1
|
Li D, Wang Z, Yu Q, Wang J, Wu R, Tuo Z, Yoo KH, Wusiman D, Ye L, Guo Y, Yang Y, Shao F, Shu Z, Okoli U, Cho WC, Wei W, Feng D. Tracing the Evolution of Sex Hormones and Receptor-Mediated Immune Microenvironmental Differences in Prostate and Bladder Cancers: From Embryonic Development to Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407715. [PMID: 40007149 PMCID: PMC11967776 DOI: 10.1002/advs.202407715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Indexed: 02/27/2025]
Abstract
The bladder and prostate originate from the urogenital sinus. However, bladder cancer (BC) is usually classified as an immune "hot" tumor, whereas prostate cancer (PCa) is deemed as an immune "cold" tumor according to the tumor microenvironment (TME) and clinical outcomes. To investigate the immune differences between BC and PCa, studies are compared focusing on immune regulation mediated by sex hormones and receptors to identify key genes and pathways responsible for the immune differences. From a developmental perspective, it is shown that PCa and BC activate genes and pathways similar to those in the developmental stage. During prostate development, the differential expression and function of the androgen receptor (AR) across cell types may contribute to its dual role in promoting and inhibiting immunity in different cells. Androgen deprivation therapy affects AR function in different cells within the TME, influencing immune cell infiltration and antitumor function. Additionally, estrogenα and estrogenβ exert contrasting effects in PCa and BC, which may hold the potential for modifying the "cold" and "hot" tumor phenotypes. Future research should target key genes and pathways involved in bladder development to clarify the immune regulatory similarities and differences between BC and PCa.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhipeng Wang
- Department of UrologySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610041China
| | - Qingxin Yu
- Department of pathologyNingbo Clinical Pathology Diagnosis CenterNingbo CityZhejiang Province315211China
| | - Jie Wang
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Ruicheng Wu
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Zhouting Tuo
- Department of Urological SurgeryDaping HospitalArmy Medical Center of PLAArmy Medical UniversityChongqing404100China
| | - Koo Han Yoo
- Department of UrologyKyung Hee UniversitySeoul04510South Korea
| | - Dilinaer Wusiman
- Department of Comparative PathobiologyCollege of Veterinary MedicinePurdue UniversityWest LafayetteIN47907USA
- Purdue Institute for Cancer ResearchPurdue UniversityWest LafayetteIN47907USA
| | - Luxia Ye
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yiqing Guo
- Department of Public Research PlatformTaizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000China
| | - Yubo Yang
- Department of UrologyThree Gorges HospitalChongqing UniversityWanzhouChongqing404000China
| | - Fanglin Shao
- Department of RehabilitationThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Ziyu Shu
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education)Chongqing UniversityChongqing400045China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
- Basic and Translational Cancer Research GroupDepartment of Pharmacology and TherapeuticsCollege of MedicineUniversity of NigeriaEnugu StateNsukka410001Eastern part of Nigeria
| | - William C. Cho
- Department of Clinical OncologyQueen Elizabeth HospitalHong KongSAR999077China
| | - Wuran Wei
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
| | - Dechao Feng
- Department of UrologyInstitute of UrologyWest China HospitalSichuan UniversityChengdu610041China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
2
|
Hoseini ZS, Zeinalilathori S, Fathi-karkan S, Zeinali S, Rahdar A, Siddiqui B, Kharaba Z, Pandey S. Cell-targeting nanomedicine for bladder cancer: A cellular bioengineering approach for precise drug delivery. J Drug Deliv Sci Technol 2024; 101:106220. [DOI: 10.1016/j.jddst.2024.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Mann EA, Mogle MS, Park J, Reddy P. Transcription factor Tcf21 modulates urinary bladder size and differentiation. Dev Growth Differ 2024; 66:106-118. [PMID: 38197329 PMCID: PMC11457511 DOI: 10.1111/dgd.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Urinary bladder organogenesis requires coordinated cell growth, specification, and patterning of both mesenchymal and epithelial compartments. Tcf21, a gene that encodes a helix-loop-helix transcription factor, is specifically expressed in the mesenchyme of the bladder during development. Here we show that Tcf21 is required for normal development of the bladder. We found that the bladders of mice lacking Tcf21 were notably hypoplastic and that the Tcf21 mutant mesenchyme showed increased apoptosis. There was also a marked delay in the formation of visceral smooth muscle, accompanied by a defect in myocardin (Myocd) expression. Interestingly, there was also a marked delay in the formation of the basal cell layer of the urothelium, distinguished by diminished expression of Krt5 and Krt14. Our findings suggest that Tcf21 regulates the survival and differentiation of mesenchyme cell-autonomously and the maturation of the adjacent urothelium non-cell-autonomously during bladder development.
