1
|
Shi A, Lv J, Ma Q, Liu Z, Ma L, Zhou J, Tao J. Study on the expression patterns of inner root sheath-specific genes in Tan sheep hair follicle during different developmental stages. Gene 2024; 927:148751. [PMID: 38971547 DOI: 10.1016/j.gene.2024.148751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
By analyzing the expression patterns of inner root sheath (IRS) specific genes during different developmental stages of hair follicle (HF) in Tan sheep embryos and at birth, this study aims to reveal the influence of the IRS on crimped wool. Skin tissues from the scapular region of male Tan sheep were collected at 85 days (E85) and 120 days (E120) of fetal development, and at 0 days (D0), 35 days (D35), and 60 days (D60) after birth, with four samples at each stage. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the relative expression levels of IRS type I keratin genes (KRT25, KRT26, KRT27, KRT28), type II keratin genes (KRT71, KRT72, KRT73, KRT74), and the trichohyalin gene (TCHH) in the skin of Tan sheep at different stages. Results showed that the expression levels of all IRS-specific genes peaked at D0, with the expression of all genes significantly higher than at E85 (P < 0.01), except for KRT73 and TCHH. The expression levels of KRT25, KRT26, and KRT72 were also significantly higher than at E120 (P < 0.01). Furthermore, the expression levels of KRT27, KRT28, KRT71, and KRT74 were significantly higher than both at E120 and D35 (P < 0.01). The expression levels of other genes at different stages showed no significant difference (P > 0.05). Conclusion: The IRS-specific genes exhibit the highest expression levels in Tan sheep at the neonatal stage. The expression levels of KRT71, KRT72, and TCHH, which are consistent with the pattern of wool crimp, may influence the morphology of the IRS and thereby affect the crimp of Tan sheep wool.
Collapse
Affiliation(s)
- An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiangjiang Lv
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhanfa Liu
- Ningxia Yanchi Tan Sheep Breeding Center, Yanchi 751506, China
| | - Lina Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Junsheng Zhou
- Ningxia Yanchi Tan Sheep Breeding Center, Yanchi 751506, China
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Shi A, Ma S, Yang Z, Ding W, Tian J, Chen X, Tao J. Proteomic Analysis of Crimped and Straight Wool in Chinese Tan Sheep. Animals (Basel) 2024; 14:2858. [PMID: 39409807 PMCID: PMC11482551 DOI: 10.3390/ani14192858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Crimped wool in Tan sheep gradually transitions to straight wool after 35 days (the er-mao stage), which reduces its commercial value. To investigate the changes in wool proteins during this stage, we performed comparative proteomic analysis of the straight and crimped wool using tandem mass tag (TMT)-based quantification. The mean fur curvature (MFC) of crimped wool was significantly greater than that of straight wool (p < 0.001). We identified 1218 proteins between the two types of wool, including 50 keratins (Ks) and 10 keratin-associated proteins (KAPs). There were 213 differentially expressed proteins, including 13 Ks and 4 KAPs. Crimped wool showed relatively high abundances of KAP24-1, K84, K32, K82, and intermediate filament rod domain-containing protein (IRDC), whereas straight wool had relatively high abundances of K6A, K27, K80, KAP16-1, KAP27-1, and trichohyalin (TCHH). The expression levels of KAP16-1, KAP24-1, and KAP27-1 were related to the ratio of paracortex, which may be associated with wool crimp formation. Additionally, high expressions of TCHH, K27, and K6A in the inner root sheath (IRS) were linked to fiber fineness in straight wool. These findings provide insight into the overall expression and distribution patterns of Ks and KAPs, offering opportunities to improve wool quality and enhance its economic potential in the textile industry.
Collapse
Affiliation(s)
- An Shi
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Sijia Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Zhuo Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| | - Wei Ding
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Jinyang Tian
- Ningxia Yanchi Tan Sheep Breeding Center, Ningxia Department of Agriculture and Rural Affairs, Wuzhong 751506, China; (J.T.); (X.C.)
| | - Xin Chen
- Ningxia Yanchi Tan Sheep Breeding Center, Ningxia Department of Agriculture and Rural Affairs, Wuzhong 751506, China; (J.T.); (X.C.)
| | - Jinzhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (A.S.); (S.M.); (Z.Y.)
| |
Collapse
|
3
|
Li W, Bai L, Zhou H, Zhang Z, Ma Z, Wu G, Luo Y, Tanner J, Hickford JGH. Ovine KRT81 Variants and Their Influence on Selected Wool Traits of Commercial Value. Genes (Basel) 2024; 15:681. [PMID: 38927617 PMCID: PMC11202848 DOI: 10.3390/genes15060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Keratins are the main structural protein components of wool fibres, and variation in them and their genes (KRTs) is thought to influence wool structure and characteristics. The PCR-single strand conformation polymorphism technique has been used previously to investigate genetic variation in selected coding and intron regions of the type II sheep keratin gene KRT81, but no variation was identified. In this study, we used the same technique to explore the 5' untranslated region of KRT81 and detected three sequence variants (A, B and C) that contain four single nucleotide polymorphisms. Among the 389 Merino × Southdown cross sheep investigated, variant B was linked to a reduction in clean fleece weight, while C was associated with an increase in both greasy fleece weight and clean fleece weight. No discernible effects on staple length or mean-fibre-diameter-related traits were observed. These findings suggest that variation in ovine KRT81 might influence wool growth by changing the density of wool follicles in the skin, the density of individual fibres, or the area of the skin producing fibre, as opposed to changing the rate of extrusion of fibres or their diameter.
Collapse
Affiliation(s)
- Wenhao Li
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (W.L.); (Z.M.); (G.W.)
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
| | - Lingrong Bai
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| | - Huitong Zhou
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| | - Zhihe Zhang
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
| | - Zhijie Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (W.L.); (Z.M.); (G.W.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (W.L.); (Z.M.); (G.W.)
| | - Yuzhu Luo
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
| | - Jasmine Tanner
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| | - Jon G. H. Hickford
- International Wool Research Institute/Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.); (Z.Z.); (Y.L.)
- Gene-Marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand; (L.B.); (J.T.)
| |
Collapse
|
4
|
Zhao B, Cai J, Zhang X, Li J, Bao Z, Chen Y, Wu X. Single nucleotide polymorphisms in the KRT82 promoter region modulate irregular thickening and patchiness in the dorsal skin of New Zealand rabbits. BMC Genomics 2024; 25:458. [PMID: 38730432 PMCID: PMC11088042 DOI: 10.1186/s12864-024-10370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND While rabbits are used as models in skin irritation tests, the presence of irregular patches and thickening on the dorsal skin can affect precise evaluation. In this study, genes associated with patchiness or non-patchiness on the dorsal skin of New Zealand rabbits were investigated to identify potential regulators of the patchiness phenotype. RESULTS The results showed that parameters associated with hair follicles (HFs), such as HF density, skin thickness, and HF depth, were augmented in rabbits with the patchiness phenotype relative to the non-patchiness phenotype. A total of 592 differentially expressed genes (DEGs) were identified between the two groups using RNA-sequencing. These included KRT72, KRT82, KRT85, FUT8, SOX9, and WNT5B. The functions of the DEGs were investigated by GO and KEGG enrichment analyses. A candidate gene, KRT82, was selected for further molecular function verification. There was a significant positive correlation between KRT82 expression and HF-related parameters, and KRT82 overexpression and knockdown experiments with rabbit dermal papilla cells (DPCs) showed that it regulated genes related to skin and HF growth and development. Investigation of single nucleotide polymorphisms (SNPs) in the exons and promoter region of KRT82 identified four SNPs in the promoter region but none in the exons. The G.-631G > T, T.-696T > C, G.-770G > T and A.-873 A > C alleles conformed to the Hardy - Weinberg equilibrium, and three identified haplotypes showed linkage disequilibrium. Luciferase reporter assays showed that the core promoter region of KRT82 was located in the - 600 to - 1200 segment, in which the four SNPs were located. CONCLUSIONS The morphological characteristics of the patchiness phenotype were analyzed in New Zealand rabbits and DEGs associated with this phenotype were identified by RNA-sequencing. The biological functions of the gene KRT82 associated with this phenotype were analyzed, and four SNPs were identified in the promoter region of the gene. These findings suggest that KRT82 may be a potential biomarker for the breeding of experimental New Zealand rabbits.
