination Service. Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona (IDIBAPS), Spain
| | - Ángela Cano
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain
| | - Rafael Cantón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Microbiology Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jordi Carratalà
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Bellvitge University Hospital, Bellvitge. Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Department of Medicine, Faculty of Medicine, Universidad de Sevilla, Spain
| | - Josep María Cruzado
- Nephrology Department, Bellvitge Hospital. University of Barcelona. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - María Carmen Fariñas
- Infectious Diseases Department, Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Cantabria, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Constantino Fondevila
- General and Digestive Surgery Department, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Jesús Fortún
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M Dolores García-Cosío
- Cardiology Department. University Hospital "12 de Octubre". Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Cardiovascular Diseases (CIBERCV), Spain
| | - Alex Gutiérrez-Dalmau
- Kidney Transplant Unit, Nephrology Service, Miguel Servet University Hospital, Aragón Institute for Health Research IIS-Aragón, Zaragoza, Spain
| | - David Iturbe
- Respiratory Medicine Department, Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Cantabria, Spain
| | - Iago Justo
- Unit of Hepato-Pancreato-Biliary Surgery and Abdominal Organ Transplantation, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12). Department of Surgery, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Oscar Len
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Pilar Martín-Dávila
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luis Martínez-Martínez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain; Microbiology Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Auxiliadora Mazuecos
- Kidney Transplant Unit. Department of Nephrology, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Sonia Mirabet
- Center for Biomedical Research in Cardiovascular Diseases (CIBERCV), Spain; Heart Transplantation Unit, Cardiology Department, Hospital Sant Pau, Barcelona, Spain
| | - Patricia Muñoz
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department. Hospital Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Antonio Oliver
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Microbiology Department, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - María José Pérez-Sáez
- Kidney Transplant Unit, Nephrology Department, Hospital del Mar. Hospital del Mar Research Institute. RICORS 2040-Renal, Barcelona, Spain
| | | | - Rafael San-Juan
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Amparo Solé
- Lung Transplant Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Elisa Vidal Verdú
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain
| | - Jennifer Villa
- School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain
| | - Julián Torre-Cisneros
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - José María Aguado
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
2
|
Li X, Dong S, Pan Q, Liu N, Zhang Y. Antibiotic conjugates: Using molecular Trojan Horses to overcome drug resistance. Biomed Pharmacother 2025; 186:118007. [PMID: 40268370 DOI: 10.1016/j.biopha.2025.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 04/25/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a global health crisis due to the rapid emergence of multi-drug-resistant bacteria. The paucity of novel antibiotics in the clinical pipeline has exacerbated this issue, thereby warranting the development of new antibacterial therapies. The 'Trojan Horse' strategy entails conjugating antibiotics with bioactive components that not only facilitate the entry of antibiotic molecules into bacterial cells by circumventing the membrane barriers, but also augment the effects of conventional antibiotics against recalcitrant pathogens. These Trojan Horse elements can also serve as a promising tool for repurposing drugs with hitherto unexamined antimicrobial activity, or drugs with limited clinical utility due to considerable toxic side effects. In this review, we have discussed the current state of research on antibiotic conjugates with monoclonal antibodies (mAbs), antimicrobial peptides (AMPs) and the iron-chelating siderophores. The rationale and mechanisms of different antibiotic conjugates have been summarized, and the preclinical and clinical evidence pertaining to the activity of these conjugates against drug-resistant pathogens have been reviewed. Furthermore, the challenges associated with the clinical translation of these novel antimicrobials, and the future research directions have also been discussed. While antibiotic conjugates offer an attractive alternative to conventional antimicrobials, there are several obstacles to their clinical translation. A greater understanding of the mechanisms underlying AMR, and continuing advances in genetic engineering, synthetic biology, and bioinformatics will be crucial in designing more selective, potent, and safe antibiotic conjugates for tackling multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyuan Dong
- Department of Thoracic surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China
| | - Ning Liu
- Department of Rehabilitation, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Bianco G, Boattini M, Cricca M, Diella L, Gatti M, Rossi L, Bartoletti M, Sambri V, Signoretto C, Fonnesu R, Comini S, Gaibani P. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr Issues Mol Biol 2024; 46:14132-14153. [PMID: 39727974 DOI: 10.3390/cimb46120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, novel antimicrobials have been developed to counter the emergence of antimicrobial resistance and provide effective therapeutic options against multidrug-resistant (MDR) Gram-negative bacilli (GNB). Cefiderocol, a siderophore cephalosporin, represents a novel valuable antimicrobial drug for the treatment of infections caused by MDR-GNB. The mechanism of cefiderocol to penetrate through the outer membrane of bacterial cells, termed "Trojan horse", makes this antimicrobial drug unique and immune to the various resistance strategies adopted by GNB. Its broad spectrum of action, potent antibacterial activity, pharmacokinetics properties, safety, and tolerability make cefiderocol a key drug for the treatment of infections due to MDR strains. Although this novel antimicrobial molecule contributed to revolutionizing the therapeutic armamentarium against MDR-GNB, the recent emergence of cefiderocol-resistant strains has redefined its role in clinical practice and required new strategies to preserve its antibacterial activity. In this review, we provide an updated discussion regarding the mechanism of action, emerging mechanisms of resistance, pharmacokinetic/pharmacodynamic (PK/PD) properties, and efficacy data of cefiderocol against the major Gram-negative bacteria and future prospects.
Collapse
Affiliation(s)
- Gabriele Bianco
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Matteo Boattini
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10129 Turin, Italy
- Lisbon Academic Medical Centre, 1000-001 Lisbon, Portugal
| | - Monica Cricca
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, Section Microbiology, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Cesena, Italy
| | - Lucia Diella
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Section Pharmacology, University of Bologna, 40138 Bologna, Italy
| | - Luca Rossi
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, Section Microbiology, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Cesena, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Rossella Fonnesu
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Paolo Gaibani
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| |
Collapse
|
4
|
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. PHARMACY 2024; 12:142. [PMID: 39311133 PMCID: PMC11417830 DOI: 10.3390/pharmacy12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
AmpC enzymes are a class of beta-lactamases produced by Gram-negative bacteria, including several Enterobacterales. When produced in sufficient amounts, AmpCs can hydrolyze third-generation cephalosporins (3GCs) and piperacillin/tazobactam, causing resistance. In Enterobacterales, the AmpC gene can be chromosomal- or plasmid-encoded. Some species, particularly Enterobacter cloacae complex, Klebsiella aerogenes, and Citrobacter freundii, harbor an inducible chromosomal AmpC gene. The expression of this gene can be derepressed during treatment with a beta-lactam, leading to AmpC overproduction and the consequent emergence of resistance to 3GCs and piperacillin/tazobactam during treatment. Because of this phenomenon, the use of carbapenems or cefepime is considered a safer option when treating these pathogens. However, many areas of uncertainty persist, including the risk of derepression related to each beta-lactam; the role of piperacillin/tazobactam compared to cefepime; the best option for severe or difficult-to-treat cases, such as high-inoculum infections (e.g., ventilator-associated pneumonia and undrainable abscesses); the role of de-escalation once clinical stability is obtained; and the best treatment for species with a lower risk of derepression during treatment (e.g., Serratia marcescens and Morganella morganii). The aim of this review is to collate the most relevant information about the microbiological properties of and therapeutic approach to AmpC-producing Enterobacterales in order to inform daily clinical practice.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, Ravenna Hospital, AUSL Romagna, 48100 Ravenna, Italy