Collapse
Affiliation(s)
- Elizabeth A. Mann
- Division of Pediatric UrologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Melissa S. Mogle
- Division of Pediatric UrologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Joo‐Seop Park
- Division of Nephrology and HypertensionNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- The Feinberg Cardiovascular and Renal Research InstituteChicagoIllinoisUSA
| | - Pramod Reddy
- Division of Pediatric UrologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
4
|
Warthi G, Faulkner JL, Doja J, Ghanam AR, Gao P, Yang AC, Slivano OJ, Barris CT, Kress TC, Zawieja SD, Griffin SH, Xie X, Ashworth A, Christie CK, Bryant WB, Kumar A, Davis MJ, Long X, Gan L, de Chantemèle EJB, Lyu Q, Miano JM. Generation and Comparative Analysis of an Itga8-CreER T2 Mouse with Preferential Activity in Vascular Smooth Muscle Cells. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1084-1100. [PMID: 36424917 PMCID: PMC9681021 DOI: 10.1038/s44161-022-00162-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022]
Abstract
All current smooth muscle cell (SMC) Cre mice similarly recombine floxed alleles in vascular and visceral SMCs. Here, we present an Itga8-CreER T2 knock-in mouse and compare its activity with a Myh11-CreER T2 mouse. Both Cre drivers demonstrate equivalent recombination in vascular SMCs. However, Myh11-CreER T2 mice, but not Itga8-CreER T2 mice, display high activity in visceral SMC-containing tissues such as intestine, show early tamoxifen-independent activity, and produce high levels of CreERT2 protein. Whereas Myh11-CreER T2 -mediated knockout of serum response factor (Srf) causes a lethal intestinal phenotype precluding analysis of the vasculature, loss of Srf with Itga8-CreER T2 (Srf Itga8 ) yields viable mice with no evidence of intestinal pathology. Male and female Srf Itga8 mice exhibit vascular contractile incompetence, and angiotensin II causes elevated blood pressure in wild type, but not Srf Itga8 , male mice. These findings establish the Itga8-CreER T2 mouse as an alternative to existing SMC Cre mice for unfettered phenotyping of vascular SMCs following selective gene loss.
Collapse
Affiliation(s)
- Ganesh Warthi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jessica L. Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Jaser Doja
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Amr R. Ghanam
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Pan Gao
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Allison C. Yang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Orazio J. Slivano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Candee T. Barris
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Taylor C. Kress
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Scott D. Zawieja
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Susan H. Griffin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Xiaoling Xie
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158
| | - Christine K. Christie
- Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - William B. Bryant
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Ajay Kumar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Michael J. Davis
- Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Xiaochun Long
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | | | - Qing Lyu
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
- Biomedical and Health Institute, Chongqing Institute of Green and Intelligence Technology, Chongqing, China 400714
- Chongqing General Hospital, Chongqing, China 401147
| | - Joseph M. Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| |
Collapse
|
5
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
6
|
Zhang H, Xu S, He D, Wang X, Zhu G. Spatiotemporal Expression of SHH/GLI Signaling in Human Fetal Bladder Development. Front Pediatr 2021; 9:765255. [PMID: 35004540 PMCID: PMC8727552 DOI: 10.3389/fped.2021.765255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Sonic hedgehog (SHH) signaling is important in bladder development. Mice with defective hedgehog signaling develop bladder anomalies. Clinically, urinary tract malformations are reported in human fetuses and infants with mutations of SHH and related signaling pathway genes. Information on the expression of SHH and associated signaling genes in normal human bladder development is fragmentary. This study determined the temporal and spatial expression patterns of SHH signaling pathway components in human fetal bladders by immunohistochemistry (IHC). Material and Methods: Twenty-four bladder specimens from 16 male and 8 female human fetuses aged 12- to 36-week (wk) were obtained from the First Affiliated Hospital of Xi'an Jiaotong University. The tissue slides were processed for IHC staining with SHH, Patched1 (PTC-1), Patched2 (PTC-2), Smoothened (SMO), GLI1 and proliferating cell nuclear antigen (PCNA). The expression levels of each gene were analyzed by semi-quantitative histological scoring system. Results: High intensity of SHH and SMO expression was detected in developing bladder urothelial cells, with no staining in lamina propria (LP), but with minimal expression of SMO in differentiating smooth muscle (SM) layers. The spatial distribution pattern of PTC1 and GLI1 was more complex with minimal expression in the LP layer, moderate expression in the SM layer, and high expression in the urothelium. PTC2 expression was mainly localized in the urothelium and LP, but no expression in the SM layer. All of the SHH signaling components were detected in fetal bladder tissues throughout the development, with expression peaks at 12- and 23-wk, coinciding with high cell proliferation as indicated by PCNA staining in the cell nuclei of urothelium and SM. Conclusions: The autocrine SHH signaling in the developing urothelium, and paracrine SHH signaling in the developing smooth muscle layer, mediated by SMO, PTC-1 and GLI1 were demonstrated during human bladder development. Expression of SHH signaling components peaked at 12-and 23-wk. The first expression peak at 12-wk may relate to urothelium growth, SM induction, and dilation of the bladder cavity. The second expression peaked at 23-wk may relate to urothelium and SM layer differentiation.