Collapse
Affiliation(s)
- Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
5
|
Sun H, He Z, Zhao F, Hu J, Wang J, Liu X, Zhao Z, Li M, Luo Y, Li S. Spatiotemporal Expression Characterization of KRTAP6 Family Genes and Its Effect on Wool Traits. Genes (Basel) 2024; 15:95. [PMID: 38254984 PMCID: PMC10815594 DOI: 10.3390/genes15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Keratin-related proteins (KAPs) are structural components of wool fibers and are thought to play a key role in regulating the physical and mechanical properties of fibers. Among all KAP genes (KRTAPs), KRTAP6 gene family (KRTAP6-1, KRTAP6-2, KRTAP6-3, KRTAP6-4, and KRTAP6-5) is a very important member with high polymorphism and notable association with some wool traits. In this study, we used real-time fluorescence quantitative PCR (RT-qPCR) and in situ hybridization to investigate spatiotemporal expression of KRTAP6s. The results revealed that KRTAP6 family genes were significantly expressed during anagen compared to other stages (p < 0.05). And it was found the five genes were expressed predominantly in the dermal papillae, inner and outer root sheaths, and showed a distinct spatiotemporal expression pattern. Also, it was found that KRTAP6-1 and KRTAP6-5 mRNA expression was negatively correlated with wool mean fiber diameter (MFD) and mean staple strength (MSS) (p < 0.05). In summary, the KRTAP6 family genes share a similar spatiotemporal expression pattern. And KRTAP6-1 and KRTAP6-5 may regulate the MFD and MSS of Gansu Alpine fine-wool sheep wool by changing the expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, International Wool Research Institute, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (Z.H.); (F.Z.); (J.H.); (J.W.); (X.L.); (Z.Z.); (M.L.); (Y.L.)
| |
Collapse
|
6
|
Identification and Characterization of Circular RNAs (circRNAs) Using RNA-Seq in Two Breeds of Cashmere Goats. Genes (Basel) 2023; 14:genes14020331. [PMID: 36833256 PMCID: PMC9956322 DOI: 10.3390/genes14020331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA generated from back-splicing the reactions of linear RNA. It plays an important role in various cellular and biological processes. However, there are few studies about the regulatory effect of circRNAs on cashmere fiber traits in cashmere goats. In this study, the expression profiles of circRNAs in skin tissue were compared between Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats, with a significant difference in cashmere fiber yield, cashmere fiber diameter, and cashmere fiber color, using RNA-seq. A total of 11,613 circRNAs were expressed in the caprine skin tissue, and their type, chromosomal distribution, and length distribution were characterized. A total of 115 up-regulated circRNAs and 146 down-regulated circRNAs in LC goats were screened compared to ZB goats. The authenticity of 10 differentially expressed circRNAs was validated by detecting their expression levels and the head-to-tail splice junction using RT-PCR and DNA sequencing, respectively. The parent genes of differentially expressed circRNA were mainly enriched in some Gene Ontology (GO) terms and pathways related to cashmere fiber traits, such as the canonical Wnt signaling pathway, which is involved in the regulation of cell promotion, stem cell proliferation, Wnt signaling pathway regulation, epithelial morphogenesis, MAPK signaling pathway, and cell adhesion molecules pathway. Eight differentially expressed circRNAs were further selected to construct a circRNA-miRNA network, and some miRNAs that were previously reported as related to fiber traits were found in the network. This study provides a deep understanding of the roles of circRNAs in the regulation of cashmere fiber traits in cashmere goats and the involvement of differential splicing in phenotypic expression according to breed and region.
Collapse
|
7
|
Wang L, Zhou S, Liu G, Lyu T, Shi L, Dong Y, He S, Zhang H. The Mechanisms of Fur Development and Color Formation in American Mink Revealed Using Comparative Transcriptomics. Animals (Basel) 2022; 12:ani12223088. [PMID: 36428316 PMCID: PMC9686883 DOI: 10.3390/ani12223088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
American mink fur is an important economic product, but the molecular mechanisms underlying its color formation and fur development remain unclear. We used RNA-seq to analyze the skin transcriptomes of young and adult mink with two different hair colors. The mink comprised black adults (AB), white adults (AW), black juveniles (TB), and white juveniles (TW) (three each). Through pair comparison and cross-screening among different subgroups, we found that 13 KRTAP genes and five signaling pathways (the JAK-STAT signaling pathway (cfa04630), signaling pathways regulating pluripotency of stem cells (cfa04550), ECM-receptor interaction (cfa04512), focal adhesion (cfa04510), and the Ras signaling pathway (cfa04014)) were related to mink fur development. We also found that members of a tyrosinase family (TYR, TYRP1, and TYRP2) are involved in mink hair color formation. The expression levels of TYR were higher in young black mink than in young white mink, but this phenomenon was not observed in adult mink. Our study found significant differences in adult and juvenile mink skin transcriptomes, which may shed light on the mechanisms of mink fur development. At the same time, the skin transcriptomes of black and white mink also showed differences, with the results varying by age, suggesting that the genes regulating hair color are active in early development rather than in adulthood. The results of this study provide molecular support in breeding for mink coat color and improving fur quality.
Collapse
Affiliation(s)
- Lidong Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Shengyang Zhou
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guangshuai Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Tianshu Lyu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yuehuan Dong
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Shangbin He
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
8
|
Kalds P, Zhou S, Gao Y, Cai B, Huang S, Chen Y, Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet Sel Evol 2022; 54:61. [PMID: 36085023 PMCID: PMC9463822 DOI: 10.1186/s12711-022-00753-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After domestication, the evolution of phenotypically-varied sheep breeds has generated rich biodiversity. This wide phenotypic variation arises as a result of hidden genomic changes that range from a single nucleotide to several thousands of nucleotides. Thus, it is of interest and significance to reveal and understand the genomic changes underlying the phenotypic variation of sheep breeds in order to drive selection towards economically important traits. REVIEW Various traits contribute to the emergence of variation in sheep phenotypic characteristics, including coat color, horns, tail, wool, ears, udder, vertebrae, among others. The genes that determine most of these phenotypic traits have been investigated, which has generated knowledge regarding the genetic determinism of several agriculturally-relevant traits in sheep. In this review, we discuss the genomic knowledge that has emerged in the past few decades regarding the phenotypic traits in sheep, and our ultimate aim is to encourage its practical application in sheep breeding. In addition, in order to expand the current understanding of the sheep genome, we shed light on research gaps that require further investigation. CONCLUSIONS Although significant research efforts have been conducted in the past few decades, several aspects of the sheep genome remain unexplored. For the full utilization of the current knowledge of the sheep genome, a wide practical application is still required in order to boost sheep productive performance and contribute to the generation of improved sheep breeds. The accumulated knowledge on the sheep genome will help advance and strengthen sheep breeding programs to face future challenges in the sector, such as climate change, global human population growth, and the increasing demand for products of animal origin.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, 45511 Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100 China
| | - Yawei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs, Yangling, 712100 China
| |
Collapse
|
9
|
Anello M, Daverio MS, Di Rocco F. Genetics of coat color and fiber production traits in llamas and alpacas. Anim Front 2022; 12:78-86. [PMID: 35974792 PMCID: PMC9374512 DOI: 10.1093/af/vfac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Melina Anello
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET-UNLP-CIC, La Plata, Argentina
| | - María Silvana Daverio
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET-UNLP-CIC, La Plata, Argentina
| | - Florencia Di Rocco
- Laboratorio de Genética Molecular, Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET-UNLP-CIC, La Plata, Argentina
| |
Collapse
|
10
|
Gong G, Fan Y, Li W, Yan X, Yan X, Zhang L, Wang N, Chen O, Zhang Y, Wang R, Liu Z, Jiang W, Li J, Wang Z, Lv Q, Su R. Identification of the Key Genes Associated with Different Hair Types in the Inner Mongolia Cashmere Goat. Animals (Basel) 2022; 12:ani12111456. [PMID: 35681921 PMCID: PMC9179306 DOI: 10.3390/ani12111456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The Inner Mongolia cashmere goat is an excellent local breed in China. According to the characteristics of wool quilts, the Inner Mongolia cashmere goat can be divided into three types: a long-hair type (hair length of >22 cm), a short-hair type (hair length of ≤13 cm), and an intermediate type (hair length of >13 cm and ≤22 cm). It is found that hair length has a certain reference value for the indirect selection of other important economic traits of cashmere. In order to explore the molecular mechanisms and related regulatory genes of the different hair types, a weighted gene coexpression network analysis (WGCNA) was carried out on the gene expression data and phenotypic data of 12-month-old Inner Mongolia cashmere goats with a long-hair type (LHG) and a short-hair type (SHG) to explore the coexpression modules related to different coat types and nine candidate genes, and detect the relative expression of key candidate genes. The results showed that the WGCNA divided these genes into 19 coexpression modules and found that there was a strong correlation between one module and different hair types. The expression trends of this module’s genes were different in the two hair types, with high expression in the LHG and low expression in the SHG. GO functions are mainly concentrated in cellular components, including intermediate filaments (GO:0005882), intermediate filament cytoskeletons (GO:0045111), and cytoskeletal parts (GO:0044430). The KEGG pathway is mainly enriched in arginine as well as proline metabolism (chx00330) and the MAPK signaling pathway (chx04010). The candidate genes of the different hair types, including the KRT39, KRT74, LOC100861184, LOC102177231, LOC102178767, LOC102179881, LOC106503203, LOC108638293, and LOC108638298 genes, were screened. Through qRT-PCR, it was found that there were significant differences in these candidate genes between the two hair types, and most of them had a significant positive correlation with hair length. It was preliminarily inferred that these candidate genes could regulate the different hair types of cashmere goats and provide molecular markers for hair growth.