| | - Irene Zaghi
- Department of Infectious Diseases, University Hospital of Galway, H91 Galway, Ireland;
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Cristini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Infectious Diseases Unit, Forlì and Cesena Hospitals, AUSL Romagna, 47121 Forlì and Cesena, Italy
| |
Collapse
|
5
|
Woods B, Schmitt L, Jankovic D, Kearns B, Scope A, Ren S, Srivastava T, Ku CC, Hamilton J, Rothery C, Bojke L, Sculpher M, Harnan S. Cefiderocol for treating severe aerobic Gram-negative bacterial infections: technology evaluation to inform a novel subscription-style payment model. Health Technol Assess 2024; 28:1-238. [PMID: 38938145 PMCID: PMC11229178 DOI: 10.3310/ygwr4511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
Background To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of cefiderocol in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform the National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods The health benefit of cefiderocol was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. The clinical effectiveness of cefiderocol relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. Patient-level costs and health outcomes of cefiderocol under various usage scenarios compared with alternative management strategies were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population values using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for cefiderocol. Results Among Enterobacterales isolates with the metallo-beta-lactamase resistance mechanism, the base-case network meta-analysis found that cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.32, 95% credible intervals 0.04 to 2.47), but the result was not statistically significant. The other treatments were also associated with lower susceptibility than colistin, but the results were not statistically significant. In the metallo-beta-lactamase Pseudomonas aeruginosa base-case network meta-analysis, cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.44, 95% credible intervals 0.03 to 3.94), but the result was not statistically significant. The other treatments were associated with no susceptibility. In the base case, patient-level benefit of cefiderocol was between 0.02 and 0.15 quality-adjusted life-years, depending on the site of infection, the pathogen and the usage scenario. There was a high degree of uncertainty surrounding the benefits of cefiderocol across all subgroups. There was substantial uncertainty in the number of infections that are suitable for treatment with cefiderocol, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time and rates of emergence of resistance. The population-level benefits varied substantially across the base-case scenarios, from 896 to 3559 quality-adjusted life-years over 20 years. Conclusion This work has provided quantitative estimates of the value of cefiderocol within its areas of expected usage within the NHS. Limitations Given existing evidence, the estimates of the value of cefiderocol are highly uncertain. Future work Future evaluations of antimicrobials would benefit from improvements to NHS data linkages; research to support appropriate synthesis of susceptibility studies; and application of routine data and decision modelling to assess enablement value. Study registration No registration of this study was undertaken. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment Policy Research Programme (NIHR award ref: NIHR135591), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 28. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Beth Woods
- Centre for Health Economics, University of York, York, UK
| | | | - Dina Jankovic
- Centre for Health Economics, University of York, York, UK
| | - Benjamin Kearns
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Alison Scope
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Shijie Ren
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Tushar Srivastava
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Chu Chang Ku
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Jean Hamilton
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| | - Laura Bojke
- Centre for Health Economics, University of York, York, UK
| | - Mark Sculpher
- Centre for Health Economics, University of York, York, UK
| | - Sue Harnan
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Karakonstantis S, Rousaki M, Vassilopoulou L, Kritsotakis EI. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:178-188. [PMID: 37666449 DOI: 10.1016/j.cmi.2023.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Cefiderocol is a last resort option for carbapenem-resistant (CR) Gram-negative bacteria, especially metallo-β-lactamase-producing Pseudomonas aeruginosa and CR Acinetobacter baumannii. Monitoring global levels of cefiderocol non-susceptibility (CFDC-NS) is important. OBJECTIVES To systematically collate and examine studies investigating in vitro CFDC-NS and estimate the global prevalence of CFDC-NS against major Gram-negative pathogens. DATA SOURCES PubMed and Scopus, up to May 2023. STUDY ELIGIBILITY CRITERIA Eligible were studies reporting CFDC-NS in Enterobacterales, P. aeruginosa, A. baumannii, or Stenotrophomonas maltophilia clinical isolates. RISK-OF-BIAS ASSESSMENT Two independent reviewers extracted study data and assessed the risk of bias on the population, setting, and measurement (susceptibility testing) domains. DATA SYNTHESIS Binomial-Normal mixed-effects models were applied to estimate CFDC-NS prevalence by species, coresistance phenotype, and breakpoint definition (EUCAST, CLSI, and FDA). Sources of heterogeneity were investigated by subgroup and meta-regression analyses. RESULTS In all, 78 studies reporting 82 035 clinical isolates were analysed (87% published between 2020 and 2023). CFDC-NS prevalence (EUCAST breakpoints) was low overall but varied by species (S. maltophilia 0.4% [95% CI 0.2-0.7%], Enterobacterales 3.0% [95% CI 1.5-6.0%], P. aeruginosa 1.4% [95% CI 0.5-4.0%]) and was highest for A. baumannii (8.8%, 95% CI 4.9-15.2%). CFDC-NS was much higher in CR Enterobacterales (12.4%, 95% CI 7.3-20.0%) and CR A. baumannii (13.2%, 95% CI 7.8-21.5%), but relatively low for CR P. aeruginosa (3.5%, 95% CI 1.6-7.8%). CFDC-NS was exceedingly high in New Delhi metallo-β-lactamase-producing Enterobacterales (38.8%, 95% CI 22.6-58.0%), New Delhi metallo-β-lactamase-producing A. baumannii (44.7%, 95% CI 34.5-55.4%), and ceftazidime/avibactam-resistant Enterobacterales (36.6%, 95% CI 22.7-53.1%). CFDC-NS varied considerably with breakpoint definition, predominantly among CR bacteria. Additional sources of heterogeneity were single-centre investigations and geographical regions. CONCLUSIONS CFDC-NS prevalence is low overall, but alarmingly high for specific CR phenotypes circulating in some institutions or regions. Continuous surveillance and updating of global CFDC-NS estimates are imperative while cefiderocol is increasingly introduced into clinical practice. The need to harmonize EUCAST and CLSI breakpoints was evident.
Collapse
Affiliation(s)
- Stamatis Karakonstantis
- Internal Medicine Department, Infectious Diseases Division, University Hospital of Heraklion, Crete, Greece
| | - Maria Rousaki
- Master of Public Health Program, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Loukia Vassilopoulou
- 2nd Department of Internal Medicine, Venizeleio-Pananeio General Hospital, Heraklion, Crete, Greece
| | - Evangelos I Kritsotakis
- Laboratory of Biostatistics, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece; School of Health and Related Research, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
| |
Collapse
|
7
|
Candel FJ, Salavert M, Estella A, Ferrer M, Ferrer R, Gamazo JJ, García-Vidal C, del Castillo JG, González-Ramallo VJ, Gordo F, Mirón-Rubio M, Pérez-Pallarés J, Pitart C, del Pozo JL, Ramírez P, Rascado P, Reyes S, Ruiz-Garbajosa P, Suberviola B, Vidal P, Zaragoza R. Ten Issues to Update in Nosocomial or Hospital-Acquired Pneumonia: An Expert Review. J Clin Med 2023; 12:6526. [PMID: 37892664 PMCID: PMC10607368 DOI: 10.3390/jcm12206526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Nosocomial pneumonia, or hospital-acquired pneumonia (HAP), and ventilator-associated pneumonia (VAP) are important health problems worldwide, with both being associated with substantial morbidity and mortality. HAP is currently the main cause of death from nosocomial infection in critically ill patients. Although guidelines for the approach to this infection model are widely implemented in international health systems and clinical teams, information continually emerges that generates debate or requires updating in its management. This scientific manuscript, written by a multidisciplinary team of specialists, reviews the most important issues in the approach to this important infectious respiratory syndrome, and it updates various topics, such as a renewed etiological perspective for updating the use of new molecular platforms or imaging techniques, including the microbiological diagnostic stewardship in different clinical settings and using appropriate rapid techniques on invasive respiratory specimens. It also reviews both Intensive Care Unit admission criteria and those of clinical stability to discharge, as well as those of therapeutic failure and rescue treatment options. An update on antibiotic therapy in the context of bacterial multiresistance, in aerosol inhaled treatment options, oxygen therapy, or ventilatory support, is presented. It also analyzes the out-of-hospital management of nosocomial pneumonia requiring complete antibiotic therapy externally on an outpatient basis, as well as the main factors for readmission and an approach to management in the emergency department. Finally, the main strategies for prevention and prophylactic measures, many of them still controversial, on fragile and vulnerable hosts are reviewed.
