1
|
Paris F, Marrazzo P, Pizzuti V, Marchionni C, Rossi M, Michelotti M, Petrovic B, Ciani E, Simonazzi G, Pession A, Bonsi L, Alviano F. Characterization of Perinatal Stem Cell Spheroids for the Development of Cell Therapy Strategy. Bioengineering (Basel) 2023; 10:bioengineering10020189. [PMID: 36829683 PMCID: PMC9952228 DOI: 10.3390/bioengineering10020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex metabolic disease characterized by a massive loss of insulin-producing cells due to an autoimmune reaction. Currently, daily subcutaneous administration of exogenous insulin is the only effective treatment. Therefore, in recent years considerable interest has been given to stem cell therapy and in particular to the use of three-dimensional (3D) cell cultures to better reproduce in vivo conditions. The goal of this study is to provide a reliable cellular model that could be investigated for regenerative medicine applications for the replacement of insulin-producing cells in T1DM. To pursue this aim we create a co-culture spheroid of amniotic epithelial cells (AECs) and Wharton's jelly mesenchymal stromal cells (WJ-MSCs) in a one-to-one ratio. The resulting co-culture spheroids were analyzed for viability, extracellular matrix production, and hypoxic state in both early- and long-term cultures. Our results suggest that co-culture spheroids are stable in long-term culture and are still viable with a consistent extracellular matrix production evaluated with immunofluorescence staining. These findings suggest that this co-culture may potentially be differentiated into endo-pancreatic cells for regenerative medicine applications in T1DM.
Collapse
Affiliation(s)
- Francesca Paris
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: (P.M.); (L.B.)
| | - Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maura Rossi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Martina Michelotti
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Biljana Petrovic
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giuliana Simonazzi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS Azienda Ospedaliero-Universitaria Sant’Orsola, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: (P.M.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Perinatal Stem Cell Therapy to Treat Type 1 Diabetes Mellitus: A Never-Say-Die Story of Differentiation and Immunomodulation. Int J Mol Sci 2022; 23:ijms232314597. [PMID: 36498923 PMCID: PMC9738084 DOI: 10.3390/ijms232314597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Human term placenta and other postpartum-derived biological tissues are promising sources of perinatal cells with unique stem cell properties. Among the massive current research on stem cells, one medical focus on easily available stem cells is to exploit them in the design of immunotherapy protocols, in particular for the treatment of chronic non-curable human diseases. Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells and perinatal cells can be harnessed both to generate insulin-producing cells for beta cell replenishment and to regulate autoimmune mechanisms via immunomodulation capacity. In this study, the strong points of cells derived from amniotic epithelial cells and from umbilical cord matrix are outlined and their potential for supporting cell therapy development. From a basic research and expert stem cell point of view, the aim of this review is to summarize information regarding the regenerative medicine field, as well as describe the state of the art on possible cell therapy approaches for diabetes.
Collapse
|
3
|
Belkozhayev AM, Al-Yozbaki M, George A, Niyazova RY, Sharipov KO, Byrne LJ, Wilson CM. Extracellular Vesicles, Stem Cells and the Role of miRNAs in Neurodegeneration. Curr Neuropharmacol 2022; 20:1450-1478. [PMID: 34414870 PMCID: PMC9881087 DOI: 10.2174/1570159x19666210817150141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
There are different modalities of intercellular communication governed by cellular homeostasis. In this review, we will explore one of these forms of communication called extracellular vesicles (EVs). These vesicles are released by all cells in the body and are heterogeneous in nature. The primary function of EVs is to share information through their cargo consisting of proteins, lipids and nucleic acids (mRNA, miRNA, dsDNA etc.) with other cells, which have a direct consequence on their microenvironment. We will focus on the role of EVs of mesenchymal stem cells (MSCs) in the nervous system and how these participate in intercellular communication to maintain physiological function and provide neuroprotection. However, deregulation of this same communication system could play a role in several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, multiple sclerosis, prion disease and Huntington's disease. The release of EVs from a cell provides crucial information to what is happening inside the cell and thus could be used in diagnostics and therapy. We will discuss and explore new avenues for the clinical applications of using engineered MSC-EVs and their potential therapeutic benefit in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayaz M. Belkozhayev
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty, Republic of Kazakhstan
- Structural and Functional Genomics Laboratory of M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
- Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Raigul Ye Niyazova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty, Republic of Kazakhstan
| | - Kamalidin O. Sharipov
- Structural and Functional Genomics Laboratory of M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Republic of Kazakhstan
| | - Lee J. Byrne
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M. Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| |
Collapse
|
4
|
Rao P, Deo D, Marchioni M. Differentiation of Human Deceased Donor, Adipose-Derived, Mesenchymal Stem Cells into Functional Beta Cells. J Stem Cells Regen Med 2021; 16:63-72. [PMID: 33414582 DOI: 10.46582/jsrm.1602010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022]
Abstract
There is an emerging need for the rapid generation of functional beta cells that can be used in cell replacement therapy for the treatment of type 1 diabetes (T1D). Differentiation of stem cells into insulin-producing cells provides a promising strategy to restore pancreatic endocrine function. Stem cells can be isolated from various human tissues including adipose tissue (AT). Our study outlines a novel, non-enzymatic process to harvest mesenchymal stem cells (MSC) from research-consented, deceased donor AT. Following their expansion, MSC were characterised morphologically and phenotypically by flow cytometry to establish their use for downstream differentiation studies. MSC were induced to differentiate into insulin-producing beta cells using a step-wise differentiation medium. The differentiation was evaluated by analysing the morphology, dithizone staining, immunocytochemistry, and expression of pancreatic beta cell marker genes. We stimulated the beta cells with different concentrations of glucose and observed a dose-dependent increase in gene expression. In addition, an increase in insulin and c-Peptide secretion as a function of glucose challenge confirmed the functionality of the differentiated beta cells. The differentiation of adipose-derived MSC into beta cells has been well established. However, our data demonstrates, for the first time, that the ready availability and properties of MSC isolated from deceased donor adipose tissue render them well-suited as a source for increased production of functional beta cells. Consequently, these cells can be a promising therapeutic approach for cell replacement therapy to treat patients with T1D.
