1
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Bayat F, Motevalli Haghi A, Nateghpour M, Rahimi-Esboei B, Rahimi Foroushani A, Amani A, Farivar L, Sayyad Talaee Z, Faryabi A. Cytotoxicity and Anti- Plasmodium berghei Activity of Emodin Loaded Nanoemulsion. IRANIAN JOURNAL OF PARASITOLOGY 2022; 17:339-348. [PMID: 36466013 PMCID: PMC9682369 DOI: 10.18502/ijpa.v17i3.10624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Malaria parasites cause a tremendous burden of disease in both the tropics and subtropics areas. Growing of drugs resistance in parasites is one of the most threats to malaria control. The aim of study was to investigate the anti-malarial activity of nano-emodin isolated from Rhamnus cathartica on Plasmodium berghei in mice to evaluate parasites inhibition rate using in-vivo test. METHODS The study was conducted in the School of Public Health, Tehran University of Medical Sciences, during 2020. Nano-emodin particles were prepared from Rhamnus cathartica, and confirmed by Zeta Potential Analyzer, DLS and electron microscopy techniques. Mice were infected with P. berghei and treated by emodin nano-particles. Parasitemia was evaluated in each group in comparison with control group. Toxicity test was done using twice the highest concentration of emodin extract on a separate group of mice and ED50 was calculated. RESULTS Emodin extract was significantly effective in all concentrations on D4 (P<0.05). The most effective on parasitemia was observed in 400 mg/kg of Liquid Nano-emodin and solid (non-Nano) emodin. ED50 for emodin extract was determined 220 mg/kg. Toxicity test showed no toxic effect on the subjects. CONCLUSION The emodin extract is safe, lack of side effects. So, it can be used for more and longer period of time and in higher doses. Emodin extract, either in form of liquid and nanoparticle or in a solid form, has the same therapeutic effect on P. berghei in infected Balb/c mice.
Collapse
Affiliation(s)
- Fatemeh Bayat
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Motevalli Haghi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Nateghpour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Rahimi-Esboei
- Department of Medical Parasitology and Mycology, School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Leila Farivar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sayyad Talaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Faryabi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sougiannis AT, Enos RT, VanderVeen BN, Velazquez KT, Kelly B, McDonald S, Cotham W, Chatzistamou I, Nagarkatti M, Fan D, Murphy EA. Safety of natural anthraquinone emodin: an assessment in mice. BMC Pharmacol Toxicol 2021; 22:9. [PMID: 33509280 PMCID: PMC7845031 DOI: 10.1186/s40360-021-00474-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. METHODS We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). CONCLUSIONS In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.
Collapse
Affiliation(s)
- Alexander T Sougiannis
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Brittany Kelly
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Sierra McDonald
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - William Cotham
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, 29209, USA
- AcePre, LLC, Columbia, SC, 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, & Immunology, School of Medicine, University of South Carolina, 6439 Garners Ferry Rd., Columbia, SC, 29209, USA.
- AcePre, LLC, Columbia, SC, 29209, USA.
| |
Collapse
|