Collapse
Affiliation(s)
- Francisco Javier Candel
- Clinical Microbiology and Infectious Diseases, Transplant Coordination, IdISSC & IML Health Research Institutes, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases Unit, La Fe (IIS) Health Research Institute, Hospital Universitario y Politécnico La Fe, 46026 València, Spain
| | - Angel Estella
- Intensive Medicine Service, Hospital Universitario de Jerez, 11407 Jerez, Spain
- Departamento de Medicina, INIBICA, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Miquel Ferrer
- UVIR, Servei de Pneumologia, Institut Clínic de Respiratori, Hospital Clínic de Barcelona, IDIBAPS, CibeRes (CB06/06/0028), Universitat de Barcelona, 08007 Barcelona, Spain;
| | - Ricard Ferrer
- Intensive Medicine Service, Hospital Universitario Valle de Hebrón, 08035 Barcelona, Spain;
| | - Julio Javier Gamazo
- Servicio de Urgencias, Hospital Universitario de Galdakao, 48960 Bilbao, Spain;
| | | | | | | | - Federico Gordo
- Intensive Medicine Service, Hospital Universitario del Henares, 28822 Coslada, Spain;
| | - Manuel Mirón-Rubio
- Servicio de Hospitalización a Domicilio, Hospital Universitario de Torrejón, 28850 Torrejón de Ardoz, Spain;
| | - Javier Pérez-Pallarés
- Division of Respiratory Medicine, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain;
| | - Cristina Pitart
- Department of Clinical Microbiology, ISGlobal, Hospital Clínic-University of Barcelona, CIBERINF, 08036 Barcelona, Spain;
| | - José Luís del Pozo
- Servicio de Enfermedades Infecciosas, Servicio de Microbiología, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Paula Ramírez
- Intensive Medicine Service, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Pedro Rascado
- Intensive Care Unit, Complejo Hospitalario Universitario Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Soledad Reyes
- Neumology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | | | - Borja Suberviola
- Intensive Medicine Service, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria IDIVAL, 39011 Santander, Spain;
| | - Pablo Vidal
- Intensive Medicine Service, Complexo Hospitalario Universitario de Ourense, 32005 Ourense, Spain;
| | - Rafael Zaragoza
- Intensive Care Unit, Hospital Dr. Peset, 46017 Valencia, Spain;
| |
Collapse
|
8
|
Viale P, Sandrock CE, Ramirez P, Rossolini GM, Lodise TP. Treatment of critically ill patients with cefiderocol for infections caused by multidrug-resistant pathogens: review of the evidence. Ann Intensive Care 2023; 13:52. [PMID: 37322293 PMCID: PMC10272070 DOI: 10.1186/s13613-023-01146-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Appropriate antibiotic treatment for critically ill patients with serious Gram-negative infections in the intensive care unit is crucial to minimize morbidity and mortality. Several new antibiotics have shown in vitro activity against carbapenem-resistant Enterobacterales (CRE) and difficult-to-treat resistant Pseudomonas aeruginosa. Cefiderocol is the first approved siderophore beta-lactam antibiotic with potent activity against multidrug-resistant, carbapenem-resistant, difficult-to-treat or extensively drug-resistant Gram-negative pathogens, which have limited treatment options. The spectrum of activity of cefiderocol includes drug-resistant strains of Acinetobacter baumannii, P. aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp. and Burkholderia spp. and CRE that produce serine- and/or metallo-carbapenemases. Phase 1 studies established that cefiderocol achieves adequate concentration in the epithelial lining fluid in the lung and requires dosing adjustment for renal function, including patients with augmented renal clearance and continuous renal-replacement therapy (CRRT); no clinically significant drug-drug interactions are expected. The non-inferiority of cefiderocol versus high-dose, extended-infusion meropenem in all-cause mortality (ACM) rates at day 14 was demonstrated in the randomized, double-blind APEKS-NP Phase 3 clinical study in patients with nosocomial pneumonia caused by suspected or confirmed Gram-negative bacteria. Furthermore, the efficacy of cefiderocol was investigated in the randomized, open-label, pathogen-focused, descriptive CREDIBLE-CR Phase 3 clinical study in its target patient population with serious carbapenem-resistant Gram-negative infections, including hospitalized patients with nosocomial pneumonia, bloodstream infection/sepsis, or complicated urinary tract infections. However, a numerically greater ACM rate with cefiderocol compared with BAT led to the inclusion of a warning in US and European prescribing information. Cefiderocol susceptibility results obtained with commercial tests should be carefully evaluated due to current issues regarding their accuracy and reliability. Since its approval, real-world evidence in patients with multidrug-resistant and carbapenem-resistant Gram-negative bacterial infections suggests that cefiderocol can be efficacious in certain critically ill patient groups, such as those requiring mechanical ventilation for COVID-19 pneumonia with subsequently acquired Gram-negative bacterial superinfection, and patients with CRRT and/or extracorporeal membrane oxygenation. In this article, we review the microbiological spectrum, pharmacokinetics/pharmacodynamics, efficacy and safety profiles and real-world evidence for cefiderocol, and look at future considerations for its role in the treatment of critically ill patients with challenging Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Pierluigi Viale
- Infectious Disease Unit, IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- Department of Medical and Surgical Science, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Christian E Sandrock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, CA, USA.
| | - Paula Ramirez
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Thomas P Lodise
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
9
|
Padovani M, Bertelli A, Corbellini S, Piccinelli G, Gurrieri F, De Francesco MA. In Vitro Activity of Cefiderocol on Multiresistant Bacterial Strains and Genomic Analysis of Two Cefiderocol Resistant Strains. Antibiotics (Basel) 2023; 12:antibiotics12040785. [PMID: 37107147 PMCID: PMC10135176 DOI: 10.3390/antibiotics12040785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Cefiderocol is a new siderophore cephalosporin that is effective against multidrug-resistant Gram-negative bacteria, including carbapenem-resistant strains. The aim of this study was to evaluate the activity of this new antimicrobial agent against a collection of pathogens using broth microdilution assays and to analyze the possible mechanism of cefiderocol resistance in two resistant Klebsiella pneumoniae isolates. One hundred and ten isolates were tested, comprising 67 Enterobacterales, two Acinetobacter baumannii, one Achromobacter xylosoxidans, 33 Pseudomonas aeruginosa and seven Stenotrophomonas maltophilia. Cefiderocol showed good in vitro activity, with an MIC < 2 μg/mL, and was able to inhibit 94% of the tested isolates. We observed a resistance rate of 6%. The resistant isolates consisted of six Klebsiella pneumoniae and one Escherichia coli, leading to a resistance rate of 10.4% among the Enterobacterales. Whole-genome sequencing analysis was performed on two cefiderocol-resistant Klebsiella pneumoniae isolates to investigate the possible mutations responsible for the observed resistance. Both strains belonged to ST383 and harbored different resistant and virulence genes. The analysis of genes involved in iron uptake and transport showed the presence of different mutations located in fhuA, fepA, iutA, cirA, sitC, apbC, fepG, fepC, fetB, yicI, yicJ, and yicL. Furthermore, for the first time, to the best of our knowledge, we described two Klebsiella pneumoniae isolates that synthesize a truncated fecA protein due to the transition from G to A, leading to a premature stop codon in the amino acid position 569, and a TonB protein carrying a 4-amino acid insertion (PKPK) after Lysine 103. In conclusion, our data show that cefiderocol is an effective drug against multidrug-resistant Gram-negative bacteria. However, the higher resistance rate observed in Enterobacterales underlines the need for active surveillance to limit the spread of these pathogens and to avoid the risks associated with the emergence of resistance to new drugs.
Collapse
Affiliation(s)
- Michela Padovani
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Anna Bertelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Silvia Corbellini
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Giorgio Piccinelli
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Francesca Gurrieri
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| | - Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
10
|
Potter RF, Wallace MA, Muenks CE, Alvarado K, Yarbrough ML, Burnham CAD. Evaluation of Variability in Interpretation of Disk Diffusion Testing for Cefiderocol Using Different Brands of Mueller-Hinton Agar. J Appl Lab Med 2023; 8:523-534. [PMID: 36738243 DOI: 10.1093/jalm/jfac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cefiderocol is a new antibiotic used to treat infections with antibiotic resistant Gram-negative bacilli. The impact of differences between Mueller-Hinton agar (MHA) brands on susceptibility testing is underexplored. Compounding the implementation of cefiderocol susceptibility testing is a lack of harmonization between different regulatory body breakpoint criteria. METHODS We performed Kirby-Bauer disk diffusion using BD, Hardy, and Remel MHA, in addition to broth microdilution for Acinetobacter baumannii (n = 25), Enterobacterales (n = 25), Stenotrophomonas maltophilia (n = 24), and Pseudomonas aeruginosa (n = 23). We analyzed disk diffusion diameters and minimum inhibitory concentrations using interpretive criteria from the Clinical and Laboratory Standards Institute (CLSI), US Food and Drug Administration (FDA), and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). RESULTS Breakpoint criteria impacted interpretation of susceptibly testing results, for example with the broth microdilution we found 8% (2/25) of A. baumannii isolates change interpretation between CLSI and EUCAST and 32% (8/25) change between CLSI and FDA, 12% (3/25) of Enterobacterales change between CLSI and EUCAST, 13% (3/23) of P. aeruginosa interpretations change between CLSI and FDA, and 4% (1/25) S. maltophilia change between CLSI and FDA. There was a significant difference between the zone disk diffusion diameters for P. aeruginosa and S. maltophilia between Hardy and BD; which changed interpretation (using CLSI criteria) for 8.7% (2/23) for P. aeruginosa but 0% (0/24) for S. maltophilia. CONCLUSIONS Breakpoint criteria impact cefiderocol susceptibility testing interpretation for broth microdilution and disk diffusion. Choice of MHA brand can also affect result interpretation.