Collapse
Affiliation(s)
- Haibao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Nakajima T, Sakai N, Nogimura M, Tomooka Y. Developmental mechanisms regulating the formation of smooth muscle layers in the mouse uterus†. Biol Reprod 2020; 103:750-759. [DOI: 10.1093/biolre/ioaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Uterine smooth muscle cells differentiate from mesenchymal cells, and gap junctions connect the muscle cells in the myometrium. At the neonatal stage, a uterine smooth muscle layer is situated away from the epithelium when smooth muscle cells are grafted near the epithelium, suggesting that the epithelium plays an important role in differentiation, proliferation, and/or migration of smooth muscle cells. In this study, developmental mechanisms regulating the formation of the smooth muscle layers in the mouse uterus were analyzed using an in vitro culture model. Differentiation of smooth muscle cells occurs at a neonatal stage because ACTA2 gene expression was increased at the outer layer, and GJA1 was not expressed in cellular membranes of uterine smooth muscle cells by postnatal day 15. To analyze the effects of the epithelium on the differentiation of smooth muscle cells, a bulk uterine mesenchymal cell line was established from p53−/− mice at postnatal day 3 (P3US cells). Co-culture with Müllerian ductal epithelial cells (E1 cells) induced repulsive migration of ACTA2-positive cells among bulk P3US cells from E1 cells, but it had no effects on the migration of any of 100% ACTA2-positive or negative smooth muscle cell lines cloned from P3US cells. Thus, uterine epithelial cells indirectly affected the repulsive migration of smooth muscle cells via mesenchymal cells. Conditioned medium by E1 cells inhibited differentiation into smooth muscle cells of clonal cells established from P3US cells. Therefore, the uterine epithelium inhibits the differentiation of stem-like progenitor mesenchymal cells adjacent to the epithelium into smooth muscle cells.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Sakai
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Miho Nogimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
8
|
Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L, Tabin CJ. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell 2020; 179:90-105.e21. [PMID: 31539501 DOI: 10.1016/j.cell.2019.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
The gastrointestinal tract is enveloped by concentric and orthogonally aligned layers of smooth muscle; however, an understanding of the mechanisms by which these muscles become patterned and aligned in the embryo has been lacking. We find that Hedgehog acts through Bmp to delineate the position of the circumferentially oriented inner muscle layer, whereas localized Bmp inhibition is critical for allowing formation of the later-forming, longitudinally oriented outer layer. Because the layers form at different developmental stages, the muscle cells are exposed to unique mechanical stimuli that direct their alignments. Differential growth within the early gut tube generates residual strains that orient the first layer circumferentially, and when formed, the spontaneous contractions of this layer align the second layer longitudinally. Our data link morphogen-based patterning to mechanically controlled smooth muscle cell alignment and provide a mechanistic context for potentially understanding smooth muscle organization in a wide variety of tubular organs.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - L Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
10
|
Adamowicz J, Van Breda S, Tyloch D, Pokrywczynska M, Drewa T. Application of amniotic membrane in reconstructive urology; the promising biomaterial worth further investigation. Expert Opin Biol Ther 2018; 19:9-24. [PMID: 30521409 DOI: 10.1080/14712598.2019.1556255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In reconstructive urology, autologous tissues such as intestinal segments, skin, and oral mucosa are used. Due to their limitations, reconstructive urologists are waiting for a novel material, which would be suitable for urinary tract wall replacement. Human amniotic membrane (AM) is a naturally derived biomaterial with a capacity to support reepithelization and inhibit scar formation. AM has a potential to become a considerable asset for reconstructive urology, i.e., reconstruction of ureters, urinary bladder, and urethrae. Areas covered: This review aims to discuss the potential application of human AM in reconstructive urology. The environment for urinary tract healing is particularly unfavorable due to the presence of urine. Due to its fetal origin, the bioactivity of AM is orientated to induce intrinsic regeneration mechanisms and inhibit scarring. This review introduces the concept of applying human AM in reconstructive urology procedures to improve their outcomes and future tissue engineering based strategies. Expert opinion: Many fields of medicine that have accomplished translational research have proven the usefulness of AM in clinical practice. There is an urgent need for studies to be conducted on large animal models that might convincingly demonstrate the underestimated potential of AM to urologists around the world.
Collapse
Affiliation(s)
- Jan Adamowicz
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Shane Van Breda
- b Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Dominik Tyloch
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Marta Pokrywczynska
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Tomasz Drewa
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| |
Collapse
|
11
|
Liaw A, Cunha GR, Shen J, Cao M, Liu G, Sinclair A, Baskin L. Development of the human bladder and ureterovesical junction. Differentiation 2018; 103:66-73. [PMID: 30236462 DOI: 10.1016/j.diff.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/13/2022]
Abstract
The urinary bladder collects urine from the kidneys and stores it until the appropriate moment for voiding. The trigone and ureterovesical junctions are key to bladder function, by allowing one-way passage of urine into the bladder without obstruction. Embryological development of these structures has been studied in multiple animal models as well as humans. In this report we review the existing literature on bladder development and cellular signalling with particular focus on bladder development in humans. The bladder and ureterovesical junction form primarily during the fourth to eighth weeks of gestation, and arise from the primitive urogenital sinus following subdivision of the cloaca. The bladder develops through mesenchymal-epithelial interactions between the endoderm of the urogenital sinus and mesodermal mesenchyme. Key signalling factors in bladder development include shh, TGF-β, Bmp4, and Fgfr2. A concentration gradient of shh is particularly important in development of bladder musculature, which is vital to bladder function. The ureterovesical junction forms from the interaction between the Wolffian duct and the bladder. The ureteric bud arises from the Wolffian duct and is incorporated into the developing bladder at the trigone. It was previously thought that the trigonal musculature developed primarily from the Wolffian duct, but it has been shown to develop primarily from bladder mesenchyme. Following emergence of the ureters from the Wolffian ducts, extensive epithelial remodelling brings the ureters to their final trigonal positions via vitamin A-induced apoptosis. Perturbation of this process is implicated in clinical obstruction or urine reflux. Congenital malformations include ureteric duplication and bladder exstrophy.