Collapse
Affiliation(s)
- Prakash Rao
- Personalized Transplant Medicine Institute at NJ Sharing Network, New Providence, NJ, USA
| | - Dayanand Deo
- Personalized Transplant Medicine Institute at NJ Sharing Network, New Providence, NJ, USA
| | - Misty Marchioni
- Personalized Transplant Medicine Institute at NJ Sharing Network, New Providence, NJ, USA
| |
Collapse
|
5
|
Al Madhoun A, Marafie SK, Haddad D, Melhem M, Abu-Farha M, Ali H, Sindhu S, Atari M, Al-Mulla F. Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton's Jelly-Derived Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:6437. [PMID: 32899389 PMCID: PMC7503404 DOI: 10.3390/ijms21176437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are a valuable tool in stem cell research due to their high proliferation rate, multi-lineage differentiation potential, and immunotolerance properties. However, fibroblast impurity during WJ-MSCs isolation is unavoidable because of morphological similarities and shared surface markers. Here, a proteomic approach was employed to identify specific proteins differentially expressed by WJ-MSCs in comparison to those by neonatal foreskin and adult skin fibroblasts (NFFs and ASFs, respectively). Mass spectrometry analysis identified 454 proteins with a transmembrane domain. These proteins were then compared across the different cell-lines and categorized based on their cellular localizations, biological processes, and molecular functions. The expression patterns of a selected set of proteins were further confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence assays. As anticipated, most of the studied proteins had common expression patterns. However, EphA2, SLC25A4, and SOD2 were predominantly expressed by WJ-MSCs, while CDH2 and Talin2 were specific to NFFs and ASFs, respectively. Here, EphA2 was established as a potential surface-specific marker to distinguish WJ-MSCs from fibroblasts and for prospective use to prepare pure primary cultures of WJ-MSCs. Additionally, CDH2 could be used for a negative-selection isolation/depletion method to remove neonatal fibroblasts contaminating preparations of WJ-MSCs.
Collapse
Affiliation(s)
- Ashraf Al Madhoun
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Sulaiman K. Marafie
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (M.A.-F.)
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Motasem Melhem
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (S.K.M.); (M.A.-F.)
| | - Hamad Ali
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya 046302, Kuwait
| | - Sardar Sindhu
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait;
| | - Maher Atari
- Medical-Surgical Pathology Department, Regenerative Medicine Research Institute, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (M.M.); (H.A.); (F.A.-M.)
| |
Collapse
|
6
|
Functional β-Cell Differentiation of Small-Tail Han Sheep Pancreatic Mesenchymal Stem Cells and the Therapeutic Potential in Type 1 Diabetic Mice. Pancreas 2020; 49:947-954. [PMID: 32658079 DOI: 10.1097/mpa.0000000000001604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES This study aims to investigate the characteristics of sheep pancreatic mesenchymal stem cells (PSCs) and therapeutic potential of differentiated β-like cells in streptozotocin-induced diabetic mice. METHODS Pancreatic mesenchymal stem cells were isolated from 3- to 4-month-old sheep embryos, and their biological characteristics were explored. The function and therapeutic potential of differentiated β-like insulin-producing cells were also investigated in vitro and in vivo. Differentiated cells were identified through dithizone staining and immunofluorescence staining. Insulin secretion was analyzed using an enzyme-linked immunosorbent assay kit. The preliminary therapeutic potential of induced β-like cells in diabetic mice was detected by blood glucose and body weight. RESULTS Primary PSCs were isolated and subcultured up to passage 36. Immunofluorescence staining presented PSC-expressed important markers such as Pdx1, Nkx6-1, Ngn3, and Nestin. Primary PSCs could be induced into functional pancreatic β-like islet cells with a 3-step protocol. The induced β-like islet cells could ameliorate blood glucose in diabetic mice. CONCLUSIONS The method proposed for generating pancreatic islet β cells provided a preliminary phenotypic investigation of induced cell treatment in diabetic mice, and also laid a foundation in the identification of pharmaceutical targets to treat insulin-dependent diabetes.