Collapse
Affiliation(s)
- Robert F Potter
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carol E Muenks
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelly Alvarado
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie L Yarbrough
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D Burnham
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Rahim Khorasani M, Rostami S, Bakhshi A, Sheikhi R. Global evaluation of the antibacterial activity of Ceftolozane/Tazobactam against ESBLs-producing Escherichia coli and Klebsiella pneumoniae: a systematic review and meta-analysis. Ther Adv Infect Dis 2023; 10:20499361231212074. [PMID: 38029068 PMCID: PMC10656798 DOI: 10.1177/20499361231212074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ceftolozane/Tazobactam is a β-lactam/β-lactamase inhibitor combination with a high range of efficacy and broad-spectrum action against multidrug-resistant bacterial strains. Objectives The present study aimed to analyze the in vitro activity of Ceftolozane/Tazobactam against extended-spectrum β-lactamases (ESBLs)-producing Escherichia coli (ESBLs-EC) and Klebsiella pneumonia (ESBLs-KP) in the published literature to provide international data on the antimicrobial stewardship programs. Design Systematic review and meta-analysis. Methods A systematic literature search was conducted on the Web of Science, Embase, PubMed, Scopus, and Google Scholar electronic databases from the beginning of databases to December 2022 to cover all published articles relevant to our scope. Results At last, 31 publications that met our inclusion criteria were selected for data extraction and analysis by Comprehensive Meta-Analysis Software. The pooled prevalence of Ceftolozane/Tazobactam susceptibility for ESBLs-EC and ESBLs-KP was estimated at 91.3% [95% confidence interval (CI): 90.1-92.5%] and 65.6% (95% CI: 60.8-70.2%), respectively. There was significant heterogeneity among the 31 studies for ESBLs-EC (χ2 = 91.621; p < 0.001; I2 = 67.256%) and ESBLs-KP (χ2 = 348.72; p < 0.001; I2 = 91.4%). Most clinical isolates of ESBLs-EC had MIC50 and MIC90 at a concentration of 0.5 and 2 µg/mL [minimum inhibitory concentration (MIC) at which 50% and 90% of isolates were inhibited], respectively. In contrast, most clinical isolates of ESBLs-KP had MIC50 and MIC90 at a concentration of 1 and 32 µg/mL, respectively. Conclusion Based on the meta-analysis results, Ceftolozane/Tazobactam has a more promising in vitro antibacterial activity against ESBLs-EC isolates from different clinical sources than ESBLs-KP isolates. Therefore, Ceftolozane/Tazobactam can be a useful therapeutic drug as an alternative to carbapenems. Randomized clinical trials are needed to provide clinical evidence to support these observations.
Collapse
Affiliation(s)
- Marzieh Rahim Khorasani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soodabeh Rostami
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Bakhshi
- Student Research Committee, Schoolof Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Raheleh Sheikhi
- Department of Microbiology, Virology and Microbial Toxins, School of Medicine, Guilan University Complex, Tehran Road Km 6th, Rasht, 3363, Guilan, Iran
| |
Collapse
|
12
|
Clancy CJ, Nguyen MH. Management of Highly Resistant Gram-Negative Infections in the Intensive Care Unit in the Era of Novel Antibiotics. Infect Dis Clin North Am 2022; 36:791-823. [DOI: 10.1016/j.idc.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Clinical evidence supporting cefiderol for serious Acinetobacter baumannii infections. Curr Opin Infect Dis 2022; 35:545-551. [PMID: 36345852 DOI: 10.1097/qco.0000000000000880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW Nosocomial infections caused by Acinetobacter baumannii currently represent a serious challenge for clinicians because treatment options are limited and frequently associated with significant toxicity. Cefiderocol is a first-in-class siderophore cephalosporin that has a proven efficacy for the treatment of multidrug-resistant Gram-negative infections, including carbapenem-resistant A. baumannii. The aim of this review is to evaluate the current evidence for the role of cefiderocol in the management of A. baumannii infections. RECENT FINDINGS In this review, we briefly summarize the available data on the efficacy (from randomized controlled trials) and on effectiveness and cure rates (from observational studies), pertaining to the use of cefiderocol for treatment of serious A. baumannii infections. SUMMARY Cefiderocol represents a promising and safe antibiotic option for treating patients with carbapenem-resistant A. baumannii infections. Due to conflicting mortality data from available experience, well-designed future randomized controlled trials and real-life studies are needed.
Collapse
|
14
|
Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect Immun 2022; 90:e0022322. [PMID: 36066263 PMCID: PMC9584212 DOI: 10.1128/iai.00223-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for survival of most organisms. One mechanism of host defense is to tightly chelate iron to several proteins to limit its extracellular availability. This has forced pathogens such as Acinetobacter baumannii to adapt mechanisms for the acquisition and utilization of iron even in iron-limiting conditions. A. baumannii uses a variety of iron acquisition strategies to meet its iron requirements. It can lyse erythrocytes to harvest the heme molecules, use iron-chelating siderophores, and use outer membrane vesicles to acquire iron. Iron acquisition pathways, in general, have been seen to affect many other virulence factors such as cell adherence, cell motility, and biofilm formation. The knowledge gained from research on iron acquisition led to the synthesis of the antibiotic cefiderocol, which uses iron uptake pathways for entry into the cell with some success as a novel cephalosporin. Understanding the mechanisms of iron acquisition of A. baumannii allows for insight into clinical infections and offer potential targets for novel antibiotics or potentiators of current drugs.
Collapse
|
15
|
Vidal-Cortés P, Martin-Loeches I, Rodríguez A, Bou G, Cantón R, Diaz E, De la Fuente C, Torre-Cisneros J, Nuvials FX, Salavert M, Aguilar G, Nieto M, Ramírez P, Borges M, Soriano C, Ferrer R, Maseda E, Zaragoza R. Current Positioning against Severe Infections Due to Klebsiella pneumoniae in Hospitalized Adults. Antibiotics (Basel) 2022; 11:antibiotics11091160. [PMID: 36139940 PMCID: PMC9495006 DOI: 10.3390/antibiotics11091160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Infections due to Klebsiella pneumoniae have been increasing in intensive care units (ICUs) in the last decade. Such infections pose a serious problem, especially when antimicrobial resistance is present. We created a task force of experts, including specialists in intensive care medicine, anaesthesia, microbiology and infectious diseases, selected on the basis of their varied experience in the field of nosocomial infections, who conducted a comprehensive review of the recently published literature on the management of carbapenemase-producing Enterobacterales (CPE) infections in the intensive care setting from 2012 to 2022 to summarize the best available treatment. The group established priorities regarding management, based on both the risk of developing infections caused by K. pneumoniae and the risk of poor outcome. Moreover, we reviewed and updated the most important clinical entities and the new antibiotic treatments recently developed. After analysis of the priorities outlined, this group of experts established a series of recommendations and designed a management algorithm.