Collapse
Affiliation(s)
- Gao Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Yixing Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Wenze Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaochun Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Xiaomin Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ludan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Na Wang
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Oljibilig Chen
- Inner Mongolia Yiwei White Cashmere Goat Co., Ltd., Hohhot 010018, China; (N.W.); (O.C.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Wei Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.G.); (W.L.); (X.Y.); (X.Y.); (L.Z.); (Y.Z.); (R.W.); (Z.L.); (W.J.); (J.L.); (Z.W.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (Q.L.); (R.S.)
| |
Collapse
|
11
|
Saif R, Mahmood T, Ejaz A, Zia S. Pathway enrichment and network analysis of differentially expressed genes in pashmina goat. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
The susceptibility of disulfide bonds to modification in keratin fibres undergoing tensile stress. Biophys J 2022; 121:2168-2179. [PMID: 35477858 DOI: 10.1016/j.bpj.2022.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cysteine residues perform a dual role in mammalian hairs. The majority help stabilise the overall assembly of keratins and their associated proteins, but a proportion of inter-molecular disulfide bonds are assumed to be associated with hair mechanical flexibility. Hair cortical microstructure is hierarchical, with a complex macro-molecular organisation resulting in arrays of intermediate filaments at a scale of micrometres. Intermolecular disulfide bonds occur within filaments and between them and the surrounding matrix. Wool fibres provide a good model for studying various contributions of differently situated disulfide bonds to fibre mechanics. Within this context it is not known if all intermolecular disulfide bonds contribute equally, and, if not, then do the disproportionally involved cysteine residues occur at common locations on proteins. In this study, fibres from Romney sheep were subjected to stretching or to breaking point under wet or dry conditions to detect, through labelling, disulfide bonds that were broken more often than randomly. We found that some cysteines were labelled more often than randomly and that these vary with fibre water content (water disrupts protein-protein hydrogen bonds). Many of the identified cysteine residues were located close to the terminal ends of keratins (head or tail domains) and keratin-associated proteins (KAPs). Some cysteines in the head and tail domains of type II keratin K85 were labelled in all experimental conditions. When inter-protein hydrogen bonds were disrupted under wet conditions, disulfide labelling occurred in the head domains of type II keratins, likely affecting keratin-KAP interactions, and tail domains of the type I keratins, likely affecting keratin-keratin interactions. In contrast, in dry fibres (containing more protein-protein hydrogen bonding) disulfide labelling was also observed in the central domains of affected keratins. This central "rod" region is associated with keratin-keratin interactions between anti-parallel heterodimers in the tetramer of the intermediate filament.
Collapse
|
13
|
Qin Y, Xu Y, Zhang Y, Gu M, Cai W, Bai Z, Zhang X, Chen R, Sun Y, Wu Y, Wang Z. Transcriptomics analysis of cashmere fineness functional genes. Anim Biotechnol 2022:1-11. [PMID: 35253626 DOI: 10.1080/10495398.2022.2042306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Liaoning cashmere goat (LCG) is a famous cashmere goat breed in China. Cashmere fineness, as an important index to evaluate cashmere quality, is also one of the problems to be improved for Liaoning cashmere goats. Transcriptome studies all mRNA transcribed by a specific tissue or cell in a certain period. It is a key link in the study of gene expression regulation. It plays an important role in the analysis of biological growth and disease. Transcriptome is spatio-temporal specific, that is, gene expression varies in different tissues or at different times. Three coarser and three fine LCG skin samples were sequenced by RNA-seq technology, and a total of 427 differentially expressed genes were obtained, including 291 up-regulated genes and 136 down-regulated genes. In the experiment, we screened out 16 genes that had significant differences in the expression of coarse and fine cashmere of Liaoning cashmere goats, so it was inferred that these 16 genes might have regulatory effects on cashmere fineness. Moreover, GO gene set enrichment analysis revealed that differential genes mainly consist of immune response, MHC protein complex, Heme binding and other pathways. KEGG analysis showed that transplant-versus-host disease and allograft rejection were the main pathways of differential genes.
Collapse
Affiliation(s)
- Yuting Qin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanan Xu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yu Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ming Gu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Weidong Cai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zhixian Bai
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xinjiang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Rui Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinggang Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yanzhi Wu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zeying Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Lv X, Chen W, Wang S, Cao X, Yuan Z, Getachew T, Mwacharo JM, Haile A, Sun W. Integrated Hair Follicle Profiles of microRNAs and mRNAs to Reveal the Pattern Formation of Hu Sheep Lambskin. Genes (Basel) 2022; 13:genes13020342. [PMID: 35205386 PMCID: PMC8872417 DOI: 10.3390/genes13020342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Hair follicle development is closely associated with wool curvature. Current studies reveal the crucial role of microRNAs (miRNAs) in hair follicle growth and development. However, few studies are known regarding their role in wool curvature. To reveal the potential roles of miRNAs in Hu sheep lambskin with different patterns, a total of 37 differentially expressed (DE) miRNAs were identified in hair follicles between small waves (SM) and straight wool (ST) groups using RNA-seq. Through functional enrichment and miRNA-mRNA co-expression analysis, some key miRNAs (oar-miR-143, oar-miR-200b, oar-miR-10a, oar-miR-181a, oar-miR-10b, oar-miR-125b, etc.) and miRNA-mRNA pairs (miR-125b target CD34, miR-181a target FGF12, LMO3, miR-200b target ZNF536, etc.) were identified. Though direct or indirect ways affecting hair follicle development, these miRNAs and mRNAs may have possible effects on wool curvature, and this study thus provides valuable insight on potential pattern formation.
Collapse
Affiliation(s)
- Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.); (Z.Y.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (S.W.)
- Correspondence: ; Tel.: +86-139-5275-0912
| |
Collapse
|
15
|
Chen Y, He D, Li Y, Luo F, Zhang M, Wang J, Chen L, Tao J. A study of the phosphorylation proteomic skin characteristics of Tan sheep during the newborn and er-mao stages. Trop Anim Health Prod 2021; 54:30. [PMID: 34964062 PMCID: PMC8714624 DOI: 10.1007/s11250-021-02899-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/10/2021] [Indexed: 12/01/2022]
Abstract
In this experiment, in order to study the formation mechanism of the lamb fur of Tan sheep, skin samples were collected from Tan sheep at the newborn and er-mao stages. Then, the phosphorylated proteomes of the skin samples of Tan sheep at the two different stages were compared and analyzed using a TMT labeled quantitative phosphorylation proteomic technique. A total of 2806 phosphorylated proteins were identified, including 8184 phosphorylation sites. The results of this study’s quantitative analysis showed that when compared with the skin samples at the er-mao stage, the phosphorylation levels of 171 sites had been upregulated in the skin samples at newborn stage. Meanwhile, 125 sites had been downregulated at the same stage. As shown by the results of the functional enrichment analysis of the differentially phosphorylated proteins, they had been mainly enriched in the cysteine and methionine metabolism. In addition, the phosphorylation levels of KAP4.7 and KAP13.1 had also varied during the different skin stages. These results indicated that the cysteine metabolism pathways, as well as the phosphorylation modifications of the keratin associated proteins in the skin, played important roles in the formation of the er-mao stage fur of the Tan sheep. Therefore, the findings of this study provided a new angle for interpreting the formation mechanism of er-mao stage fur properties.
Collapse
Affiliation(s)
- Yonghong Chen
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Dongqian He
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yachao Li
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Fang Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Meng Zhang
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Junkui Wang
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Liyao Chen
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Jinzhong Tao
- Agricultural College, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
16
|
Plowman JE, Harland DP, Richena M, Thomas A, Hefer CA, van Koten C, Scobie DR, Grosvenor AJ. Wool fiber curvature is correlated with abundance of K38 and specific keratin-associated proteins. Proteins 2021; 90:973-981. [PMID: 34859500 DOI: 10.1002/prot.26289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/08/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Curvature in mammalian fibers, such as wool and human hair, is an important feature of the functional trait of coat structure-it affects mechanical resilience and thermo-insulation. However, to examine the relationship between fiber curvature, ultrastructure and protein composition fiber diameter variability has to be minimal. To achieve this we utilised the progeny of straight-wool domestic sheep mutant rams (crimp mutants) and wild-type ewes. Proteomic and structural results of the resulting mutant/wild-type twin pairs confirmed that straight crimp mutant wool had a normal cuticle and the same cortical protein and ultrastructural building blocks as wild-type (crimpy) fibers but differed in the layout of its cortical cells and in the relative proportions of keratin (K) and keratin-associated proteins (KAPs). In the case of the crimp mutants (straight fibers), the orthocortex was distributed in a fragmented, annular ring, with some orthocortical cells near the central medulla, a pattern similar to that of straight hairs from humans and other mammals. Crimp mutant fibers were noted for the reduced abundance of some proteins in the high glycine-tyrosine class normally associated with the orthocortex, specifically the KAP6, KAP7, and KAP8 families, while proteins from the KAP16 and KAP19 were found in increased abundance. In addition to this, the type I keratin, K38, which is also associated with the orthocortex, was also found at lower abundance in the mutant fibers. Conversely, proteins from the ultra-high sulfur class normally associated with the paracortex, specifically the KAP4 and KAP9 families, were found in higher abundance.