Collapse
|
7
|
Luo Y, Cheng YW, Yu CY, Liu RM, Zhao YJ, Chen DX, Zhong JJ, Xiao JH. Effects of hyaluronic acid on differentiation of human amniotic epithelial cells and cell-replacement therapy in type 1 diabetic mice. Exp Cell Res 2019; 384:111642. [PMID: 31562862 DOI: 10.1016/j.yexcr.2019.111642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/31/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022]
Abstract
Our hypothesis is that hyaluronic acid may regulate the differentiation of human amniotic epithelial cells (hAECs) into insulin-producing cells and help the treatment of type 1 diabetes. Herein, a protocol for the stepwise in vitro differentiation of hAECs into functional insulin-producing cells was developed by mimicking the process of pancreas development. Treatment of hAECs with hyaluronic acid enhanced their differentiation of definitive endoderm and pancreatic progenitors. Endodermal markers Sox17 and Foxa2 and pancreatic progenitor markers Pax6, Nkx6.1, and Ngn3 were upregulated an enhanced gene expression in hAECs, but hAECs did not express the β cell-specific transcription factor Pdx1. Interestingly, hyaluronic acid promoted the expression of major pancreatic development-related genes and proteins after combining with commonly used inducers of stem cells differentiation into insulin-producing cells. This indicated the potent synergistic effects of the combination on hAECs differentiation in vitro. By establishing a multiple injection transplantation strategy via tail vein injections, hAECs transplantation significantly reduced hyperglycemia symptoms, increased the plasma insulin content, and partially repaired the islet structure in type 1 diabetic mice. In particular, the combination of hAECs with hyaluronic acid exhibited a remarkable therapeutic effect compared to both the insulin group and the hAECs alone group. The hAECs' paracrine action and hyaluronic acid co-regulated the local immune response, improved the inflammatory microenvironment in the damaged pancreas of type 1 diabetic mice, and promoted the trans-differentiation of pancreatic α cells into β cells. These findings suggest that hyaluronic acid is an efficient co-inducer of the differentiation of hAECs into functional insulin-producing cells, and hAECs treatment with hyaluronic acid may be a promising cell-replacement therapeutic approach for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Ya-Wei Cheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Chang-Yin Yu
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Ru-Ming Liu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Yu-Jie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Dai-Xiong Chen
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China; Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
8
|
Stiner R, Alexander M, Liu G, Liao W, Liu Y, Yu J, Pone EJ, Zhao W, Lakey JRT. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res 2019; 378:155-162. [PMID: 31209568 DOI: 10.1007/s00441-019-03046-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/21/2019] [Indexed: 12/15/2022]
Abstract
In recent years, human umbilical cord blood has emerged as a rich source of stem, stromal and immune cells for cell-based therapy. Among the stem cells from umbilical cord blood, CD45+ multipotent stem cells and CD90+ mesenchymal stem cells have the potential to treat type I diabetes mellitus (T1DM), to correct autoimmune dysfunction and replenish β-cell numbers and function. In this review, we compare the general characteristics of umbilical cord blood-derived multipotent stem cells (UCB-SCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and introduce their applications in T1DM. Although there are some differences in surface marker expression between UCB-SCs and UCB-MSCs, the two cell types display similar functions such as suppressing function of stimulated lymphocytes and imparting differentiation potential to insulin-producing cells (IPCs) in the setting of low immunogenicity, thereby providing a promising and safe approach for T1DM therapy.
Collapse
Affiliation(s)
- Rachel Stiner
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA
| | - Michael Alexander
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA
| | - Guangyang Liu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA
| | - Wenbin Liao
- Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA
| | - Yongjun Liu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA
| | - Jingxia Yu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA
| | - Egest J Pone
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, 101 The City Dr S, Orange, CA, 92868, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, 101 The City Dr S, Orange, CA, 92868, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jonathan R T Lakey
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA. .,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA. .,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA.
| |
Collapse
|
9
|
Wolf DA, Beeson W, Rachel JD, Keller GS, Hanke CW, Waibel J, Leavitt M, Sacopulos M. Mesothelial Stem Cells and Stromal Vascular Fraction for Skin Rejuvenation. Facial Plast Surg Clin North Am 2018; 26:513-532. [PMID: 30213431 DOI: 10.1016/j.fsc.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of stem cells in regenerative medicine and specifically facial rejuvenation is thought provoking and controversial. Today there is increased emphasis on tissue engineering and regenerative medicine, which translates into a need for a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue is currently recognized as an accessible and abundant source for adult stem cells. Cellular therapies and tissue engineering are still in their infancy, and additional basic science and preclinical studies are needed before cosmetic and reconstructive surgical applications can be routinely undertaken and satisfactory levels of patient safety achieved.
Collapse
Affiliation(s)
- David A Wolf
- Johnson Space Center, Houston, TX, USA; EarthTomorrow, Inc, 1714 Neptune Lane, Houston, TX 77062, USA; Purdue University, West Lafayette, IN, USA
| | - William Beeson
- Facial Plastics, Indianapolis, IN, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | - Gregory S Keller
- Facial Plastics, Santa Barbara, CA, USA; Facial Plastics, Los Angeles, CA, USA
| | - C William Hanke
- Dermatology, Indianapolis, IN, USA; Laser and Skin Center of Indiana, 13400 North Meridian Street, Suite 290, Carmel, IN 46032, USA; ACGME Micrographic Surgery, Dermatologic Oncology Fellowship Training Program, St. Vincent Hospital, Indianapolis, IN, USA; University of Iowa-Carver College of Medicine, Iowa City, IA, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jill Waibel
- Dermatology, Miami Dermatology and Laser Institute, 7800 Southwest 87th Avenue, Suite B200, Miami, FL 33173, USA; Baptist Hospital of Miami, Miami, FL, USA; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matt Leavitt
- Dermatology, Orlando, FL, USA; Advanced Dermatology and Cosmetic Surgery, The Hair Foundation, 260 Lookout Place Suite 103, Maitland, FL 32751, USA; University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA; Nova Southeastern University, 4850 Millenium Boulevard, Orlando, FL 32839, USA
| | - Michael Sacopulos
- Medical Risk Management, Medical Risk Institute, 676 Ohio Street, Terre Haute, IN 47807, USA
| |
Collapse
|
10
|
El-Asfar RK, Kamal MM, Abd El-Razek RS, El-Demerdash E, El-Mesallamy HO. Obestatin can potentially differentiate Wharton's jelly mesenchymal stem cells into insulin-producing cells. Cell Tissue Res 2018; 372:91-98. [PMID: 29159483 DOI: 10.1007/s00441-017-2725-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/26/2017] [Indexed: 12/18/2022]
Abstract
In vitro-generation of β-cells from Wharton's jelly mesenchymal stem cells (WJ-MSCs) could provide a potential basis for diabetes mellitus cell therapy. However, the generation of functional insulin-producing cells (IPCs) from WJ-MSCs remains a challenge. Recently, obestatin, a gut hormone, was found to promote β-cell generation from pancreatic precursor cells. Accordingly, we hypothesize that obestatin can induce the differentiation of WJ-MSCs into IPCs. Therefore, the purpose of the current study is to examine the ability of obestatin to generate IPCs in comparison to well-known extrinsic factors that are commonly used in IPCs differentiation protocols from MSCs, namely exendin-4 and glucagon-like peptide-1 (GLP-1). To achieve our aims, WJ-MSCs were isolated, cultured and characterized by immunophenotyping and adipocytes differentiation. Afterwards, WJ-MSCs were induced to differentiate into IPCs using two differentiation protocols incorporating either exendin-4, GLP-1 or obestatin. The pancreatic progenitor marker, nestin and β-cell differentiation markers were assessed by qRT-PCR, while the functionality of the generated IPCs was assessed by glucose-stimulated insulin secretion (GSIS). Our results showed that WJ-MSCs exhibit all the characteristics of MSCs. Interestingly, using obestatin in both the short and long differentiation protocols managed to induce the expression of β-cell markers, similar to exendin-4. In GSIS, IPCs generated using either GLP-1 or obestatin showed higher secretion of insulin as compared to those generated using exendin-4 under low-glucose conditions but failed to show a significant response to increased glucose. These results indicate obestatin can be considered as a novel potential factor to consider for generation of IPCs from WJ-MSCs.