Collapse
Affiliation(s)
| | - Ignacio Martin-Loeches
- ICU, Trinity Centre for Health Science HRB-Welcome Trust, St. James’s Hospital Dublin, D08 NHY1 Dublin, Ireland
| | - Alejandro Rodríguez
- ICU, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgil, 43007 Tarragona, Spain
- Departament Medicina I Ciruurgia, Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Germán Bou
- Microbiology Department, Complejo Hospitalario Universitario A Coruña, 15006 A Coruña, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Microbiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Emili Diaz
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Critical Care Department, Corporació Sanitària Parc Taulí, 08208 Sabadell, Spain
- Department of Medicine, Universitat Autonoma de Barcelona (UAB), 08193 Barcelona, Spain
| | | | - Julián Torre-Cisneros
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Service, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain
| | | | - Miguel Salavert
- Infectious Diseases Department, Hospital Universitari I Politecnic La Fe, 46026 Valencia, Spain
| | - Gerardo Aguilar
- SICU, Department of Anesthesiology and Critical Care, Hospital Clínico Universitario Valencia, 46014 Valencia, Spain
- School of Medicine, Universitat de Valencia, 46010 Valencia, Spain
| | - Mercedes Nieto
- ICU, Hospital Clínico Universitario San Carlos, 28040 Madrid, Spain
| | - Paula Ramírez
- ICU, Hospital Universitari I Politecnic La Fe, 46026 Valencia, Spain
| | - Marcio Borges
- ICU, Hospital Universitario Son Llázter, 07198 Palma de Mallorca, Spain
- Fundación Micellium, 46183 Valencia, Spain
| | - Cruz Soriano
- ICU, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - Emilio Maseda
- Fundación Micellium, 46183 Valencia, Spain
- SICU, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rafael Zaragoza
- Fundación Micellium, 46183 Valencia, Spain
- ICU, Hospital Universitario Dr. Peset, 46017 Valencia, Spain
- Correspondence:
| |
Collapse
|
16
|
Canton R, Doi Y, Simner PJ. Treatment of carbapenem-resistant Pseudomonas aeruginosa infections: a case for cefiderocol. Expert Rev Anti Infect Ther 2022; 20:1077-1094. [PMID: 35502603 DOI: 10.1080/14787210.2022.2071701] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carbapenem-resistant (CR) Pseudomonas aeruginosa infections constitute a serious clinical threat globally. Patients are often critically ill and/or immunocompromised. Antibiotic options are limited and are currently centered on beta-lactam-beta-lactamase inhibitor (BL-BLI) combinations and the siderophore cephalosporin cefiderocol. AREAS COVERED This article reviews the mechanisms of P. aeruginosa resistance and their potential impact on the activity of current treatment options, along with evidence for the clinical efficacy of BL-BLI combinations in P. aeruginosa infections, some of which specifically target infections due to CR organisms. The preclinical and clinical evidence supporting cefiderocol as a treatment option for P. aeruginosa involving infections is also reviewed. EXPERT OPINION Cefiderocol is active against most known P. aeruginosa mechanisms mediating carbapenem resistance. It is stable against different serine- and metallo-beta-lactamases, and, due to its iron channel-dependent uptake mechanism, is not impacted by porin channel loss. Furthermore, the periplasmic level of cefiderocol is not affected by upregulated efflux pumps. The potential for on-treatment resistance development currently appears to be low, although more clinical data are required. Information from surveillance programs, real-world compassionate use, and clinical studies demonstrate that cefiderocol is an important treatment option for CR P. aeruginosa infections.
Collapse
Affiliation(s)
- Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
18
|
Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060723. [PMID: 35740130 PMCID: PMC9220290 DOI: 10.3390/antibiotics11060723] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.
Collapse
|
19
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2022; 75:187-212. [PMID: 35439291 PMCID: PMC9890506 DOI: 10.1093/cid/ciac268] [Citation(s) in RCA: 296] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. The initial guidance document on infections caused by extended-spectrum β-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) was published on 17 September 2020. Over the past year, there have been a number of important publications furthering our understanding of the management of ESBL-E, CRE, and DTR-P. aeruginosa infections, prompting a rereview of the literature and this updated guidance document. METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections reviewed, updated, and expanded previously developed questions and recommendations about the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment recommendations are provided with accompanying rationales, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Recommendations apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of 24 October 2021. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Correspondence: P. D. Tamma, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA ()
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service and Center for Antimicrobial Resistance and Epidemiology, Louis Stokes Cleveland Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Wang C, Yang D, Wang Y, Ni W. Cefiderocol for the Treatment of Multidrug-Resistant Gram-Negative Bacteria: A Systematic Review of Currently Available Evidence. Front Pharmacol 2022; 13:896971. [PMID: 35496290 PMCID: PMC9039133 DOI: 10.3389/fphar.2022.896971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cefiderocol is a novel synthetic siderophore-conjugated antibiotic that hijacks the bacterial iron transport systems facilitating drug entry into cells, achieving high periplasmic concentrations. This systematic review analyzed the currently available literature on cefiderocol. It summarized in vitro susceptibility data, in vivo antimicrobial activity, pharmacokinetics/pharmacodynamics (PK/PD), clinical efficacy, safety and resistance mechanisms of cefiderocol. Cefiderocol has potent in vitro and in vivo activity against multidrug-resistant (MDR) Gram-negative bacteria, including carbapenem-resistant isolates. But New Delhi Metallo-β-lactamase (NDM)- positive isolates showed significantly higher MICs than other carbapenemase-producing Enterobacterales, with a susceptible rate of 83.4% for cefiderocol. Cefiderocol is well-tolerated, and the PK/PD target values can be achieved using a standard dose regimen or adjusted doses according to renal function. Clinical trials demonstrated that cefiderocol was non-inferiority to the comparator drugs in treating complicated urinary tract infection and nosocomial pneumonia. Case reports and series showed that cefiderocol was a promising therapeutic agent in carbapenem-resistant infections. However, resistant isolates and reduced susceptibility during treatment to cefiderocol have already been reported. In conclusion, cefiderocol is a promising powerful weapon for treating MDR recalcitrant infections.
Collapse
Affiliation(s)
- Chuanhai Wang
- Department of Pulmonary and Critical Care Medicine, Shengli Oilfield Central Hospital, Dongying, China
| | - Deqing Yang
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yifan Wang
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wentao Ni
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
21
|
Contemporary Treatment of Resistant Gram-Negative Infections in Pediatric Patients. Infect Dis Clin North Am 2022; 36:147-171. [DOI: 10.1016/j.idc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Karlowsky JA, Hackel MA, Takemura M, Yamano Y, Echols R, Sahm DF. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob Agents Chemother 2022; 66:e0199021. [PMID: 34807757 PMCID: PMC8846469 DOI: 10.1128/aac.01990-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022] Open
Abstract
We report in vitro susceptibility data from five consecutive annual SIDERO-WT surveillance studies (2014 to 2019) for cefiderocol and comparators tested against Gram-negative clinical isolates from North America and Europe. CLSI broth microdilution was used to determine MICs for Enterobacterales (n = 31,896), Pseudomonas aeruginosa (n = 7,700), Acinetobacter baumannii complex (n = 5,225), Stenotrophomonas maltophilia (n = 2,030), and Burkholderia cepacia complex (n = 425). MICs were interpreted by CLSI-approved clinical breakpoints (February 2021). Cefiderocol inhibited 99.8, 96.7, 91.6, and 97.7% of all Enterobacterales, meropenem-nonsusceptible, ceftazidime-avibactam-nonsusceptible, and ceftolozane-tazobactam-nonsusceptible isolates, respectively, at ≤4 μg/mL (susceptible breakpoint). Cefiderocol inhibited 99.9, 99.8, 100, and 99.8% of all P. aeruginosa, meropenem-nonsusceptible, ceftazidime-avibactam-nonsusceptible, and ceftolozane-tazobactam-nonsusceptible isolates, respectively, at ≤4 μg/mL (susceptible breakpoint). Cefiderocol inhibited 96.0% of all A. baumannii complex isolates and 94.2% of meropenem-nonsusceptible isolates at ≤4 μg/mL (susceptible breakpoint) and 98.6% of S. maltophilia isolates at ≤1 μg/mL (susceptible breakpoint). B. cepacia complex isolates were tested with a MIC50 of ≤0.03 μg/mL and MIC90 of 0.5 μg/mL. Annual cefiderocol percent susceptible rates for Enterobacterales (North America range, 99.6 to 100%/year; Europe range, 99.3 to 99.9%/year) and P. aeruginosa (North America range, 99.8 to 100%; Europe range, 99.9 to 100%) were unchanged from 2014 to 2019. Annual percent susceptible rates for A. baumannii complex demonstrated sporadic, nondirectional differences (North America range, 97.5 to 100%; Europe range, 90.4 to 97.5%); the wider range for Europe (∼7%) was due to isolates from Russia. Annual percent susceptible rates for S. maltophilia showed minor, nondirectional differences (North America range, 96.4 to 100%; Europe range, 95.6 to 100%). We conclude that clinical isolates of Enterobacterales (99.8% susceptible), P. aeruginosa (99.9%), A. baumannii (96.0%), and S. maltophilia (98.6%) collected in North America and Europe from 2014 to 2019 were highly susceptible to cefiderocol.