Collapse
Affiliation(s)
| | | | - Marina Richena
- Proteins and Metabolites, AgResearch, Lincoln, New Zealand
| | - Ancy Thomas
- Proteins and Metabolites, AgResearch, Lincoln, New Zealand
| | | | | | - David R Scobie
- Proteins and Metabolites, AgResearch, Lincoln, New Zealand
| | | |
Collapse
|
17
|
The Complexity of the Ovine and Caprine Keratin-Associated Protein Genes. Int J Mol Sci 2021; 22:ijms222312838. [PMID: 34884644 PMCID: PMC8657448 DOI: 10.3390/ijms222312838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Sheep (Ovis aries) and goats (Capra hircus) have, for more than a millennia, been a source of fibres for human use, be it for use in clothing and furnishings, for insulation, for decorative and ceremonial purposes, or for combinations thereof. While use of these natural fibres has in some respects been superseded by the use of synthetic and plant-based fibres, increased accounting for the carbon and water footprint of these fibres is creating a re-emergence of interest in fibres derived from sheep and goats. The keratin-associated proteins (KAPs) are structural components of wool and hair fibres, where they form a matrix that cross-links with the keratin intermediate filaments (KIFs), the other main structural component of the fibres. Since the first report of a complete KAP protein sequence in the late 1960s, considerable effort has been made to identify the KAP proteins and their genes in mammals, and to ascertain how these genes and proteins control fibre growth and characteristics. This effort is ongoing, with more and more being understood about the structure and function of the genes. This review consolidates that knowledge and suggests future directions for research to further our understanding.
Collapse
|
18
|
Gao WZ, Xue HL, Yang JC. Proteomics analysis of the secondary hair follicle cycle in Liaoning cashmere goat. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Yamamoto M, Sakamoto Y, Honda Y, Koike K, Nakamura H, Matsumoto T, Ando S. De novo filament formation by human hair keratins K85 and K35 follows a filament development pattern distinct from cytokeratin filament networks. FEBS Open Bio 2021; 11:1299-1312. [PMID: 33605551 PMCID: PMC8091587 DOI: 10.1002/2211-5463.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
In human hair follicles, the hair‐forming cells express 16 hair keratin genes depending on the differentiation stages. K85 and K35 are the first hair keratins expressed in cortical cells at the early stage of the differentiation. Two types of mutations in the gene encoding K85 are associated with ectodermal dysplasia of hair and nail type. Here, we transfected cultured SW‐13 cells with human K85 and K35 genes and characterized filament formation. The K85–K35 pair formed short filaments in the cytoplasm, which gradually elongated and became thicker and entangled around the nucleus, indicating that K85–K35 promotes lateral association of short intermediate filaments (IFs) into bundles but cannot form IF networks in the cytoplasm. Of the K85 mutations related to ectodermal dysplasia of hair and nail type, a two‐nucleotide (C1448T1449) deletion (delCT) in the protein tail domain of K85 interfered with the K85–K35 filament formation and gave only aggregates, whereas a missense mutation (233A>G) that replaces Arg78 with His (R78H) in the head domain of K85 did not interfere with the filament formation. Transfection of cultured MCF‐7 cells with all the hair keratin gene combinations, K85–K35, K85(R78H)–K35 and K85(delCT)–K35, as well as the individual hair keratin genes, formed well‐developed cytoplasmic IF networks, probably by incorporating into the endogenous cytokeratin IF networks. Thus, the unique de novo assembly properties of the K85–K35 pair might play a key role in the early stage of hair formation.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yasuko Sakamoto
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Yuko Honda
- Faculty of Medicine, Saga University, Japan
| | - Kenzo Koike
- Hair Care Research Center, KAO Corporation, Tokyo, Japan
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Science, Sojo University, Kumamoto, Japan
| | | | - Shoji Ando
- Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| |
Collapse
|
20
|
Ghoreishifar SM, Rochus CM, Moghaddaszadeh-Ahrabi S, Davoudi P, Salek Ardestani S, Zinovieva NA, Deniskova TE, Johansson AM. Shared Ancestry and Signatures of Recent Selection in Gotland Sheep. Genes (Basel) 2021; 12:genes12030433. [PMID: 33802939 PMCID: PMC8002741 DOI: 10.3390/genes12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Gotland sheep, a breed native to Gotland, Sweden (an island in the Baltic Sea), split from the Gute sheep breed approximately 100 years ago, and since, has probably been crossed with other breeds. This breed has recently gained popularity, due to its pelt quality. This study estimates the shared ancestors and identifies recent selection signatures in Gotland sheep using 600 K single nucleotide polymorphism (SNP) genotype data. Admixture analysis shows that the Gotland sheep is a distinct breed, but also has shared ancestral genomic components with Gute (~50%), Karakul (~30%), Romanov (~20%), and Fjällnäs (~10%) sheep breeds. Two complementary methods were applied to detect selection signatures: A Bayesian population differentiation FST and an integrated haplotype homozygosity score (iHS). Our results find that seven significant SNPs (q-value < 0.05) using the FST analysis and 55 significant SNPs (p-value < 0.0001) using the iHS analysis. Of the candidate genes that contain significant markers, or are in proximity to them, we identify several belongings to the keratin genes, RXFP2, ADCY1, ENOX1, USF2, COX7A1, ARHGAP28, CRYBB2, CAPNS1, FMO3, and GREB1. These genes are involved in wool quality, polled and horned phenotypes, fertility, twining rate, meat quality, and growth traits. In summary, our results provide shared founders of Gotland sheep and insight into genomic regions maintained under selection after the breed was formed. These results contribute to the detection of candidate genes and QTLs underlying economic traits in sheep.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Christina Marie Rochus
- Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands;
| | - Sima Moghaddaszadeh-Ahrabi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tabriz Branch, Tabriz 5157944533, Iran;
| | - Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada; (P.D.); (S.S.A.)
| | - Siavash Salek Ardestani
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada; (P.D.); (S.S.A.)
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (N.A.Z.); (T.E.D.)
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia; (N.A.Z.); (T.E.D.)
| | - Anna M. Johansson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
21
|
Differentially phosphorylated proteins in the crimped and straight wool of Chinese Tan sheep. J Proteomics 2021; 235:104115. [PMID: 33460807 DOI: 10.1016/j.jprot.2021.104115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Proteins can be post-translationally modified and this can be important in the regulation of cellular processes and function. However, little is known about whether protein phosphorylation plays a role in regulating wool fibre properties. In this study, we used a chemical labelling method combined with a high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis to compare the phosphopeptides present in the wool of three Tan sheep with highly crimped wool and three Tan sheep with straighter wool. Thirty-six phosphopeptides that had differences in relative abundance between these two types of wool were identified. These peptides were derived from 28 to 33 different proteins, including two keratins (Ks) and 7 to 12 keratin-associated proteins (KAPs), with these proteins being common structural components of the wool fibre. The crimped wool had a higher relative abundance of phosphorylated K38, K72 and KAP13-x, whereas the straighter wool had a higher relative abundance of phosphorylated KAP2-1, KAP6-1, KAP4-x, KAP10-x and KAP13-y. These results confirm the phosphorylation of wool Ks and KAPs, and suggest that differential phosphorylation of Ks and KAPs may affect wool fibre crimping in Tan sheep. SIGNIFICANCE: Protein phosphorylation can alter the structural conformation and interaction of a protein, and hence affect the cellular processes that the protein undertakes. In this study, we compared the suite of phosphorylated proteins in crimped and straight wool from Chinese Tan sheep and found that some keratins and keratin-associated proteins were phosphorylated. Crimped wool had more keratin phosphorylation, while straight wool had more keratin-associated protein phosphorylation, with this suggesting that wool fibre crimping may be a regulated by phosphorylation of some wool proteins. This suggests that wool traits may be under epigenetic control and that post-translation modifications need to be considered in breeding for different wool types.