Collapse
Affiliation(s)
- Rana K El-Asfar
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rania S Abd El-Razek
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
11
|
Sordi V, Pellegrini S, Krampera M, Marchetti P, Pessina A, Ciardelli G, Fadini G, Pintus C, Pantè G, Piemonti L. Stem cells to restore insulin production and cure diabetes. Nutr Metab Cardiovasc Dis 2017; 27:583-600. [PMID: 28545927 DOI: 10.1016/j.numecd.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advancement of knowledge in the field of regenerative medicine is increasing the therapeutic expectations of patients and clinicians on cell therapy approaches. Within these, stem cell therapies are often evoked as a possible therapeutic option for diabetes, already ongoing or possible in the near future. AIM The purpose of this document is to make a point of the situation on existing knowledge and therapies with stem cells to treat patients with diabetes by focusing on some of the aspects that most frequently raise curiosity and discussion in clinical practice and in the interaction with the patient. In fact, at present there are no clinically approved treatments based on the use of stem cells for the treatment of diabetes, but several therapeutic approaches have already been evaluated or are being evaluated in clinical trials. DATA SYNTHESIS It is possible to identify three large potential application fields: 1) the reconstruction of the β cell mass; 2) the immunomodulation in type 1 diabetes (T1D); 3) the treatment of complications. In this study we will limit the discussion to approaches that have the potential for clinical translation, deliberately omitting aspects of basic biology and preclinical data. Also, we intentionally omit the treatment of the complications that will be the subject of a future document. Finally, an overview of the Italian situation regarding the storage of cord blood cells for the therapy of diabetes will be given.
Collapse
Affiliation(s)
- V Sordi
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Pellegrini
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - P Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Pessina
- CRC-StaMeTec (Mesenchymal Stem Cells for Cell Therapy), Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - G Ciardelli
- DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - G Fadini
- Medicine Department (DIMED), University of Padua, Italy
| | - C Pintus
- Italian National Transplant Center (CNT), Italy
| | - G Pantè
- Italian Medicines Agency (AIFA), Italy
| | - L Piemonti
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
12
|
Meda P. Gap junction proteins are key drivers of endocrine function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:124-140. [PMID: 28284720 DOI: 10.1016/j.bbamem.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
It has long been known that the main secretory cells of exocrine and endocrine glands are connected by gap junctions, made by a variety of connexin species that ensure their electrical and metabolic coupling. Experiments in culture systems and animal models have since provided increasing evidence that connexin signaling contributes to control the biosynthesis and release of secretory products, as well as to the life and death of secretory cells. More recently, genetic studies have further provided the first lines of evidence that connexins also control the function of human glands, which are central to the pathogenesis of major endocrine diseases. Here, we summarize the recent information gathered on connexin signaling in these systems, since the last reviews on the topic, with particular regard to the pancreatic beta cells which produce insulin, and the renal cells which produce renin. These cells are keys to the development of various forms of diabetes and hypertension, respectively, and combine to account for the exploding, worldwide prevalence of the metabolic syndrome. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Switzerland.
| |
Collapse
|
13
|
Liew LC, Katsuda T, Gailhouste L, Nakagama H, Ochiya T. Mesenchymal stem cell-derived extracellular vesicles: a glimmer of hope in treating Alzheimer’s disease. Int Immunol 2017; 29:11-19. [DOI: 10.1093/intimm/dxx002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan
- National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
14
|
Munder A, Israel LL, Kahremany S, Ben-Shabat-Binyamini R, Zhang C, Kolitz-Domb M, Viskind O, Levine A, Senderowitz H, Chessler S, Lellouche JP, Gruzman A. Mimicking Neuroligin-2 Functions in β-Cells by Functionalized Nanoparticles as a Novel Approach for Antidiabetic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1189-1206. [PMID: 28045486 PMCID: PMC6035049 DOI: 10.1021/acsami.6b10568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Both pancreatic β-cell membranes and presynaptic active zones of neurons include in their structures similar protein complexes, which are responsible for mediating the secretion of bioactive molecules. In addition, these membrane-anchored proteins regulate interactions between neurons and guide the formation and maturation of synapses. These proteins include the neuroligins (e.g., NL-2) and their binding partners, the neurexins. The insulin secretion and maturation of β-cells is known to depend on their 3-dimensional (3D) arrangement. It was also reported that both insulin secretion and the proliferation rates of β-cells increase when cells are cocultured with clusters of NL-2. Use of full-length NL-2 or even its exocellular domain as potential β-cell functional enhancers is limited by the biostability and bioavailability issues common to all protein-based therapeutics. Thus, based on molecular modeling approaches, a short peptide with the potential ability to bind neurexins was derived from the NL-2 sequence. Here, we show that the NL-2-derived peptide conjugates onto innovative functional maghemite (γ-Fe2O3)-based nanoscale composite particles enhance β-cell functions in terms of glucose-stimulated insulin secretion and protect them under stress conditions. Recruiting the β-cells' "neuron-like" secretory machinery as a target for diabetes treatment use has never been reported before. Such nanoscale composites might therefore provide a unique starting point for designing a novel class of antidiabetic therapeutic agents that possess a unique mechanism of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Liron L. Israel
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rina Ben-Shabat-Binyamini
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Charles Zhang
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of California, Irvine, California, United States
| | - Michal Kolitz-Domb
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Olga Viskind
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Anna Levine
- The Scientific Equipment Center, Faculty of Biological Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanoch Senderowitz
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Steven Chessler
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of California, Irvine, California, United States
| | - Jean-Paul Lellouche
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Nanomaterials Research Center, Institute of Nanotechnology & Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
15
|
Al Madhoun A, Ali H, AlKandari S, Atizado VL, Akhter N, Al-Mulla F, Atari M. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells. Stem Cell Res Ther 2016; 7:165. [PMID: 27852316 PMCID: PMC5111269 DOI: 10.1186/s13287-016-0426-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. METHODS WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. RESULTS We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. CONCLUSIONS In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.