Collapse
Affiliation(s)
- James A. Karlowsky
- IHMA, Schaumburg, Illinois, USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Miki Takemura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Yoshinori Yamano
- Research Planning Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Roger Echols
- Infectious Disease Drug Development Consulting, LLC, Easton, Connecticut, USA
| | | |
Collapse
|
23
|
Simner PJ, Beisken S, Bergman Y, Ante M, Posch AE, Tamma PD. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb Drug Resist 2022; 28:161-170. [PMID: 34619049 PMCID: PMC8885434 DOI: 10.1089/mdr.2021.0095] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The objective of this study was to identify putative mechanisms contributing to baseline cefiderocol resistance among carbapenem-resistant Enterobacterales (CRE). We evaluated 56 clinical CRE isolates with no previous exposure to cefiderocol. Cefiderocol and comparator agent minimum inhibitory concentrations (MICs) were determined by broth microdilution. Short-read and/or long-read whole genome sequencing was pursued. Cefiderocol nonwild type (NWT; i.e., MICs ≥4 mg/L) CRE were compared with species-specific reference genomes and with cefiderocol wild type (WT) CRE isolates to identify genes or missense mutations, potentially contributing to elevated cefiderocol MICs. A total of 14 (25%) CRE isolates met cefiderocol NWT criteria. Of the 14 NWT isolates, various β-lactamases (e.g., carbapenemases in Klebsiella pneumoniae and AmpC β-lactamases in Enterobacter cloacae complex) in combination with permeability defects were associated with a ≥ 80% positive predictive value in identifying NWT isolates. Unique mutations in the sensor kinase gene baeS were identified among NWT isolates. Cefiderocol NWT isolates were more likely to be resistant to colistin than WT isolates (29% vs. 0%). Our findings suggest that no consistent antimicrobial resistance markers contribute to baseline cefiderocol resistance in CRE isolates and, rather, cefiderocol resistance results from a combination of heterogeneous mechanisms.
Collapse
Affiliation(s)
- Patricia J. Simner
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yehudit Bergman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Pranita D. Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Assessment of In Vitro Cefiderocol Susceptibility and Comparators against an Epidemiologically Diverse Collection of Acinetobacter baumannii Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11020187. [PMID: 35203791 PMCID: PMC8868317 DOI: 10.3390/antibiotics11020187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Cefiderocol is a catechol-substituted siderophore cephalosporin combining rapid penetration into the periplasmic space with increased stability against β-lactamases. This study provides additional data on the in vitro antimicrobial activity of cefiderocol and commercially available comparators against an epidemiologically diverse collection of Acinetobacter baumannii clinical isolates. Antimicrobial susceptibility was tested using pre-prepared frozen 96-well microtiter plates containing twofold serial dilutions of: cefepime, ceftazidime/avibactam, imipenem/relebactam, ampicillin/sulbactam, meropenem, meropenem/vaborbactam, ciprofloxacin, minocycline, tigecycline, trimethoprim/sulfamethoxazole and colistin using the standard broth microdilution procedure in cation-adjusted Mueller–Hinton broth (CAMHB). For cefiderocol, iron-depleted CAMHB was used. A collection of 113 clinical strains of A. baumannii isolated from Argentina, Azerbaijan, Croatia, Greece, Italy, Morocco, Mozambique, Peru and Spain were included. The most active antimicrobial agents against our collection were colistin and cefiderocol, with 12.38% and 21.23% of non-susceptibility, respectively. A high proportion of multidrug-resistant (76.77%) and carbapenem-resistant (75.28%) A. baumannii isolates remained susceptible to cefiderocol, which was clearly superior to novel β-lactam/β-lactamase inhibitor combinations. Cefiderocol-resistance was higher among carbapenem-resistant isolates and isolates belonging to ST2, but could not be associated with any particular resistance mechanism or clonal lineage. Our data suggest that cefiderocol is a good alternative to treat infections caused by MDR A. baumanni, including carbapenem-resistant strains.
Collapse
|
25
|
Yao J, Wang J, Chen M, Cai Y. Cefiderocol: An Overview of Its in-vitro and in-vivo Activity and Underlying Resistant Mechanisms. Front Med (Lausanne) 2021; 8:741940. [PMID: 34950677 PMCID: PMC8688709 DOI: 10.3389/fmed.2021.741940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment of multidrug-resistant (MDR) Gram-negative bacteria (GNB) infections has led to a global public health challenging due to the bacterial resistance and limited choices of antibiotics. Cefiderocol (CFDC), a novel siderophore cephalosporin possessed unique drug delivery systems and stability to β-lactamases, has the potential to become first-line therapy for most aggressive MDR Gram-negative pathogens infection. However, there have been reports of drug resistance in the course of using CFDC. This study provides an overview of the in-vitro and in-vivo activity of CFDC and potential resistance mechanism was also summarized. In general, CFDC shows excellent activity against a broad range of MDR GNB pathogens including Enterobacteriaceae, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. The expressions of metallo-β-lactamases such as inosine 5'-monophosphate (IMP), Verona integron-mediated metallo-β-lactamase (VIM), and New Delhi metallo-β-lactamase (NDM) are associated with a higher resistance rate of CFDC. Carbapenem-resistant phenotype has little effect on the resistance rate, although the acquisition of a particular carbapenemase may affect the susceptibility of the pathogens to CFDC. For potential resistance mechanism, mutations in β-lactamases and TonB-dependent receptors, which assist CFDC entering bacteria, would increase a minimum inhibitory concentration (MIC)90 value of CFDC against MDR pathogens. Since the development of CFDC, resistance during its utilization has been reported thus, prudent clinical applications are still necessary to preserve the activity of CFDC.
Collapse
Affiliation(s)
- Jiahui Yao
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Mengli Chen
- Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, People's Liberation Army of Chinese General Hospital, Beijing, China
| |
Collapse
|
26
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin Infect Dis 2021; 74:2089-2114. [PMID: 34864936 DOI: 10.1093/cid/ciab1013] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The Infectious Diseases Society of America (IDSA) is committed to providing up-to-date guidance on the treatment of antimicrobial-resistant infections. A previous guidance document focused on infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Here, guidance is provided for treating AmpC β-lactamase-producing Enterobacterales (AmpC-E), carbapenem-resistant Acinetobacter baumannii (CRAB), and Stenotrophomonas maltophilia infections. METHODS A panel of six infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated questions about the treatment of AmpC-E, CRAB, and S. maltophilia infections. Answers are presented as suggestions and corresponding rationales. In contrast to guidance in the previous document, published data on optimal treatment of AmpC-E, CRAB, and S. maltophilia infections are limited. As such, guidance in this document is provided as "suggested approaches" based on clinical experience, expert opinion, and a review of the available literature. Because of differences in the epidemiology of resistance and availability of specific anti-infectives internationally, this document focuses on the treatment of infections in the United States. RESULTS Preferred and alternative treatment suggestions are provided, assuming the causative organism has been identified and antibiotic susceptibility results are known. Approaches to empiric treatment, duration of therapy, and other management considerations are also discussed briefly. Suggestions apply for both adult and pediatric populations. CONCLUSIONS The field of antimicrobial resistance is highly dynamic. Consultation with an infectious diseases specialist is recommended for the treatment of antimicrobial-resistant infections. This document is current as of September 17, 2021 and will be updated annually. The most current versions of IDSA documents, including dates of publication, are available at www.idsociety.org/practice-guideline/amr-guidance-2.0/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Department of Pharmacy, University of Michigan Health, Ann Arbor, Michigan, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Departments of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Departments of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
28
|
Abstract
Intravenous cefiderocol (Fetroja®; Fetcroja®) is the first siderophore cephalosporin approved for the treatment of adults with serious Gram-negative bacterial infections. Cefiderocol is stable against all four Ambler classes of β-lactamases (including metallo-β-lactamases) and exhibits excellent in vitro activity against many clinically relevant Gram-negative pathogens, including multidrug resistant strains. In randomized, double-blind clinical trials, cefiderocol was noninferior to imipenem/cilastatin for the treatment of complicated urinary tract infections (cUTI) and to meropenem for nosocomial pneumonia. Furthermore, in a pathogen-focused clinical trial in patients with carbapenem-resistant (CR) infections, cefiderocol showed comparable efficacy to best available therapy (BAT), albeit all-cause mortality rate was higher in the cefiderocol arm, the cause of which has not been established. Cefiderocol had a good tolerability and safety profile in clinical trials. Thus cefiderocol is a novel, emerging, useful addition to the current treatment options for adults with susceptible Gram-negative bacterial infections (including cUTI and nosocomial pneumonia) for whom there are limited treatment options.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
29
|
Pouch SM. New drugs for difficult bugs: management of multidrug-resistant gram-negative infections in solid organ transplant recipients. Curr Opin Organ Transplant 2021; 26:424-431. [PMID: 34148979 DOI: 10.1097/mot.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Multidrug-resistant Gram-negative bacteria remain a significant threat to patient and allograft survival. Management of these infections in solid organ transplant (SOT) recipients remains challenging due to a limited antimicrobial pipeline and reliance on novel agents, which have not been systematically evaluated in the transplant population. RECENT FINDINGS Novel antimicrobials, including the second-generation β-lactam/β-lactamase inhibitors, cefiderocol, plazomicin and eravacycline, have been developed to combat infections due to multidrug-resistant Gram-negative infections, but each has microbiologic and therapeutic niches and warrant further study in SOT recipients. SUMMARY This review summarizes therapeutic options for extended-spectrum β-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa with difficult-to-treat resistance in SOT recipients and emphasizes recently approved antimicrobial agents.