Collapse
|
22
|
Plowman JE, Harland DP, Campos AM, Rocha e Silva S, Thomas A, Vernon JA, van Koten C, Hefer C, Clerens S, de Almeida AM. The wool proteome and fibre characteristics of three distinct genetic ovine breeds from Portugal. J Proteomics 2020; 225:103853. [DOI: 10.1016/j.jprot.2020.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
|
23
|
Guo T, Han J, Yuan C, Liu J, Niu C, Lu Z, Yue Y, Yang B. Comparative proteomics reveals genetic mechanisms underlying secondary hair follicle development in fine wool sheep during the fetal stage. J Proteomics 2020; 223:103827. [PMID: 32422274 DOI: 10.1016/j.jprot.2020.103827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/01/2023]
Abstract
The aim of this study was to investigate the genetic mechanisms underlying wool production by characterizing the skin protein profile and determining the proteomic changes that occur as a consequence of development in wool-producing sheep using a label-free proteomics approach. Samples were collected at four stages during gestation (87, 96, 102, and 138 days), and every two consecutive stages were statistically compared (87 versus 96, 96 versus 102, and 102 versus 138 days). We identified 227 specific proteins in the sheep proteome that were present in all four stages, and 123 differentially abundant proteins (DAPs). We also observed that the microstructure of the secondary follicles changed significantly during the development of the fetal skin hair follicle. The screened DAPs were strictly related to metabolic and skin development pathways, and were associated with pathways such as the glycolysis/gluconeogenesis. These analyses indicated that the wool production of fine wool sheep is regulated via a variety of pathways. These findings provide an important resource that can be used in future studies of the genetic mechanisms underlying wool traits in fine wool sheep, and the identified DAPs should be further investigated as candidate markers for predicting wool traits in sheep. SIGNIFICANCE: Wool quality (fiber diameter, length, etc.) is an important economic trait of fine wool sheep that is determined by secondary follicle differentiation and re-differentiation. Secondary follicles of fine wool sheep developed from a bud (87 days), and underwent differentiation (96 days) and rapid growth (102 days) until maturity (138 days) during gestation. Comparative analysis based on differential proteomics of these four periods could provide a better understanding of the wool growth mechanism of fine wool sheep and offer novel strategies for improving fine wool quality by breeding.
Collapse
Affiliation(s)
- Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Jilong Han
- Shihezi University, Shihezi 832000, People's Republic of China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou 730050, People's Republic of China; Engineering Research Center of Sheep and Goat Breeding, CAAS, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
24
|
|
25
|
Ahlawat S, Arora R, Sharma R, Sharma U, Kaur M, Kumar A, Singh KV, Singh MK, Vijh RK. Skin transcriptome profiling of Changthangi goats highlights the relevance of genes involved in Pashmina production. Sci Rep 2020; 10:6050. [PMID: 32269277 PMCID: PMC7142143 DOI: 10.1038/s41598-020-63023-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Pashmina, the world's finest natural fiber is derived from secondary hair follicles of Changthangi goats which are domesticated in Ladakh region of Jammu and Kashmir by nomadic pastoralists. Complex epithelial-mesenchymal interactions involving numerous signal molecules and signaling pathways govern hair follicle morphogenesis and mitosis across different species. The present study involved transcriptome profiling of skin from fiber type Changthangi goats and meat type Barbari goats to unravel gene networks and metabolic pathways that might contribute to Pashmina development. In Changthangi goats, 525 genes were expressed at significantly higher levels and 54 at significantly lower levels with fold change >2 (padj < 0.05). Functional annotation and enrichment analysis identified significantly enriched pathways to be formation of the cornified envelope, keratinization and developmental biology. Expression of genes for keratins (KRTs) and keratin-associated proteins (KRTAPs) was observed to be much higher in Changthangi goats. A host of transcriptional regulator genes for hair follicle keratin synthesis such as GPRC5D, PADI3, HOXC13, FOXN1, LEF1 and ELF5 showed higher transcript abundance in Pashmina producing goats. Positive regulation of Wnt signaling pathway and negative regulation of Oncostatin M signaling pathway may be speculated to be important contributors to hair follicle development and hair shaft differentiation in Changthangi goats.
Collapse
Affiliation(s)
- Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | | | | | | |
Collapse
|
26
|
Oostendorp C, Geutjes PJ, Smit F, Tiemessen DM, Polman S, Abbawi A, Brouwer KM, Eggink AJ, Feitz WFJ, Daamen WF, van Kuppevelt TH. Sustained Postnatal Skin Regeneration Upon Prenatal Application of Functionalized Collagen Scaffolds. Tissue Eng Part A 2020; 27:10-25. [PMID: 31971880 DOI: 10.1089/ten.tea.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary closure of fetal skin in spina bifida protects the spinal cord and improves clinical outcome, but is also associated with postnatal growth malformations and spinal cord tethering. In this study, we evaluated the postnatal effects of prenatally closed full-thickness skin defects in sheep applying collagen scaffolds with and without heparin/vascular endothelial growth factor/fibroblast growth factor 2, focusing on skin regeneration and growth. At 6 months, collagen scaffold functionalized with heparin, VEGF, and FGF2 (COL-HEP/GF) resulted in a 6.9-fold increase of the surface area of the regenerated skin opposed to 1.7 × for collagen only. Epidermal thickness increased 5.7-fold at 1 month, in line with high gene expression of S100 proteins, and decreased to 2.1 at 6 months. Increased adipose tissue and reduced scaffold degradation and number of myofibroblasts were observed for COL-HEP/GF. Gene ontology terms related to extracellular matrix (ECM) organization were enriched for both scaffold treatments. In COL-HEP/GF, ECM gene expression resembled native skin. Expression of hair follicle-related genes in COL-HEP/GF was comparable to native skin, and de novo hair follicle generation was indicated. In conclusion, in utero closure of skin defects using functionalized collagen scaffolds resulted in long-term skin regeneration and growth. Functionalized collagen scaffolds that grow with the child may be useful for prenatal treatment of closure defects like spina bifida. Impact statement Prenatal closure of fetal skin in case of spina bifida prevents damage to the spinal cord. Closure of the defect is challenging and may result in postnatal growth malformations. In this study, the postnatal effects of a prenatally applied collagen scaffold functionalized with heparin and vascular endothelial growth factor (VEGF)/fibroblast growth factor (FGF) were investigated. An increase of the surface area of regenerated skin ("growing with the child") and generation of hair follicles was observed. Gene expression levels resembled those of native skin with respect to the extracellular matrix and hair follicles. Overall, in utero closure of skin defects using heparin/VEGF/FGF functionalized collagen scaffolds results in long-term skin regeneration.
Collapse
Affiliation(s)
- Corien Oostendorp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Geutjes
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Dorien M Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sjoerd Polman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aya Abbawi
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katrien M Brouwer
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alex J Eggink
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wout F J Feitz
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Lee HJ, Kwon HK, Kim HS, Kim MI, Park HJ. Hair Growth Promoting Effect of 4HGF Encapsulated with PGA Nanoparticles (PGA-4HGF) by β-Catenin Activation and Its Related Cell Cycle Molecules. Int J Mol Sci 2019; 20:E3447. [PMID: 31337050 PMCID: PMC6678797 DOI: 10.3390/ijms20143447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA)-based nanoparticles draw remarkable attention as drug delivery agents due to their controlled release characteristics, low toxicity, and biocompatibility. 4HGF is an herbal mixture of Phellinus linteus grown on germinated brown rice, Cordyceps militaris grown on germinated soybeans, Polygonum multiflorum, Ficus carica, and Cocos nucifera oil. Here, we encapsulated 4HGF within PGA-based hydrogel nanoparticles, prepared by simple ionic gelation with chitosan, to facilitate its penetration into hair follicles (HFs). In this study, we report the hair promoting activity of 4HGF encapsulated with PGA nanoparticles (PGA-4HGF) and their mechanism, compared to 4HGF alone. The average size of spherical nanoparticles was ~400 nm in diameter. Continuous release of PGA-4HGF was observed in a simulated physiological condition. As expected, PGA-4HGF treatment increased hair length, induced earlier anagen initiation, and elongated the duration of the anagen phase in C57BL/6N mice, compared with free 4HGF treatment. PGA-4HGF significantly increased dermal papilla cell proliferation and induced cell cycle progression. PGA-4HGF also significantly increased the total amount of β-catenin protein expression, a stimulator of the anagen phase, through induction of cyclinD1 and CDK4 protein levels, compared to free 4HGF treatment. Our findings underscore the potential of PGA nanocapsules to efficiently deliver 4HGF into HFs, hence promoting hair-growth. Therefore, PGA-4HGF nanoparticles may be promising therapeutic agents for hair growth disorders.