Collapse
Affiliation(s)
| | - Hamad Ali
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Sarah AlKandari
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | | | - Nadeem Akhter
- Research Division, Dasman Diabetes Institute, 1180 Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Molecular Pathology Unit, Faculty of Medicine, Health Sciences Center, Kuwait University, Al-Jabriya, Kuwait
| | - Maher Atari
- UIC Regenerative Medicine Research Institute, International University of Catalonia, Barcelona, Spain
| |
Collapse
|
16
|
Okere B, Lucaccioni L, Dominici M, Iughetti L. Cell therapies for pancreatic beta-cell replenishment. Ital J Pediatr 2016; 42:62. [PMID: 27400873 PMCID: PMC4940879 DOI: 10.1186/s13052-016-0273-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022] Open
Abstract
The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Laura Lucaccioni
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.,Child Health, School of Medicine, Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, 41100, Italy.
| |
Collapse
|
17
|
Balaji S, Zhou Y, Ganguly A, Opara EC, Soker S. The combined effect of PDX1, epidermal growth factor and poly-L-ornithine on human amnion epithelial cells' differentiation. BMC DEVELOPMENTAL BIOLOGY 2016; 16:8. [PMID: 27068127 PMCID: PMC4828805 DOI: 10.1186/s12861-016-0108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Background It has been suggested that the ectopic expression of PDX1, a dominant pancreatic transcription factor, plays a critical role in the developmental programming of the pancreas even from cells of unrelated tissues such as keratinocytes and amniotic fluid stem cells. In this study we have chosen to drive pancreatic development in human amnion epithelial cells by inducing endogenous PDX1 expression. Further, we have investigated the role of Epidermal Growth Factor (EGF) and Poly-L-Ornithine (PLO) on this differentiation process. Results Human amnion epithelial cells expressed high levels of endogenous PDX1 upon transduction with an adenoviral vector expressing murine Pdx1. Other markers of various stages of pancreatic differentiation such as NKX6.1, SOX17, RFX6, FOXA2, CFTR, NEUROD1, PAX4 and PPY were also expressed upon Pdx1 transduction. Although initial expression of pancreatic progenitor markers was higher in culture conditions lacking EGF, for a sustained and increased expression EGF was required. Culture on PLO further increased the positive impact of EGF. Conclusion Pancreatic marker expression subsequent to mPdx1 transduction suggests that this approach may facilitate the in vitro differentiation of hAECs into cells of the endocrine pancreas. This result may have important implications in diabetes therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0108-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruti Balaji
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.,Birla Institute of Technology & Science, Pilani K K Birla Goa campus, Zuari Nagar, 403726, Goa, India
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA
| | - Anasuya Ganguly
- Birla Institute of Technology & Science, Pilani K K Birla Goa campus, Zuari Nagar, 403726, Goa, India.
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, 27101, USA.,Virginia Tech-Wake Forest University School of Biomedical Engineering & Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
18
|
Abstract
The pancreas produces enzymes with a digestive function and hormones with a metabolic function, which are produced by distinct cell types of acini and islets, respectively. Within these units, secretory cells coordinate their functioning by exchanging information via signals that flow in the intercellular spaces and are generated either at distance (several neural and hormonal inputs) or nearby the pancreatic cells themselves (inputs mediated by membrane ionic-specific channels and by ionic- and metabolite-permeant pannexin channels and connexin "hemichannels"). Pancreatic secretory cells further interact via the extracellular matrix of the pancreas (inputs mediated by integrins) and directly with neighboring cells, by mechanisms that do not require extracellular mediators (inputs mediated by gap and tight junction channels). Here, we review the expression and function of the connexins and pannexins that are expressed by the main secretory cells of the exocrine and endocrine pancreatic cells. Available data show that the patterns of expression of these proteins differ in acini and islets, supporting distinct functions in the physiological secretion of pancreatic enzymes and hormones. Circumstantial evidence further suggests that alterations in the signaling provided by these proteins are involved in pancreatic diseases.