Collapse
Affiliation(s)
- Aron Liaw
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Ge Liu
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA 94143, United States.
| |
Collapse
|
12
|
Development of contractile properties in the fetal porcine urinary bladder. Pediatr Res 2018; 83:148-155. [PMID: 28976496 DOI: 10.1038/pr.2017.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/03/2017] [Accepted: 07/18/2017] [Indexed: 11/08/2022]
Abstract
BackgroundIn early fetal life, the bladder is merely a conduit allowing urine to pass through freely into the amniotic cavity. As the striated external urethral sphincter evolves, the bladder acquires its reservoir and voiding functions. We characterized the myogenic and neurogenic contractions of the normal fetal porcine bladder from midterm until close to full-term gestation.MethodsContractile responses were measured in vitro using bladder strips from fetuses at 60 (N=23) and 100 days (N=21) of gestation. Spontaneous activity, and the responses to potassium chloride (KCl) solution, electrical field stimulation (EFS), and receptor activation were recorded. The smooth muscle content was evaluated histologically.ResultsHistological studies revealed that the fractional content of smooth muscle doubled between the two time points, and passive tension was adjusted to take that into account. Spontaneous activity was regular at 60 days, changing toward an irregular pattern at 100 days. Contractile force elicited by KCl and carbachol increased significantly with gestational age, while contractions to the purinergic agonist, α-β-methylene adenosine 5'-triphosphate did not. The responses to EFS were almost completely blocked by atropine.ConclusionSpontaneous myogenic contractions become irregular and contractile responses to muscarinic receptor stimulation increase during gestation, as the bladder reservoir and voiding functions develop.
Collapse
|
13
|
Gurdziel K, Vogt KR, Walton KD, Schneider GK, Gumucio DL. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev Dyn 2016; 245:614-26. [PMID: 26930384 DOI: 10.1002/dvdy.24399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Digestion is facilitated by coordinated contractions of the intestinal muscularis externa, a bilayered smooth muscle structure that is composed of inner circular muscles (ICM) and outer longitudinal muscles (OLM). We performed transcriptome analysis of intestinal mesenchyme tissue at E14.5, when the ICM, but not the OLM, is present, to investigate the transcriptional program of the ICM. RESULTS We identified 3967 genes enriched in E14.5 intestinal mesenchyme. The gene expression profiles were clustered and annotated to known muscle genes, identifying a muscle-enriched subcluster. Using publically available in situ data, 127 genes were verified as expressed in ICM. Examination of the promoter and regulatory regions for these co-expressed genes revealed enrichment for cJUN transcription factor binding sites, and cJUN protein was enriched in ICM. cJUN ChIP-seq, performed at E14.5, revealed that cJUN regulatory regions contain characteristics of muscle enhancers. Finally, we show that cJun is a target of Hedgehog (Hh), a signaling pathway known to be important in smooth muscle development, and identify a cJun genomic enhancer that is responsive to Hh. CONCLUSIONS This work provides the first transcriptional catalog for the developing ICM and suggests that cJun regulates gene expression in the ICM downstream of Hh signaling. Developmental Dynamics 245:614-626, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine Gurdziel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109
| | - Kyle R Vogt
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Katherine D Walton
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Gary K Schneider
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
14
|
Jerman UD, Kreft ME, Veranič P. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:521-30. [PMID: 26066408 DOI: 10.1089/ten.teb.2014.0678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
15
|
Georgas KM, Armstrong J, Keast JR, Larkins CE, McHugh KM, Southard-Smith EM, Cohn MJ, Batourina E, Dan H, Schneider K, Buehler DP, Wiese CB, Brennan J, Davies JA, Harding SD, Baldock RA, Little MH, Vezina CM, Mendelsohn C. An illustrated anatomical ontology of the developing mouse lower urogenital tract. Development 2015; 142:1893-908. [PMID: 25968320 DOI: 10.1242/dev.117903] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/01/2015] [Indexed: 01/10/2023]
Abstract
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation.