Collapse
Affiliation(s)
- Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Ha-Kyoung Kwon
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Hye Su Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Moon Il Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|
28
|
Diversity of Trichocyte Keratins and Keratin Associated Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1054:21-32. [PMID: 29797265 DOI: 10.1007/978-981-10-8195-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Wool and hair fibres are primarily composed of proteins of which the keratins and keratin associated proteins (KAPs) are the major component. Considerable diversity is known to exist within these two groups of proteins. In the case of the keratins two major families are known, of which there are 11 members in the acidic Type I family and 7 members in the neutral-basic Type II family. The KAPs are even more diverse than the keratins, with 35 families being known to exist when the KAPs found in monotremes, marsupials and other mammalian species are taken into consideration. Human hair and wool are known to have 88 and 73 KAPs respectively, though this number rises for wool when polymorphism within KAP families is included.
Collapse
|
29
|
Differences between ultrastructure and protein composition in straight hair fibres. ZOOLOGY 2019; 133:40-53. [DOI: 10.1016/j.zool.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
|
30
|
Analyses of histological and transcriptome differences in the skin of short-hair and long-hair rabbits. BMC Genomics 2019; 20:140. [PMID: 30770723 PMCID: PMC6377753 DOI: 10.1186/s12864-019-5503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hair fibre length is an important economic trait of rabbits in fur production. However, molecular mechanisms regulating rabbit hair growth have remained elusive. RESULTS Here we aimed to characterise the skin traits and gene expression profiles of short-hair and long-hair rabbits by histological and transcriptome analyses. Haematoxylin-eosin staining was performed to observe the histological structure of the skin of short-hair and long-hair rabbits. Compared to that in short-hair rabbits, a significantly longer anagen phase was observed in long-hair rabbits. In addition, by RNA sequencing, we identified 951 genes that were expressed at significantly different levels in the skin of short-hair and long-hair rabbits. Nine significantly differentially expressed genes were validated by quantitative real-time polymerase chain reaction. A gene ontology analysis revealed that epidermis development, hair follicle development, and lipid metabolic process were significantly enriched. Further, we identified potential functional genes regulating follicle development, lipid metabolic, and apoptosis as well as important pathways including extracellular matrix-receptor interaction and basal cell carcinoma pathway. CONCLUSIONS The present study provides transcriptome evidence for the differences in hair growth between short-hair and long-hair rabbits and reveals that lipid metabolism and apoptosis might constitute major factors contributing to hair length.
Collapse
|
31
|
|
32
|
Wang S, Luo Z, Zhang Y, Yuan D, Ge W, Wang X. The inconsistent regulation of HOXC13 on different keratins and the regulation mechanism on HOXC13 in cashmere goat (Capra hircus). BMC Genomics 2018; 19:630. [PMID: 30139327 PMCID: PMC6107959 DOI: 10.1186/s12864-018-5011-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background During hair growth, cortical cells emerging from the proliferative follicle bulb rapidly undergo a differentiation program and synthesize large amounts of hair keratin proteins. In this process, HOXC13 is one critical regulatory factor, proved by the hair defects in HOXC13 mutant mice and HOXC13 mutant patients. However, inconsistent conclusions were drawn from previous researches regarding the regulation of HOXC13 on different keratins. Whether HOXC13 has extensive and unified regulatory role on these numerous keratins is unclear. Results In this study, firstly, RNA-seq was performed to reveal the molecular mechanism of cashmere cycle including anagen and telogen. Subsequently, combining the sequencing with qRT-PCR and immunofluorescent staining results, we found that HOXC13 showed similar expression pattern with a large proportion of keratins except for KRT1 and KRT2, which were higher in anagen compared with telogen. Then, the regulatory role of HOXC13 on different keratins was investigated using dual-luciferase reporter system and keratin promoter-GFP system by overexpressing HOXC13 in HEK 293 T cells and dermal papilla cells. Our results demonstrated that HOXC13 up-regulated the promoter activity of KRT84 and KRT38, while down-regulated the promoter activity of KRT1 and KRT2, which suggested HOXC13 had an ambivalent effect on the promoters of different KRTs. Furtherly, the regulation on HOXC13 itself was investigated. At transcriptional level, the binding sites of HOXC13 and LEF1 were found in the promoter of HOXC13. Then, through transfecting corresponding overexpression vector and dual-luciferase reporter system into dermal papilla cells, the negative-feedback regulation of HOXC13 itself and positive regulation of LEF1 on HOXC13 promoter were revealed. In addition, melatonin could significantly increase the promoter activity of HOXC13 under the concentration of 10 μM and 25 μM by adding exogenous melatonin into dermal papilla cells. At post-transcriptional level, we investigated whether chi-miR-200a could target HOXC13 through dual-luciferase reporter system. At epigenetic level, we investigated the methylation level of HOXC13 promoter at different stages including anagen, telogen and 60d of embryonic period. As a result, miR-200a and methylation were not regulatory factors of HOXC13. Interestingly, we found two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 that could deprive the regulatory function of HOXC13 on keratins without changing its protein expression. Conclusion HOXC13 had an inconsistent effect on the promoters of different keratins. Two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 deprived its function on keratin regulation. Besides, the negative-feedback regulation by HOXC13 itself and positive regulation by LEF1 and melatonin on HOXC13 promoter were revealed. This study will enrich the function of HOXC13 on keratin regulation and contribute to understand the mechanism of hair follicle differentiation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5011-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhixin Luo
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuelang Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Yuan
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Ge
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Yu Z, Plowman JE, Maclean P, Wildermoth JE, Brauning R, McEwan JC, Maqbool NJ. Ovine keratome: identification, localisation and genomic organisation of keratin and keratin-associated proteins. Anim Genet 2018; 49:361-370. [DOI: 10.1111/age.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Z. Yu
- AgResearch Ltd; Ruakura Research Centre; Private Bag 3123 Hamilton 3214 New Zealand
| | - J. E. Plowman
- AgResearch Ltd; Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
| | - P. Maclean
- AgResearch Ltd; Lincoln Research Centre; Private Bag 4749 Christchurch 8140 New Zealand
| | - J. E. Wildermoth
- AgResearch Ltd; Ruakura Research Centre; Private Bag 3123 Hamilton 3214 New Zealand
| | - R. Brauning
- AgResearch Limited; Invermay Agricultural Centre; Private Bag 50034 Mosgiel 9053 New Zealand
| | - J. C. McEwan
- AgResearch Limited; Invermay Agricultural Centre; Private Bag 50034 Mosgiel 9053 New Zealand
| | - N. J. Maqbool
- AgResearch Ltd; Ruakura Research Centre; Private Bag 3123 Hamilton 3214 New Zealand
| |
Collapse
|
34
|
Rechiche O, Plowman JE, Harland DP, Lee TV, Lott JS. Expression and purification of high sulfur and high glycine-tyrosine keratin-associated proteins (KAPs) for biochemical and biophysical characterization. Protein Expr Purif 2018; 146:34-44. [DOI: 10.1016/j.pep.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
|
35
|
Abstract
Mammalian hair fibres can be structurally divided into three main components: a cuticle, cortex and sometimes a medulla. The cuticle consists of a thin layer of overlapping cells on the surface of the fibre, constituting around 10% of the total fibre weight. The cortex makes up the remaining 86-90% and is made up of axially aligned spindle-shaped cells of which three major types have been recognised in wool: ortho, meso and para. Cortical cells are packed full of macrofibril bundles, which are a composite of aligned intermediate filaments embedded in an amorphous matrix. The spacing and three-dimensional arrangement of the intermediate filaments vary with cell type. The medulla consists of a continuous or discontinuous column of horizontal spaces in the centre of the cortex that becomes more prevalent as the fibre diameter increases.
Collapse
|
36
|
Trichocyte Keratin-Associated Proteins (KAPs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1054:71-86. [DOI: 10.1007/978-981-10-8195-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Abstract
The growth of hairs occurs during the anagen phase of the follicle cycle. Hair growth begins with basement membrane-bound stem cells (mother cells) around the dermal papilla neck which continuously bud off daughter cells which further divide as a transient amplifying population. Division ceases as cell line differentiation begins, which entails changes in cell junctions, cell shape and position, and cell-line specific cytoplasmic expression of keratin and trichohyalin. As the differentiating cells migrate up the bulb, nuclear function ceases in cortex, cuticle and inner root sheath (IRS) layers. Past the top of the bulb, cell shape/position changes cease, and there is a period of keratin and keratin-associated protein (KAP) synthesis in fibre cell lines, with increases, in particular of KAP species. A gradual keratinization process begins in the cortex at this point and then non-keratin cell components are increasingly broken down. Terminal cornification, or hardening, is associated with water loss and precipitation of keratin. In the upper follicle, the hair, now in its mature form, detaches from the IRS, which is then extracted of material and becomes fragmented to release the fibre. Finally, the sebaceous and sudoriferous (if present) glands coat the fibre in lipid-rich material and the fibre emerges from the skin. This chapter follows the origin of the hair growth in the lower bulb and traces the development of the various cell lines.