Collapse
|
19
|
Mechanism study for hypoxia induced differentiation of insulin-producing cells from umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2015; 466:444-9. [DOI: 10.1016/j.bbrc.2015.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
20
|
The effects of human Wharton's jelly cell transplantation on the intervertebral disc in a canine disc degeneration model. Stem Cell Res Ther 2015; 6:154. [PMID: 26311326 PMCID: PMC4551525 DOI: 10.1186/s13287-015-0132-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/17/2015] [Accepted: 07/17/2015] [Indexed: 02/08/2023] Open
Abstract
Introduction Cell-based therapy was a promising treatment method for disc degenerative diseases. Wharton’s jelly cell (WJC) has been explored to cure various human diseases, while it still remains unknown about this MSC for disc repair. In our prior work, WJCs could differentiate into nucleus pulposus (NP)-like cells by co-culturing with NP cells in vitro. Thence, the aim of this study was further to investigate the survival and function of WJCs in vivo after transplantation into degenerated canine discs. Method WJCs were isolated from human umbilical cords and labeled with EGFP. The degeneration of L4-5, L5-6, and L6-7 discs of beagles was induced by aspirating the NP tissues. Four weeks after the operation, the injured discs were left to be no treatment at L4-5 (DS group), injected with 0.9 % saline at L5-6 (FS group), and transplanted with EGFP-labeled WJCs at L6-7 (TS group). In all animals, the intact disc L3-4 served as a control (CS group). The animals were followed up for 24 weeks after initial operation. Spine imaging was evaluated at 4, 8, 12, and 24 weeks, respectively. Histologic, biomechanics and gene expression analyses were performed at 24 weeks. Immunohistochemistry for aggrecan, types II collagen, SOX-9 was employed to investigate the matrix formation in the NP. Results The TS group showed a significantly smaller reduction in the disc height and T2-weighted signal intensity, and a better spinal segmental stability than DS and FS groups. Histologic assay demonstrated that WJCs were specifically detected in TS group at 24 weeks and the discs of TS group maintained a relatively well preserved structure as compared to the discs of DS and FS groups. Furthermore, real-time PCR and immunohistochemistry demonstrated that expressions of disc matrix genes, aggrecan, type II collagen, and SOX-9, were up-regulated in TS group compared to DS and FS groups. Conclusion WJCs could not only survive in the degenerate IVDs, but also promote the disc matrix formation of aggrecan and type II collagen in the degenerate IVDs. It may have value in cell-based therapy for degenerative disc disease.
Collapse
|
21
|
Okere B, Alviano F, Costa R, Quaglino D, Ricci F, Dominici M, Paolucci P, Bonsi L, Iughetti L. In vitro differentiation of human amniotic epithelial cells into insulin-producing 3D spheroids. Int J Immunopathol Pharmacol 2015. [PMID: 26216908 DOI: 10.1177/0394632015588439] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and stem cell therapy may represent the solution for the treatment of non-curable human diseases such as type 1 diabetes. In this context of growing demand for functional and safe stem cells, human amniotic epithelial cells (hAECs) from term placenta have attracted increasing interest for their wide availability, stem cell properties, and differentiation plasticity, which make them a promising tool for stem cell-based therapeutic applications. We initially assayed the stemness characteristics of hAECs in serum-free conditions. Subsequently we developed a culture procedure on extracellular matrix for the formation of three-dimensional (3D) spheroids. Finally, we tested the immunomodulation and differentiation potential of hAEC spheroids: the presence of pancreatic endocrine hormones was revealed with transmission electron microscopy and immunofluorescence analyses; the release of C-peptide in hyperglycemic conditions was assayed with ELISA. The serum-free culture conditions we applied proved to maintain the basic stemness characteristics of hAECs. We also demonstrated that 3D spheroids formed by hAECs in extracellular matrix can be induced to differentiate into insulin-producing cells. Finally, we proved that control and induced cells equally inhibit the proliferation of activated mononuclear cells. The results of this study highlight the properties of amnion derived epithelial cells as promising and abundant source for cell-based therapies. In particular we are the first group to show the in vitro pancreatic induction of hAECs cultured on extracellular matrix in a 3D fashion. We accordingly propose the outcomes of this study as a novel contribution to the development of future cell replacement therapies involving placenta-derived cells.
Collapse
Affiliation(s)
- Bernard Okere
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Roberta Costa
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Ricci
- Immunohematology and Transfusion Medicine Service, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Paolo Paolucci
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Lorenzo Iughetti
- Division of Pediatric Oncology, Hematology and Marrow Transplantation, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena Policlinic, Modena, Italy
| |
Collapse
|
22
|
Jian RL, Mao LB, Xu Y, Li XF, Wang FP, Luo XG, Zhou H, He HP, Wang N, Zhang TC. Generation of insulin-producing cells from C3H10T1/2 mesenchymal progenitor cells. Gene 2015; 562:107-116. [PMID: 25724395 DOI: 10.1016/j.gene.2015.02.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) have been reported to be an attractive source for the generation of transplantable surrogate β cells. A murine embryonic mesenchymal progenitor cell line C3H10T1/2 has been recognized as a model for MSCs, because of its multi-lineage differentiation potential. The purpose of this study was to explore whether C3H/10T1/2 cells have the potential to differentiate into insulin-producing cells (IPCs). Here, we investigated and compared the in vitro differentiation of rat MSCs and C3H10T1/2 cells into IPCs. After the cells underwent IPC differentiation, the expression of differentiation markers were detected by immunocytochemistry, reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR (qRT-PCR) and Western blotting. The insulin secretion was evaluated by enzyme-linked immunosorbent assay (ELISA). Furthermore, these differentiated cells were transplanted into streptozotocin-induced diabetic mice and their biological functions were tested in vivo. This study reports a 2-stage method to generate IPCs from C3H10T1/2 cells. Under specific induction conditions for 7-8 days, C3H10T1/2 cells formed three-dimensional spheroid bodies (SBs) and secreted insulin, while generation of IPCs derived from rat MSCs required a long time (more than 2 weeks). Furthermore, these IPCs derived from C3H10T1/2 cells were injected into diabetic mice and improves basal glucose, body weight and exhibited normal glucose tolerance test. The present study provided a simple and faithful in vitro model for further investigating the mechanism underlying IPC differentiation of MSCs and cell replacement therapy for diabetes.