Collapse
Affiliation(s)
- Kylie M Georgas
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jane Armstrong
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine E Larkins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Kirk M McHugh
- Centre for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital and Division of Anatomy, The Ohio State University, Columbus, OH 43205/10, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA Howard Hughes Medical Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Hanbin Dan
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Kerry Schneider
- Columbia University, Department of Urology, New York, NY 10032, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jane Brennan
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jamie A Davies
- Center for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Simon D Harding
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Baldock
- MRC Human Genetics Unit, MRC IGMM, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chad M Vezina
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, USA
| | - Cathy Mendelsohn
- Columbia University, Department of Urology, New York, NY 10032, USA
| |
Collapse
|
16
|
Hedgehog signaling in prostate epithelial-mesenchymal growth regulation. Dev Biol 2015; 400:94-104. [PMID: 25641695 DOI: 10.1016/j.ydbio.2015.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 12/24/2022]
Abstract
The prostate gland plays an important role in male reproduction, and is also an organ prone to diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. The prostate consists of ducts with an inner layer of epithelium surrounded by stroma. Reciprocal signaling between these two cell compartments is instrumental to normal prostatic development, homeostasis, regeneration, as well as tumor formation. Hedgehog (HH) signaling is a master regulator in numerous developmental processes. In many organs, HH plays a key role in epithelial-mesenchymal signaling that regulates organ growth and tissue differentiation, and abnormal HH signaling has been implicated in the progression of various epithelial carcinomas. In this review, we focus on recent studies exploring the multipotency of endogenous postnatal and adult epithelial and stromal stem cells and studies addressing the role of HH in prostate development and cancer. We discuss the implications of the results for a new understanding of prostate development and disease. Insight into the cellular and molecular mechanisms underlying epithelial-mesenchymal growth regulation should provide a basis for devising innovative therapies to combat diseases of the prostate.
Collapse
|
17
|
Favorito LA, Pazos HM, Costa SF, Costa WS, Sampaio FJ. Morphology of the fetal bladder during the second trimester: comparing genders. J Pediatr Urol 2014; 10:1014-9. [PMID: 25434295 DOI: 10.1016/j.jpurol.2014.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/06/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of the present study was to determine, by histological and stereological analysis, whether there are between-gender structural differences in the bladder in the second gestational trimester in human fetuses. MATERIAL AND METHODS Forty bladders, which were obtained from 40 human fetuses (20 males and 20 females) ranging in age from 13 to 23 weeks post-conception (WPC), were studied. The fetuses were macroscopically well preserved, without anomalies of the urinary and genital systems; the cases with syndromes were abandoned. The bladders were dissected and embedded in paraffin, from which 5-μm thick sections were obtained and stained with: Masson's trichrome, to quantify connective and smooth muscle tissue; Weigert's resorcin fuchsin, to observe elastic fibers; picrosirius red with polarization, to observe collagen; and anti-beta III tubulin antibody, to observe the bladder nerves. The images were captured with an Olympus BX51 microscope and Olympus DP70 camera. The stereological analysis was performed with the Image Pro and Image J programs, using a grid to determine volumetric densities (Vv). Means were statistically compared using simple linear regression and the paired t-test (P<0.05). RESULTS The fetuses weighed between 60 and 490 g, and had crown-rump lengths between 9.5 and 20.4 cm. No elastic system fibers were observed in any bladders. Quantitative analysis indicated no differences in the Vv of the smooth muscle cells in the male bladders (26.19-50.16%; mean=35.66%) compared to the female ones (30.60-45.63%; mean=38.73%) (P=0.740) and there were also no differences in the Vv of the connective tissue in females (40.52-60.40%; mean=50.69%) and males (38.84-70.16%; mean=57.04%) (P=0.0506). There were no differences observed in the distribution of the nerves and collagen between the genders. CONCLUSION The histological analysis of the smooth muscle, collagen, nerves and connective tissue of the developing bladders revealed that there are no gender differences during weeks 13-23 of gestation.
Collapse
Affiliation(s)
- L A Favorito
- Urogenital Research Unit, State University of Rio de Janeiro, Brazil.
| | - H M Pazos
- Urogenital Research Unit, State University of Rio de Janeiro, Brazil.
| | - S F Costa
- Urogenital Research Unit, State University of Rio de Janeiro, Brazil.
| | - W S Costa
- Urogenital Research Unit, State University of Rio de Janeiro, Brazil.
| | - F J Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
19
|
Mahfuz I, Darling T, Wilkins S, White S, Cheng W. New insights into the pathogenesis of bladder exstrophy-epispadias complex. J Pediatr Urol 2013; 9:996-1005. [PMID: 23743131 DOI: 10.1016/j.jpurol.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 05/01/2013] [Indexed: 02/02/2023]
Abstract
Bladder exstrophy-epispadias complex (BEEC) is a complex and debilitating congenital disease. Familial and twin studies suggest a possible genetic component in BEEC pathogenesis. Bladder mesenchyme (detrusor) development requires induction by a signal from bladder urothelium, and we and others have shown the Shh-Gli-Bmp4 signalling pathway is likely to be involved. P63 is a master regulator in epithelial stratification and is expressed in urothelium. We have shown that p63 knock-out mice undergo excessive urothelial apoptosis. Failure of mesenchymal induction by epithelium leads to BEEC. We further demonstrated that insertion/deletion (in/del) polymorphisms (1 base pair (bp) ins and 4 bp ins., and 12 bp del) in the ΔNP63 promoter reduce transcriptional efficiency, and are associated with a statistically significant increase in the risk of BEEC in humans. Furthermore, a Genome-Wide Expression Profiling (GWEP) study suggests possible involvement of PERP in human BEEC. Intriguingly, PERP is a direct target of p63 during development, and is also involved in epithelial stratification. PERP co-localizes with desmosome, and both PERP and desmosome are essential for maintaining tissue integrity by cellular adhesion and epithelial stratification. A recent study showed that PERP and desmosome expression levels are abnormal in human BEEC patients. This review describes the role of the P63 > PERP > desmosome pathway in the development of human bladder during embryogenesis. We hypothesize that disruption of this pathway may increase the risk of BEEC.