Collapse
|
38
|
Abstract
The evolution of keratins was closely linked to the evolution of epithelia and epithelial appendages such as hair. The characterization of keratins in model species and recent comparative genomics studies have led to a comprehensive scenario for the evolution of keratins including the following key events. The primordial keratin gene originated as a member of the ancient gene family encoding intermediate filament proteins. Gene duplication and changes in the exon-intron structure led to the origin of type I and type II keratins which evolved further by nucleotide sequence modifications that affected both the amino acid sequences of the encoded proteins and the gene expression patterns. The diversification of keratins facilitated the emergence of new and epithelium type-specific properties of the cytoskeleton. In a common ancestor of reptiles, birds, and mammals, a rise in the number of cysteine residues facilitated extensive disulfide bond-mediated cross-linking of keratins in claws. Subsequently, these cysteine-rich keratins were co-opted for an additional function in epidermal follicular structures that evolved into hair, one of the key events in the evolution of mammals. Further diversification of keratins occurred during the evolution of the complex multi-layered organisation of hair follicles. Thus, together with the evolution of other structural proteins, epithelial patterning mechanisms, and development programmes, the evolution of keratins underlied the evolution of the mammalian integument.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Fraser RDB, Parry DAD. Structural Hierarchy of Trichocyte Keratin Intermediate Filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1054:57-70. [PMID: 29797268 DOI: 10.1007/978-981-10-8195-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although trichocyte keratins (hair, wool, quill, claw) have been studied since the 1930s it is only over the last 30 years or so that major advances have been made in our understanding of the complex structural hierarchy of the filamentous component of this important filament-matrix composite. A variety of techniques, including amino acid sequence analysis, computer modelling, X-ray fibre diffraction and protein crystallography, various forms of electron microscopy, and crosslinking methods have now combined to reveal much of the structural detail. The heterodimeric structure of the keratin molecule is clear, as are the highly-specific modes by which these molecules aggregate to form functionally viable IF. The observation that hair keratin can adopt not one but two structurally-distinct conformations, one formed in the living cells at the base of the hair follicle in a reducing environment and the second in the fully differentiated hair in dead cells in an oxidized state, was unexpected but has major implications for the mechanism of hair growth. Insights have also been made into the mechanism of the uppermost level of hair superstructure, relating to the assembly of the IF in the paracortical and orthocortical macrofibrils.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,, Tewantin, QLD, Australia
| | - David A D Parry
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand. .,Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
40
|
Plowman JE, Woods JL, van Schaijik B, Harland DP. Preparation of wool follicles for proteomic studies. Anal Biochem 2017; 539:8-10. [DOI: 10.1016/j.ab.2017.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/27/2017] [Accepted: 08/27/2017] [Indexed: 11/16/2022]
|
41
|
Wang J, Che L, Hickford JGH, Zhou H, Hao Z, Luo Y, Hu J, Liu X, Li S. Identification of the Caprine Keratin-Associated Protein 20-2 (KAP20-2) Gene and Its Effect on Cashmere Traits. Genes (Basel) 2017; 8:genes8110328. [PMID: 29149036 PMCID: PMC5704241 DOI: 10.3390/genes8110328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 01/27/2023] Open
Abstract
The gene encoding the high glycine/tyrosine keratin-associated protein 20-2 (KAP20-2) gene has been described in humans, but has not been identified in any livestock species. A search for similar sequences in the caprine genome using the human KAP20-2 gene (KRTAP20-2) revealed a homologous sequence on chromosome 1. Three different banding patterns representing distinct sequences (A–C) in Longdong cashmere goats were identified using polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analysis. These sequences shared high sequence similarity with the human and mouse KRTAP20-2 sequences, suggesting that A–C are caprine variants of the human and mouse genes. Four single nucleotide polymorphisms (SNPs) were identified, and three of them were non-synonymous. KRTAP20-2 was found to be expressed in secondary hair follicles, but not in heart, liver, lung, kidney, spleen, or longissimus dorsi muscle. The presence of A was associated with increased cashmere fibre weight, while the presence of B was associated with a decrease in cashmere fibre weight and curly fibre length. Goats with genotype AA had a higher cashmere fibre weight and a higher curly fibre length than those with genotypes AB or BB. These results indicate that caprine KRTAP20-2 variation may have value as a genetic marker for improving cashmere fibre weight.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Longjie Che
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- International Wool Research Institute, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
42
|
Sulayman A, Tursun M, Sulaiman Y, Huang X, Tian K, Tian Y, Xu X, Fu X, Mamat A, Tulafu H. Association analysis of polymorphisms in six keratin genes with wool traits in sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:775-783. [PMID: 29103286 PMCID: PMC5933973 DOI: 10.5713/ajas.17.0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 10/22/2017] [Indexed: 12/27/2022]
Abstract
Objective The purpose of this study was to investigate the genetic effects of six keratin (KRT) genes on the wool traits of 418 Chinese Merino (Xinjiang type) (CMXT) individuals. Methods To explore the effects and association of six KRT genes on sheep wool traits, The polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP), DNA sequencing, and the gene pyramiding effect methods were used. Results We report 20 mutation sites (single-nucleotide polymorphisms) within the six KRT genes, in which twelve induced silent mutations; five induced missense mutations and resulted in Ile→Thr, Glu→Asp, Gly→Ala, Ala→Ser, Se→His; two were nonsense mutations and one was a same-sense mutation. Association analysis showed that two genotypes of the KRT31 gene were significantly associated with fiber diameter (p<0.05); three genotypes of the KRT36 gene were significantly associated with wool fineness score and fiber diameter (p<0.05), three genotypes of the KRT38 gene were significantly associated with the number of crimps (p< 0.05); and three genotypes of the KRT85 gene were significantly associated with wool crimps score, body size, and fiber diameter (p<0.05). Analysis of the gene pyramiding effect between the different genotypes of the gene loci KRT36, KRT38, and KRT85, each genotype in a gene locus was combined with all the genotypes of another two gene loci and formed the different three loci combinations, indicated a total of 26 types of possible combined genotypes in the analyzed population. Compared with the other combined genotypes, the combinations CC-GG-II, CC-HH-IJ, CC-HH-JJ, DD-HH-JJ, CC-GH-IJ, and CC-GH-JJ at gene loci KRT36, KRT38, and KRT85, respectively, had a greater effect on wool traits (p<0.05). Conclusion Our results indicate that the mutation loci of KRT31, KRT36, KRT38, and KRT85 genes, as well as the combinations at gene loci KRT36, KRT38, and KRT85 in CMXT have significant effects on wool traits, suggesting that these genes are important candidate genes for wool traits, which will contribute to sheep breeding and provide a molecular basis for improved wool quality in sheep.
Collapse
Affiliation(s)
- Ablat Sulayman
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Mahira Tursun
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Animal Husbandry and Veterinary Institute, Wen Quan, Boertala, Xinjiang 833400, China
| | - Yiming Sulaiman
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Kechuan Tian
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Yuezhen Tian
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Xinming Xu
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Xuefeng Fu
- Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Amat Mamat
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.,Xinjiang Academy of Animal Science, Urumqi 830000, China
| | | |
Collapse
|
43
|
A comparison of transcriptomic patterns measured in the skin of Chinese fine and coarse wool sheep breeds. Sci Rep 2017; 7:14301. [PMID: 29085060 PMCID: PMC5662721 DOI: 10.1038/s41598-017-14772-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022] Open
Abstract
We characterised wool traits, and skin gene expression profiles of fine wool Super Merino (SM) and coarse wool Small Tail Han (STH) sheep. SM sheep had a significantly higher total density of wool follicles, heavier fleeces, finer fibre diameter, and increased crimp frequency, staple length and wool grease (lanolin) production. We found 435 genes were expressed at significantly different levels in the skin of the two breeds (127 genes more highly in SM and 308 genes more highly in STH sheep). Classification of the genes more highly expressed in SM sheep revealed numerous lipid metabolic genes as well as genes encoding keratins, keratin-associated proteins, and wool follicle stem cell markers. In contrast, mammalian epidermal development complex genes and other genes associated with skin cornification and muscle function were more highly expressed in STH sheep. Genes identified in this study may be further evaluated for inclusion in breeding programs, or as targets for therapeutic or genetic interventions, aimed at altering wool quality or yield. Expression of the lipid metabolic genes in the skin of sheep may be used as a novel trait with the potential to alter the content or properties of lanolin or the fleece.