Collapse
Affiliation(s)
- Ruo-Lei Jian
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li-Bin Mao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yao Xu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao-Fan Li
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feng-Po Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hong-Peng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Department of Biochemistry, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
23
|
Sun B, Liu R, Xiao ZD. Induction of insulin-producing cells from umbilical cord blood-derived stromal cells by activation of the c-Met/HGF axis. Dev Growth Differ 2015; 57:353-361. [DOI: 10.1111/dgd.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Bo Sun
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Institute of Microbiology; Seoul National University; 151-742 Seoul South Korea
| | - Rui Liu
- Laboratory of Biophysics; School of Biological Sciences; Seoul National University; 151-742 Seoul South Korea
| | - Zhong-Dang Xiao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
24
|
Liu X, Yan F, Yao H, Chang M, Qin J, Li Y, Wang Y, Pei X. Involvement of RhoA/ROCK in insulin secretion of pancreatic β-cells in 3D culture. Cell Tissue Res 2014; 358:359-69. [PMID: 25129107 DOI: 10.1007/s00441-014-1961-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023]
Abstract
Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.
Collapse
Affiliation(s)
- Xiaofang Liu
- Stem Cell and Regenerative Medicine Laboratory, Beijing Institute of Transfusion Medicine, Beijing, 100850, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 2014; 17:18-24. [PMID: 25442786 DOI: 10.1016/j.jcyt.2014.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multi-potent cells that have the capability of differentiating into adipogenic, osteogenic, chondrogenic and neural cells. With these multiple capabilities, MSCs have been highly regarded as an effective transplantable cell source for regenerative medicine. A large bank of these cells can be found in several regions of the human umbilical cord, including the umbilical cord lining, the subendothelial layer, the perivascular zone and, most important, in Wharton jelly (WJ). These cells, all umbilical cord-derived MSCs, are durable, have large loading capacities and are considered ethical to harvest because the umbilical cord is often considered waste. These logistical advantages make WJ as appealing source of stem cells for transplant therapy. In particular, WJ is a predominantly good source of cells because MSCs in WJ are maintained in an early embryologic phase and therefore have retained some of the primitive stemness properties. WJ-MSCs can easily differentiate into a plethora of cell types leading to a variety of applications. In addition, WJ-MSCs are slightly easier to harvest compared with other MSCs (such as bone marrow-derived MSCs). The fascinating stemness properties and therapeutic potential of WJ-MSCs provide great promise in many aspects of regenerative medicine and should be considered for further investigations as safe and effective donor cells for transplantation therapy in many debilitating disorders, which are discussed here. We previously reviewed the therapeutic potential of WJ-MSCs and now provide an update on their recent preclinical and clinical applications.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ryan Divers
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Roshan Kedar
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ankur Mehindru
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Anuj Mehindru
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mia C Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida.
| |
Collapse
|
26
|
Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 2014; 41:4783-94. [PMID: 24718781 DOI: 10.1007/s11033-014-3349-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.
Collapse
Affiliation(s)
- Arefeh Jafarian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
27
|
Ribeiro J, Pereira T, Amorim I, Caseiro AR, Lopes MA, Lima J, Gartner A, Santos JD, Bártolo PJ, Rodrigues JM, Mauricio AC, Luís AL. Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. Int J Med Sci 2014; 11:979-87. [PMID: 25076843 PMCID: PMC4115236 DOI: 10.7150/ijms.9139] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/10/2014] [Indexed: 01/02/2023] Open
Abstract
The healing process of the skin is a dynamic procedure mediated through a complex feedback of growth factors secreted by a variety of cells types. Despite the most recent advances in wound healing management and surgical procedures, these techniques still fail up to 50%, so cellular therapies involving mesenchymal stem cells (MSCs) are nowadays a promising treatment of skin ulcers which are a cause of high morbidity. The MSCs modulate the inflammatory local response and induce cell replacing, by a paracrine mode of action, being an important cell therapy for the impaired wound healing. The local application of human MSCs (hMSCs) isolated from the umbilical cord Wharton's jelly together with a poly(vinyl alcohol) hydrogel (PVA) membrane, was tested to promote wound healing in two dogs that were referred for clinical examination at UPVET Hospital, showing non-healing large skin lesions by the standard treatments. The wounds were infiltrated with 1000 cells/µl hMSCs in a total volume of 100 µl per cm(2) of lesion area. A PVA membrane was applied to completely cover the wound to prevent its dehydration. Both animals after the treatment demonstrated a significant progress in skin regeneration with decreased extent of ulcerated areas confirmed by histological analysis. The use of Wharton's jelly MSCs associated with a PVA membrane showed promising clinical results for future application in the treatment of chronic wounds in companion animals and humans.