Collapse
Affiliation(s)
- Istiak Mahfuz
- Monash Institute of Medical Research, Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
| | | | | | | | | |
Collapse
|
20
|
Novel immunohistochemical data indicate that the female foetal urethra is more than an epithelial tube. Ann Anat 2013; 195:586-95. [DOI: 10.1016/j.aanat.2013.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/21/2022]
|
21
|
Reprogramming Stromal Cells from the Urinary Tract and Prostate: A Trip to Pluripotency and Back? Eur Urol 2013; 64:762-4; discussion 764-5. [DOI: 10.1016/j.eururo.2013.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 05/02/2013] [Indexed: 01/06/2023]
|
22
|
Pechriggl EJ, Bitsche M, Blumer MJ, Fritsch H. The male urethra: Spatiotemporal distribution of molecular markers during early development. Ann Anat 2013; 195:260-71. [DOI: 10.1016/j.aanat.2013.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 02/03/2023]
|
23
|
Bone morphogenetic protein 4 mediates estrogen-regulated sensory axon plasticity in the adult female reproductive tract. J Neurosci 2013; 33:1050-61a. [PMID: 23325243 DOI: 10.1523/jneurosci.1704-12.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral axons are structurally plastic even in the adult, and altered axon density is implicated in many disorders and pain syndromes. However, mechanisms responsible for peripheral axon remodeling are poorly understood. Physiological plasticity is characteristic of the female reproductive tract: vaginal sensory innervation density is low under high estrogen conditions, such as term pregnancy, whereas density is high in low-estrogen conditions, such as menopause. We exploited this system in rats to identify factors responsible for adult peripheral neuroplasticity. Calcitonin gene-related peptide-immunoreactive sensory innervation is distributed primarily within the vaginal submucosa. Submucosal smooth muscle cells express bone morphogenetic protein 4 (BMP4). With low estrogen, BMP4 expression was elevated, indicating negative regulation by this hormone. Vaginal smooth muscle cells induced robust neurite outgrowth by cocultured dorsal root ganglion neurons, which was prevented by neutralizing BMP4 with noggin or anti-BMP4. Estrogen also prevented axon outgrowth, and this was reversed by exogenous BMP4. Nuclear accumulation of phosphorylated Smad1, a primary transcription factor for BMP4 signaling, was high in vagina-projecting sensory neurons after ovariectomy and reduced by estrogen. BMP4 regulation of innervation was confirmed in vivo using lentiviral transduction to overexpress BMP4 in an estrogen-independent manner. Submucosal regions with high virally induced BMP4 expression had high innervation density despite elevated estrogen. These findings show that BMP4, an important factor in early nervous system development and regeneration after injury, is a critical mediator of adult physiological plasticity as well. Altered BMP4 expression may therefore contribute to sensory hyperinnervation, a hallmark of several pain disorders, including vulvodynia.
Collapse
|
24
|
Hicks AN, Campeau L, Burmeister D, Bishop CE, Andersson KE. Lack of nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2): consequences for mouse bladder development and function. Neurourol Urodyn 2013; 32:1130-6. [PMID: 23371862 DOI: 10.1002/nau.22372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/12/2012] [Indexed: 11/09/2022]
Abstract
AIMS To describe the morphological and functional consequences for bladder development and function when nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) is lacking or reduced. METHODS The Bloated Bladder (Blad) mouse, lacking Nmnat2, and heterozygotes were utilized for this investigation. Morphology and development of the bladder were studied using immunohistochemistry against urothelial, smooth muscle, and nerve markers. Functional effects were assessed by organ bath experiments and cystometry. RESULTS Homozygote mutants were malformed and died at birth, whereas heterozygotes survived and morphologically did not differ from wild-type controls. Morphological bladder changes appeared in the Blad mutants as early as embryonic day 15.5 (E15.5) with an extremely distended bladder at E18.5. Staining revealed that all the bladder layers were present and expressed mature markers in all three genotypes. No nerves could be demonstrated by immunohistochemistry in the Blad mutant bladder at E18.5. Organ bath analysis showed that bladders from Blad mutant showed signs of denervation supersensitivity in response to carbachol, and no response to electrical stimulation of nerves at E18.5. Adult heterozygotes, which have a reduced expression of Nmnat2 at E18.5, showed decreased responses to carbachol and electrical stimulation compared to wild-type controls. The latter also retained their ability to empty their bladders, but showed increased micturition pressures compared to controls. CONCLUSIONS Complete loss of Nmnat2 leads to a mature but distended bladder in utero and is not compatible with survival. Moderate loss of Nmnat2 has no effect on bladder development, survival, and has only modest effects on bladder function later in life.