Collapse
|
30
|
McCreary EK, Heil EL, Tamma PD. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob Agents Chemother 2021; 65:e0217120. [PMID: 34031052 PMCID: PMC8373209 DOI: 10.1128/aac.02171-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial resistance to carbapenem agents has reached alarming levels. Accordingly, collaborative efforts between national and international organizations and the pharmaceutical industry have led to an impressive expansion of commercially available β-lactam agents in recent years. No available agent comes close to the broad range of activity afforded by cefiderocol, a novel siderophore-cephalosporin conjugate. The novelty of and need for cefiderocol are clear, but available clinical data are conflicting, leaving infectious diseases specialists puzzled as to when to prescribe this agent in clinical practice. After a brief overview of cefiderocol pharmacokinetics and pharmacodynamics, safety data, cefiderocol susceptibility testing, and putative mechanisms of cefiderocol resistance, this review focuses on determining cefiderocol's role in the management of specific pathogens, including carbapenem-resistant Acinetobacter baumannii complex, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and less commonly identified glucose-nonfermenting organisms such as Stenotrophomonas maltophilia, Burkholderia species, and Achromobacter species. Available preclinical, clinical trial, and postmarketing data are summarized for each organism, and each section concludes with our opinions on where to position cefiderocol as a clinical therapeutic.
Collapse
Affiliation(s)
- Erin K. McCreary
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L. Heil
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Pranita D. Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Giannella M, Bartoletti M, Conti M, Righi E. Carbapenemase-producing Enterobacteriaceae in transplant patients. J Antimicrob Chemother 2021; 76:i27-i39. [PMID: 33534881 DOI: 10.1093/jac/dkaa495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) are a serious public health concern and represent a major threat to immunocompromised hosts, including solid organ (SOT) and stem cell transplant (HSCT) recipients. Transplant patients are at particular risk of developing CPE colonization and/or infection due to their frequent exposure to prolonged courses of broad-spectrum antibiotics, altered immunocompetence and exposure to invasive procedures and immunosuppressive drugs. Gut colonization with CPE, in particular carbapenem-resistant Klebsiella pneumoniae, may occur before or after SOT in 2%-27% of patients and among 2%-9% of HSCT and has been associated with increased risk of developing CPE infections. In endemic areas, CPE infections occur in up to 18% of SOT, and HSCT patients can account for 5%-18% of all patients with CPE bacteraemia. Mortality rates up to 70% have been associated with CPE infections in both patient populations. The rapid initiation of an active therapy against CPE is advocated in these infections. Therapeutic options, however, are limited by the paucity of novel compounds that are currently available and by potential antibiotic-associated toxicities. Therefore, a multidisciplinary approach involving infection control and antimicrobial stewardship programmes still represents the mainstay for the management of CPE infections among transplant patients. The evidence for the use of prevention strategies such as CPE-targeted perioperative prophylaxis or gut decolonization is still scarce. Large, multicentre trials are required to better define prevention strategies and to guide the management of CPE infections in the transplant setting.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Michele Bartoletti
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Michela Conti
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elda Righi
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
32
|
Fernández J, Piano S, Bartoletti M, Wey EQ. Management of bacterial and fungal infections in cirrhosis: The MDRO challenge. J Hepatol 2021; 75 Suppl 1:S101-S117. [PMID: 34039482 DOI: 10.1016/j.jhep.2020.11.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Bacterial infections are frequent in cirrhotic patients with acute decompensation or acute-on-chronic liver failure and can complicate the clinical course. Delayed diagnosis and inappropriate empirical treatments are associated with poor prognosis and increased mortality. Fungal infections are much less frequent, usually nosocomial and associated with extremely high short-term mortality. Early diagnosis and adequate empirical treatment of infections is therefore key in the management of these patients. In recent decades, antibiotic resistance has become a major worldwide problem in patients with cirrhosis, warranting a more complex approach to antibiotic treatment that includes the use of broad-spectrum antibiotics, new administration strategies, novel drugs and de-escalation policies. Herein, we review epidemiological changes, the main types of multidrug-resistant organisms, mechanisms of resistance, new rapid diagnostic tools and currently available therapeutic options for bacterial and fungal infections in cirrhosis.
Collapse
Affiliation(s)
- Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain; European Foundation of Chronic Liver Failure (EF-Clif), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHED), ISCIII, Spain.
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Michele Bartoletti
- Infectious Disease Unit- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Emmanuel Q Wey
- ILDH, Division of Medicine, University College London Medical School, London, United Kingdom; Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, London, United Kingdom; Department of Infection, Royal Free London NHS Trust London, United Kingdom
| |
Collapse
|
33
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
34
|
Parsels KA, Mastro KA, Steele JM, Thomas SJ, Kufel WD. Cefiderocol: a novel siderophore cephalosporin for multidrug-resistant Gram-negative bacterial infections. J Antimicrob Chemother 2021; 76:1379-1391. [PMID: 33532823 DOI: 10.1093/jac/dkab015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cefiderocol is a novel siderophore cephalosporin that forms a complex with extracellular free ferric iron, which leads to transportation across the outer cell membrane to exert its bactericidal activity through cell wall synthesis inhibition. This pharmacological property has rendered cefiderocol active against several clinically relevant MDR Gram-negative bacteria as evidenced by several in vitro and in vivo studies. Cefiderocol was first approved by the US FDA on 14 November 2019 for the treatment of complicated urinary tract infections. On 28 September 2020, cefiderocol was approved for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. The FDA-approved indications are based on clinical data from the APEKS-cUTI, APEKS-NP and CREDIBLE-CR trials. In APEKS-cUTI, cefiderocol demonstrated non-inferiority to imipenem/cilastatin for the treatment of complicated urinary tract infection caused by MDR Gram-negative bacteria. In APEKS-NP, cefiderocol demonstrated non-inferiority to meropenem for treatment of nosocomial pneumonia. However, in CREDIBLE-CR, higher all-cause mortality was observed with cefiderocol compared with best available therapy for the treatment of severe infections caused by Gram-negative bacteria, primarily in the subset of patients with Acinetobacter spp. infections. Several case reports/series have demonstrated clinical success with cefiderocol for a variety of severe infections. The purpose of this article is to review available data on the mechanism of action, in vitro and in vivo data, pharmacokinetics, pharmacodynamics, susceptibility testing, efficacy and safety of cefiderocol to address its role in therapy.
Collapse
Affiliation(s)
- Katie A Parsels
- State University of New York Upstate University Hospital, Syracuse, NY, USA
| | - Keri A Mastro
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
| | - Jeffrey M Steele
- State University of New York Upstate University Hospital, Syracuse, NY, USA
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Stephen J Thomas
- State University of New York Upstate University Hospital, Syracuse, NY, USA
- State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Wesley D Kufel
- State University of New York Upstate University Hospital, Syracuse, NY, USA
- Binghamton University School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
- State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
35
|
Tamma PD, Aitken SL, Bonomo RA, Mathers AJ, van Duin D, Clancy CJ. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis 2021; 72:e169-e183. [PMID: 33106864 DOI: 10.1093/cid/ciaa1478] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Antimicrobial-resistant infections are commonly encountered in US hospitals and result in significant morbidity and mortality. This guidance document provides recommendations for the treatment of infections caused by extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). METHODS A panel of 6 infectious diseases specialists with expertise in managing antimicrobial-resistant infections formulated common questions regarding the treatment of ESBL-E, CRE, and DTR-P. aeruginosa infections. Based on review of the published literature and clinical experience, the panel provide recommendations and associated rationale for each recommendation. Because of significant differences in the molecular epidemiology of resistance and the availability of specific anti-infective agents globally, this document focuses on treatment of antimicrobial-resistant infections in the United States. RESULTS Approaches to empiric treatment selection, duration of therapy, and other management considerations are briefly discussed. The majority of guidance focuses on preferred and alternative treatment recommendations for antimicrobial-resistant infections, assuming that the causative organism has been identified and antibiotic susceptibility testing results are known. Treatment recommendations apply to both adults and children. CONCLUSIONS The field of antimicrobial resistance is dynamic and rapidly evolving, and the treatment of antimicrobial-resistant infections will continue to challenge clinicians. This guidance document is current as of 17 September 2020. Updates to this guidance document will occur periodically as new data emerge. Furthermore, the panel will expand recommendations to include other problematic gram-negative pathogens in future versions. The most current version of the guidance including the date of publication can be found at www.idsociety.org/practice-guideline/amr-guidance/.