Collapse
|
44
|
The Study on Biological Function of Keratin 26, a Novel Member of Liaoning Cashmere Goat Keratin Gene Family. PLoS One 2016; 11:e0168015. [PMID: 27997570 PMCID: PMC5173340 DOI: 10.1371/journal.pone.0168015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022] Open
Abstract
In our research, we explored the relationship between Keratin 26 and the regulation of fine hair, BMP signaling pathway, MT, FGF5, and IGF-I. The result of hybridization in situ revealed that Keratin 26 was specially expressed in cortex of skin hair follicles; the result of immunohistochemistry indicated that Keratin 26 was expressed in internal root sheath, external root sheath. Then, Real-time quantitative PCR results showed that relative expressive quantity of Keratin 26 was 1.08 or 3.3 × greater in secondary follicle than primary follicle during anagen or catagen; the difference during anagen was not remarkable (p>0.05), however, that of catagen was extremely significant (p<0.01). Relative expressive quantity of Keratin 26 increased during telogen; the difference was extremely significant (p<0.01). Moreover, after Noggin expression interference using RNAi technology, we found that relative expressive quantity of Keratin 26 extremely remarkably declined (p<0.01); after K26 overexpression, we found that relative expressive quantity of Noggin extremely remarkably increased (p<0.01). We detected expressive quantity change of Keratin 26 and Keratin 26 using Real-time quantitative PCR and immunofluorescence technologies after fibroblasts were treated with MT, FGF5 or IGF-I; the results indicated that MT and FGF5 played a positive role in Keratin 26 and Keratin 26 expression, IGF-I played a negative role in Keratin 26 expression, positive role in Keratin 26 expression. The results above showed that Keratin 26 could inhibit cashmere growth, and was related to entering to catagen and telogen of hair follicles; Keratin 26 and BMP signaling pathway were two antagonistic pathways each other which could inhibit growth and development of cashmere; MT, FGF5 and IGF-I could affect expression of Keratin 26 and Keratin 26, and Keratin 26 was one of the important pathways that MT induced cashmere production in advance, FGF5 regulated cashmere growth and IGF-I promoted cashmere growth and development.
Collapse
|
45
|
Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating Cosmetics. COSMETICS 2016. [DOI: 10.3390/cosmetics3030026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
46
|
Gong H, Zhou H, Forrest RHJ, Li S, Wang J, Dyer JM, Luo Y, Hickford JGH. Wool Keratin-Associated Protein Genes in Sheep-A Review. Genes (Basel) 2016; 7:E24. [PMID: 27240405 PMCID: PMC4929423 DOI: 10.3390/genes7060024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/03/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022] Open
Abstract
The importance of sheep's wool in making textiles has inspired extensive research into its structure and the underlying genetics since the 1960s. Wool keratin-associated proteins (KAPs) are a key structural component of the wool fibre. The characterisation of the genes encoding these proteins has progressed rapidly with advances in the nucleotide and protein sequencing. This review describes our knowledge of ovine KAPs, their categorisation into families, polymorphism in the proteins and genes, the clustering and chromosomal location of the genes, some characteristics of gene expression and some potential effects of the KAPs on wool traits. The extent and nature of genetic variation in wool KAP genes and its association with fibre characteristics, provides an opportunity for the development of gene-markers for selective breeding of sheep to produce better wool with properties highly matched to specific end-uses.
Collapse
Affiliation(s)
- Hua Gong
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Huitong Zhou
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Rachel H J Forrest
- Faculty of Health and Sport Sciences, Eastern Institute of Technology, Private Bag 1201, Napier 4142, New Zealand.
| | - Shaobin Li
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiqing Wang
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jolon M Dyer
- Food & Bio-Based Products, Lincoln Research Centre, AgResearch Limited, Lincoln 7608, New Zealand.
| | - Yuzhu Luo
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- International Wool Research Institute, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- Gene-marker Laboratory, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
47
|
Gao Y, Wang X, Yan H, Zeng J, Ma S, Niu Y, Zhou G, Jiang Y, Chen Y. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats. PLoS One 2016; 11:e0151118. [PMID: 26959817 PMCID: PMC4784850 DOI: 10.1371/journal.pone.0151118] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cashmere goat skin contains two types of hair follicles (HF): primary hair follicles (PHF) and secondary hair follicles (SHF). Although multiple genetic determinants associated with HF formation have been identified, the molecules that determine the independent morphogenesis of HF in cashmere goats remain elusive. The growth and development of SHF directly influence the quantity and quality of cashmere production. Here, we report the transcriptome profiling analysis of nine skin samples from cashmere goats using 60- and 120-day-old embryos (E60 and E120, respectively), as well as newborns (NB), through RNA-sequencing (RNA-seq). HF morphological changes indicated that PHF were initiated at E60, with maturation from E120, while differentiation of SHF was identified at E120 until formation of cashmere occurred after birth (NB). The RNA-sequencing analysis generated over 20.6 million clean reads from each mRNA library. The number of differentially expressed genes (DEGs) in E60 vs. E120, E120 vs. NB, and E60 vs. NB were 1,024, 0 and 1,801, respectively, indicating that no significant differences were found at transcriptomic levels between E120 and NB. Key genes including B4GALT4, TNC, a-integrin, and FGFR1, were up-regulated and expressed in HF initiation from E60 to E120, while regulatory genes such as GPRC5D, PAD3, HOXC13, PRR9, VSIG8, LRRC15, LHX2, MSX-2, and FOXN1 were up-regulated and expressed in HF keratinisation and hair shaft differentiation from E120 and NB to E60. Several genes belonging to the KRT and KRTAP gene families were detected throughout the three HF developmental stages. The transcriptional trajectory analyses of all DEGs indicated that immune privilege, glycosaminoglycan biosynthesis, extracellular matrix receptor interaction, and growth factor receptors all played dominant roles in the epithelial-mesenchymal interface and HF formation. We found that the Wnt, transforming growth factor-beta/bone morphogenetic protein, and Notch family members played vital roles in HF differentiation and maturation. The DEGs we found could be attributed to the generation and development of HF, and thus will be critically important for improving the quantity and quality of fleece production in animals for fibres.
Collapse
Affiliation(s)
- Ye Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science, Yulin University, Yulin, People’s Republic of China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Hailong Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- College of Life Science, Yulin University, Yulin, People’s Republic of China
| | - Jie Zeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Sen Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
MICKINNON AJ, HARLAND PD, WOODS LJ. Relating Self-assembly to Spatio-temporal Keratin Expression in the Wool Follicle. ACTA ACUST UNITED AC 2016. [DOI: 10.4188/jte.62.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - L Joy WOODS
- Institute of Fundamental Sciences, Massey University
| |
Collapse
|
49
|
Abstract
Gel and gel-free proteomic techniques have been used for the first time to directly study the proteins present in whole wool follicles and dissected portions of follicles that correlated with morphological changes in the developing fibre as determined by transmission electron microscopy. Individual wool follicles were dissected into four portions designated as the bulb, elongation, keratogenous and keratinisation portions. Gel-free proteomic analysis of dissected portions from 30 follicles showed that the first keratins to appear were K31, K35 and K85, in the bulb portion. The first epithelial KAP, trichohyalin, was detected in the bulb portion and the first cortical KAP, KAP11.1 was found in the elongation portion. Other major trichocyte keratins and cortical KAPs began to appear further up the follicle in the keratogenous and keratinisation zones. These results were consistent with what has been observed from gene expression studies and correlated well with the morphological changes observed in the follicle. Other proteins detected by this approach included the keratin anchor protein desmoplakin, as well as vimentin and epithelial keratins, histones, ribosomal proteins and collagens. Two-dimensional electrophoretic (2DE) analysis of dissected portions of 50 follicles revealed substantial changes in the position, number and intensity of the spots of the trichocyte keratins as they progressed through the follicle zones, suggesting that they are subject to modification as a result of the keratinisation process. Also present in the 2DE maps were a number of epithelial keratins, presumably from the inner and outer root sheaths, and the dermal components.
Collapse
|
50
|
Expression profiling reveals genes involved in the regulation of wool follicle bulb regression and regeneration in sheep. Int J Mol Sci 2015; 16:9152-66. [PMID: 25915029 PMCID: PMC4463583 DOI: 10.3390/ijms16059152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 01/04/2023] Open
Abstract
Wool is an important material in textile manufacturing. In order to investigate the intrinsic factors that regulate wool follicle cycling and wool fiber properties, Illumina sequencing was performed on wool follicle bulb samples from the middle anagen, catagen and late telogen/early anagen phases. In total, 13,898 genes were identified. KRTs and KRTAPs are the most highly expressed gene families in wool follicle bulb. In addition, 438 and 203 genes were identified to be differentially expressed in wool follicle bulb samples from the middle anagen phase compared to the catagen phase and the samples from the catagen phase compared to the late telogen/early anagen phase, respectively. Finally, our data revealed that two groups of genes presenting distinct expression patterns during the phase transformation may have important roles for wool follicle bulb regression and regeneration. In conclusion, our results demonstrated the gene expression patterns in the wool follicle bulb and add new data towards an understanding of the mechanisms involved in wool fiber growth in sheep.
Collapse
|