Collapse
Affiliation(s)
- Amy N Hicks
- Wake Forest Institute for Regenerative Medicine, Winston Salem, North Carolina
| | | | | | | | | |
Collapse
|
25
|
DeSouza KR, Saha M, Carpenter AR, Scott M, McHugh KM. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development. PLoS One 2013; 8:e53675. [PMID: 23308271 PMCID: PMC3538723 DOI: 10.1371/journal.pone.0053675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we examined the expression of Sonic Hedgehog, Patched, Gli1, Gli2, Gli3 and Myocardin in the developing bladders of male and female normal and megabladder (mgb-/-) mutant mice at embryonic days 12 through 16 by in situ hybridization. This analysis indicated that each member of the Sonic Hedgehog signaling pathway as well as Myocardin displayed distinct temporal and spatial patterns of expression during normal bladder development. In contrast, mgb-/- bladders showed both temporal and spatial changes in the expression of Patched, Gli1 and Gli3 as well as a complete lack of Myocardin expression. These changes occurred primarily in the outer mesenchyme of developing mgb-/- bladders consistent with the development of an amuscular bladder phenotype in these animals. These results provide the first comprehensive analysis of the Sonic Hedgehog signaling pathway during normal bladder development and provide strong evidence that this key signaling cascade is critical in establishing radial patterning in the developing bladder. In addition, the lack of detrusor smooth muscle development observed in mgb-/- mice is associated with bladder-specific temporospatial changes in Sonic Hedgehog signaling coupled with a lack of Myocardin expression that appears to result in altered patterning of the outer mesenchyme and poor initiation and differentiation of smooth muscle cells within this region of the developing bladder.
Collapse
Affiliation(s)
- Kristin R DeSouza
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America.
| | | | | | | | | |
Collapse
|
26
|
Peyton CC, Burmeister D, Petersen B, Andersson KE, Christ G. Characterization of the early proliferative response of the rodent bladder to subtotal cystectomy: a unique model of mammalian organ regeneration. PLoS One 2012; 7:e47414. [PMID: 23077610 PMCID: PMC3470577 DOI: 10.1371/journal.pone.0047414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/14/2012] [Indexed: 02/02/2023] Open
Abstract
Subtotal cystectomy (STC; surgical removal of ∼75% of the rat urinary bladder) elicits a robust proliferative response resulting in complete structural and functional bladder regeneration within 8-weeks. The goal of these studies was to characterize the early cellular response that mediates this regenerative phenomenon, which is unique among mammalian organ systems. STC was performed on eighteen 12-week-old female Fischer F344 rats. At 1, 3, 5 and 7-days post-STC, the bladder was harvested 2-hours after intraperitoneal injection of bromodeoxyuridine (BrdU). Fluorescent BrdU labeling was quantified in cells within the urothelium, lamina propria (LP), muscularis propria (MP) and serosa. Cell location was confirmed with fluorescently co-labeled cytokeratin, vimentin or smooth muscle actin (SMA), to identify urothelial, interstitial and smooth muscle cells, respectively. Expression of sonic hedgehog (Shh), Gli-1 and bone morphogenic factor-4 (BMP-4) were evaluated with immunochemistry. Three non-operated rats injected with BrdU served as controls. Less than 1% of cells in the bladder wall were labeled with BrdU in control bladders, but this percentage significantly increased by 5-8-fold at all time points post-STC. The spatiotemporal characteristics of the proliferative response were defined by a significantly higher percentage of BrdU-labeled cells within the urothelium at 1-day than in the MP and LP. A time-dependent shift at 3 and 5-days post-STC revealed significantly fewer BrdU-labeled cells in the MP than LP or urothelium. By 7-days the percentage of BrdU-labeled cells was similar among urothelium, LP and MP. STC also caused an increase in immunostaining for Shh, Gli-1 and BMP-4. In summary, the early stages of functional bladder regeneration are characterized by time-dependent changes in the location of the proliferating cell population, and expression of several evolutionarily conserved developmental signaling proteins. This report extends previous observations and further establishes the rodent bladder as an excellent model for studying novel aspects of mammalian organ regeneration.
Collapse
Affiliation(s)
- Charles C. Peyton
- Department of Urology, Wake Forest Baptist Medical Center, Winston Salem, North Carolina, United States of America
| | - David Burmeister
- Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, United States of America
| | - Bryon Petersen
- Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, United States of America
| | - Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, United States of America
| | - George Christ
- Institute for Regenerative Medicine, Wake Forest University, Winston Salem, North Carolina, United States of America
| |
Collapse
|
27
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
28
|
Tolg C, Bägli DJ. Uropathogenic Escherichia coli infection: potential importance of epigenetics. Epigenomics 2012; 4:229-35. [PMID: 22449193 DOI: 10.2217/epi.12.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Patients suffering from recurrent urinary tract infections (UTIs) may be maintained on antibiotic prophylaxis, or even treated by surgery. However, there are no biological data on which to base such treatment selection for the individual patient. This highlights the need for a biological marker that might predict UTI recurrence risk. Infection of mammalian tissues with bacteria, viruses and other pathogens results in the modification of the host cell epigenome, particularly DNA methylation. We recently demonstrated that in vitro infection of bladder uroepithelial cells with uropathogenic Escherichia coli results in hypermethylation of the tumor suppressor gene CDKN2A, providing proof-of-concept that uropathogenic E. coli infection modulates the host cell epigenome. If postinfection persistence of UTI-induced uroepithelial DNA hypermethylation were to be associated with subsequent UTI propensity, these epigenetic marks could act as a potential biomarker for UTI recurrence risk and could be used to rationalize and improve treatment of patients with infection-associated uropathies.