Collapse
Affiliation(s)
- Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel L Aitken
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert A Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, University Hospitals Cleveland Medical Center and Department of Medicine, Pharmacology, Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy J Mathers
- Department of Medicine and Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Cornelius J Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
De Rosa M, Verdino A, Soriente A, Marabotti A. The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. Int J Mol Sci 2021; 22:E617. [PMID: 33435500 PMCID: PMC7826672 DOI: 10.3390/ijms22020617] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
β-lactam antibiotics are among the most important and widely used antimicrobials worldwide and are comprised of a large family of compounds, obtained by chemical modifications of the common scaffolds. Usually these modifications include the addition of active groups, but less frequently, molecules were synthesized in which either two β-lactam rings were joined to create a single bifunctional compound, or the azetidinone ring was joined to another antibiotic scaffold or another molecule with a different activity, in order to create a molecule bearing two different pharmacophoric functions. In this review, we report some examples of these derivatives, highlighting their biological properties and discussing how this strategy can lead to the development of innovative antibiotics that can represent either novel weapons against the rampant increase of antimicrobial resistance, or molecules with a broader spectrum of action.
Collapse
Affiliation(s)
- Margherita De Rosa
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| | | | | | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| |
Collapse
|
37
|
Karvouniaris M, Pontikis K, Nitsotolis T, Poulakou G. New perspectives in the antibiotic treatment of mechanically ventilated patients with infections from Gram-negatives. Expert Rev Anti Infect Ther 2020; 19:825-844. [PMID: 33270485 DOI: 10.1080/14787210.2021.1859369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Ventilator-associated pneumonia (VAP) is a common and potentially fatal complication of mechanical ventilation that is often caused by multidrug-resistant (MDR) Gram-negative bacteria (GNB). Despite the repurposing of older treatments and the novel antimicrobials, many resistance mechanisms cannot be confronted, and novel therapies are needed.Areas covered: We searched the literature for keywords regarding the treatment of GNB infections in mechanically ventilated patients. This narrative review presents new data on antibiotics and non-antibiotic approaches focusing on Phase 3 trials against clinically significant GNB that cause VAP.Expert opinion: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam stand out as new options for infections by Klebsiella pneumoniae carbapenemase-producing bacteria, whereas ceftolozane-tazobactam adds therapeutic flexibility in Pseudomonas aeruginosa infections with multiple resistance mechanisms. Ceftazidime-avibactam and ceftolozane-tazobactam have relevant literature. Aztreonam-avibactam holds promise for the treatment of infections by metallo-β-lactamase (MBL)-producing organisms. Recently approved cefiderocol possesses an extended antibacterial spectrum, including KPC- and MBL-producers. However, recently published data have toned down optimism about treating VAP caused by carbapenem-resistant Acinetobacter baumannii. For the latter, eravacycline may provide additional hope, pending pertinent data. Non-antibiotic treatments currently being considered as adjunct therapeutic approaches are welcome. Nevertheless, they will hopefully substitute current antimicrobials in the future.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Konstantinos Pontikis
- ICU First Department of Respiratory Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Thomas Nitsotolis
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National and Kapodistrian University, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
38
|
Simner PJ, Patel R. Cefiderocol Antimicrobial Susceptibility Testing Considerations: the Achilles' Heel of the Trojan Horse? J Clin Microbiol 2020; 59:e00951-20. [PMID: 32727829 PMCID: PMC7771437 DOI: 10.1128/jcm.00951-20] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cefiderocol (formerly S-649266) is a novel siderophore-conjugated cephalosporin with activity against a broad array of multidrug-resistant (MDR), aerobic Gram-negative bacilli. The siderophore component binds iron and uses active iron transport for drug entry into the bacterial periplasmic space. The cephalosporin moiety is the active antimicrobial component, structurally resembling a hybrid between ceftazidime and cefepime. Like other β-lactam agents, the principal bactericidal activity of cefiderocol occurs via inhibition of bacterial cell wall synthesis by binding of penicillin-binding proteins (PBPs) and inhibiting peptidoglycan synthesis, leading to cell death. Iron concentrations need to be taken into consideration when in vitro antimicrobial susceptibility to cefiderocol is determined. Broth microdilution (BMD) and disk diffusion methods have been developed to determine in vitro activity of cefiderocol. For BMD, cation-adjusted Mueller-Hinton broth (CAMHB) requires iron depletion to provide MICs predictive of in vivo activity. A method to prepare iron-depleted CAMHB (ID-CAMHB) has been described by the Clinical and Laboratory Standards Institute (CLSI). For disk diffusion, standard Mueller-Hinton agar is recommended, presumably because iron is bound in the medium. Currently, clinical FDA and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints and investigational (research-use-only) CLSI breakpoints exist for interpreting cefiderocol susceptibility results for certain Gram-negative bacilli. Cefiderocol does not have clinically relevant activity against Gram-positive or anaerobic organisms. FDA or EUCAST breakpoints should be applied to interpret results for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex for patient care until the investigational status has been removed from CLSI breakpoints. Further clinical outcome data are required to assess the effectiveness of cefiderocol for treatment of other Acinetobacter species (non-baumannii complex) and Stenotrophomonas maltophilia at this time, and, as such, antimicrobial susceptibility testing of these organisms should be limited to research use in the scenario of limited treatment options.
Collapse
Affiliation(s)
- Patricia J Simner
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
39
|
Lee YR, Yeo S. Cefiderocol, a New Siderophore Cephalosporin for the Treatment of Complicated Urinary Tract Infections Caused by Multidrug-Resistant Pathogens: Preclinical and Clinical Pharmacokinetics, Pharmacodynamics, Efficacy and Safety. Clin Drug Investig 2020; 40:901-913. [PMID: 32700154 PMCID: PMC7374078 DOI: 10.1007/s40261-020-00955-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cefiderocol (Fetroja®) is a siderophore cephalosporin and has demonstrated potent activity against extended-spectrum beta-lactamases producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and nonfermenting Gram-negative bacilli, including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii, Burkholderia cepacia, and Klebsiella pneumoniae. However, cefiderocol has limited activity against Gram-positive bacteria and anaerobes like Bacterodies fragilis. In the APEKS-cUTI study, 183 (73%) of 252 patients in the cefiderocol group versus 65 (55%) of 119 patients in the imipenem-cilastatin group achieved the composite outcome of clinical and microbiological eradication of Gram-negative bacteria (treatment difference of 18.58%; 95% CI 8.23-28.92, p = 0.0004) in complicated urinary tract infections (cUTIs). Cefiderocol was non-inferior to imipenem-cilastatin in cUTIs caused by Gram-negative bacteria such as E. coli, K. pneumoniae, P. aeruginosa, Proteus mirabilis, Enterobacter cloacae, Morganella morganii, and Citrobacter freundii. Cefiderocol required dose adjustment in patients with renal impairment and percentage of time that free drug concentrations above the minimum inhibitory concentration (%fT > MIC) best correlated with clinical outcomes. The most common adverse events with cefiderocol were gastrointestinal symptoms such as diarrhea, constipation, nausea, vomiting, or upper abdominal pain. Two phase III clinical trials, the CREDIBLE-CR study and the APEKS-NP study, investigated the efficacy and safety of cefiderocol for the treatment of pneumonia or cUTI, and both studies showed higher all-cause mortality associated with cefiderocol. Therefore, the use of cefiderocol should be limited only to the treatment of cUTIs from Gram-negative bacteria, especially in patients who have limited or no alternative treatment options.
Collapse
Affiliation(s)
- Young Ran Lee
- Department of Pharmacy Practice, Adult Medicine Division, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA.
| | - Suyeon Yeo
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|