Collapse
Affiliation(s)
- Cornelia Tolg
- Division of Urology, Developmental & Stem Cell Biology, Hospital for Sick Children, Research Institute, Institute of Medical Sciences, University of Toronto, 555 University Av., M5G 1X8 Toronto, ON, Canada
| | | |
Collapse
|
29
|
Justewicz DM, Shokes JE, Reavis B, Boyd SA, Burnette TB, Halberstadt CR, Spencer T, Ludlow JW, Bertram TA, Jain D. Characterization of the human smooth muscle cell secretome for regenerative medicine. Tissue Eng Part C Methods 2012; 18:797-816. [PMID: 22530582 DOI: 10.1089/ten.tec.2012.0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Smooth muscle cells (SMC) play a central role in maintaining the structural and functional integrity of muscle tissue. Little is known about the early in vitro events that guide the assembly of 'bioartificial tissue' (constructs) and recapitulate the key aspects of smooth muscle differentiation and development before surgical implantation. Biomimetic approaches have been proposed that enable the identification of in vitro processes which allow standardized manufacturing, thus improving both product quality and the consistency of patient outcomes. One essential element of this approach is the description of the SMC secretome, that is, the soluble and deposited factors produced within the three-dimensional (3D) extracellular matrix (ECM) microenvironment. In this study, we utilized autologous SMC from multiple tissue types that were expanded ex vivo and generated with a rigorous focus on operational phenotype and genetic stability. The objective of this study was to characterize the spatiotemporal dynamics of the first week of organoid maturation using a well-defined in vitro-like, 3D-engineered scale model of our validated manufacturing process. Functional proteomics was used to identify the topological properties of the networks of interacting proteins that were derived from the SMC secretome, revealing overlapping central nodes related to SMC differentiation and proliferation, actin cytoskeleton regulation, and balanced ECM accumulation. The critical functions defined by the Ingenuity Pathway Analysis included cell signaling, cellular movement and proliferation, and cellular and organismal development. The results confirm the phenotypic and functional similarity of the SMC generated by our platform technology at the molecular level. Furthermore, these data validate the biomimetic approaches that have been established to maintain manufacturing consistency.
Collapse
Affiliation(s)
- Dominic M Justewicz
- Department of Bioprocess Research & Development, Tengion, Inc., 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 2011; 31:802-11. [PMID: 21924649 DOI: 10.1016/j.urolonc.2011.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/23/2022]
Abstract
Differentiation is defined as the ability of a cell to acquire full functional behavior. For instance, the function of bladder urothelium is to act as a barrier to the diffusion of solutes into or out of the urine after excretion by the kidney. The urothelium also serves to protect the detrusor muscle from toxins present in stored urine. A major event in the initiation and progression of bladder cancer is loss of urothelial differentiation. This is important because less differentiated urothelial tumors (higher histologic tumor grade) are typically associated with increased biologic and clinical aggressiveness. The differentiation status of urothelial carcinomas can be assessed by histopathologic examination and is reflected in the assignment of a histologic grade (low-grade or high-grade). Although typically limited to morphologic evaluation in most routine diagnostic practices, tumor grade can also be assessed using biochemical markers. Indeed, current pathological analysis of tumor specimens is increasingly reliant on molecular phenotyping. Thus, high priorities for bladder cancer research include identification of (1) biomarkers that will enable the identification of high grade T1 tumors that pose the most threat and require the most aggressive treatment; (2) biomarkers that predict the likelihood that a low grade, American Joint Committee on Cancer stage pTa bladder tumor will progress into an invasive carcinoma with metastatic potential; (3) biomarkers that indicate which pTa tumors are most likely to recur, thus enabling clinicians to prospectively identify patients who require aggressive treatment; and (4) how these markers might contribute to biological processes that underlie tumor progression and metastasis, potentially through loss of terminal differentiation. This review will discuss the proteins associated with urothelial cell differentiation, with a focus on those implicated in bladder cancer, and other proteins that may be involved in neoplastic progression. It is hoped that ongoing discoveries associated with the study of these differentiation-promoting proteins can be translated into the clinic to positively impact patient care.
Collapse
|
31
|
Bell SM, Zhang L, Mendell A, Xu Y, Haitchi HM, Lessard JL, Whitsett JA. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev Biol 2011; 358:79-90. [PMID: 21803035 DOI: 10.1016/j.ydbio.2011.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The Shh(GfpCre) transgene was used to delete the Klf5(floxed) alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra was unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-Perinatal-Pulmonary Biology, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|