Collapse
Affiliation(s)
- Jorge Ribeiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| | - Tiago Pereira
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Irina Amorim
- 3. Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 4. Instituto Português de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana Rita Caseiro
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Maria A Lopes
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Lima
- 7. LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Andrea Gartner
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - José Domingos Santos
- 6. CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paulo J Bártolo
- 5. CDRsp - Centro para o Desenvolvimento Rápido e Sustentado de Produto, Instituto Politécnico de Leiria, Centro Empresarial da Marinha Grande, Rua de Portugal - Zona Industrial, 2430-028, Marinha Grande, Portugal
| | - Jorge Manuel Rodrigues
- 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 8. Hospital de S. João, Universidade do Porto (UP), Porto, Portugal. ; 9. Departmento de Dentistria, Universidade Fernando Pessoa (UFP), Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Ana Colette Mauricio
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal
| | - Ana Lúcia Luís
- 1. Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. ; 2. Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências e Tecnologias Agrárias e Agro-Alimentares (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401, Porto, Portugal. ; 10. UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal. Porto
| |
Collapse
|
28
|
Hong IS, Lee HY, Choi SW, Kim HS, Yu KR, Seo Y, Jung JW, Kang KS. The effects of hedgehog on RNA binding protein Msi1 during the osteogenic differentiation of human cord blood-derived mesenchymal stem cells. Bone 2013; 56:416-25. [PMID: 23880227 DOI: 10.1016/j.bone.2013.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are useful tools for regenerative medicine due to their capacity for self-renewal and multi-lineage differentiation. The appropriate clinical application of MSCs for regenerative medicine requires an integrated understanding of multiple signaling pathways that regulate cell proliferation, stemness and differentiation. However, the potential molecular mechanisms mediating these functions are not completely understood. The effects of hedgehog (Hh) signaling on the osteogenic differentiation of MSCs are still controversial, and the underlying mechanisms are unclear. In the present study, we evaluated the direct effects of Hh signaling on the osteogenic differentiation of hUCB-MSCs and investigated potential downstream regulatory mechanisms responsible for Hh signaling. We observed that Hh signaling acts as a negative regulator of osteogenic differentiation through the suppression of RNA-binding Msi1, which in turn suppresses the expression of Wnt1 and the miR-148 family, especially miR-148b. Moreover, Hh and Msi1 are considered to be potential stemness markers of hUCB-MSCs due to their differentiation-dependent expression profiles. This study provides new insights into mechanisms regulating MSC differentiation and may have implications for a variety of therapeutic applications in the clinic.
Collapse
Affiliation(s)
- In-Sun Hong
- Adult Stem cell Research Center, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cigliola V, Chellakudam V, Arabieter W, Meda P. Connexins and β-cell functions. Diabetes Res Clin Pract 2013; 99:250-9. [PMID: 23176806 DOI: 10.1016/j.diabres.2012.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022]
Abstract
Proper functioning of pancreatic islets requires that numerous β-cells are properly coordinated. With evolution, many mechanisms have converged, which now allow individual β-cells to sense the state of activity of their neighbors as well as the changes taking place in the extracellular medium, and to regulate accordingly their own function. Here, we review one such mechanism for intercellular coordination, which depends on connexins. These integral membrane proteins accumulate at sites of close apposition between adjacent islet cell membranes, referred to as gap junctions. Recent evidence demonstrates that connexin-dependent signaling is relevant for the in vivo control of insulin biosynthesis and release, as well as for the survival of β-cells under stressing conditions. The data suggest that alterations of this signaling may be implicated in the β-cell alterations which characterize most forms of diabetes, raising the tantalizing possibility that targeting of the direct intercellular communications β-cells establish within each pancreatic islet may provide a novel, therapeutically useful strategy.
Collapse
Affiliation(s)
- Valentina Cigliola
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, Geneva, Switzerland
| | | | | | | |
Collapse
|
30
|
Hong IS, Kang KS. The effects of Hedgehog on the RNA-binding protein Msi1 in the proliferation and apoptosis of mesenchymal stem cells. PLoS One 2013; 8:e56496. [PMID: 23418578 PMCID: PMC3572075 DOI: 10.1371/journal.pone.0056496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/10/2013] [Indexed: 11/18/2022] Open
Abstract
Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are essential tools for regenerative medicine due to their capacity for self-renewal and multi-lineage differentiation. As MSCs are found in very small numbers in various tissues, in vitro cell expansion is an essential step that is needed before these cells can be used in clinical applications. Therefore, it is important to identify and characterize factors that are involved in MSC proliferation and apoptosis. In the present study, we focused on Hedgehog (Hh) signaling because several studies have proposed that Hh signaling plays a critical role in controlling the proliferation of stem and progenitor cells. However, the molecular mechanisms underlying the effects on the proliferation and apoptosis of MSCs remain unclear. In this study, we evaluated the direct effects of Hh signaling on the proliferation and apoptosis of hUCB-MSCs as well as investigated potential downstream regulatory mechanisms that may be responsible for Hh signaling. We observed that the Hedgehog agonist purmorphamine enhanced cell proliferation and suppressed apoptosis through the RNA-binding protein Msi1 by regulating the expression of an oncoprotein (i.e., c-Myc), a cell cycle regulatory molecule (i.e., p21(CIP1,WAF1)) and two microRNAs (i.e., miRNA-148a and miRNA-148b). This study provides novel insights into the molecular mechanisms regulating the self-renewal capability of MSCs with relevance to clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Adult Stem Cell Research Center, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Seoul National University, Seoul, Republic of Korea
- Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Meda P. Protein-mediated interactions of pancreatic islet cells. SCIENTIFICA 2013; 2013:621249. [PMID: 24278783 PMCID: PMC3820362 DOI: 10.1155/2013/621249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 05/29/2023]
Abstract
The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins) and paracrine communications (pannexins) between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins) provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreatic β -cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions.
Collapse
Affiliation(s)
- Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| |
Collapse
|
32
|
Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012; 2012:342968. [PMID: 22754575 PMCID: PMC3382267 DOI: 10.1155/2012/342968] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/06/2012] [Accepted: 04/17/2012] [Indexed: 12/11/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) communicate with other cells in the human body and appear to "home" to areas of injury in response to signals of cellular damage, known as homing signals. This review of the state of current research on homing of MSCs suggests that favorable cellular conditions and the in vivo environment facilitate and are required for the migration of MSCs to the site of insult or injury in vivo. We review the current understanding of MSC migration and discuss strategies for enhancing both the environmental and cellular conditions that give rise to effective homing of MSCs. This may allow MSCs to quickly find and migrate to injured tissues, where they may best exert clinical benefits resulting from improved homing and the presence of increased numbers of MSCs.
Collapse
|
33
|
Kim SJ, Choi YS, Ko ES, Lim SM, Lee CW, Kim DI. Glucose-stimulated insulin secretion of various mesenchymal stem cells after insulin-producing cell differentiation. J Biosci Bioeng 2012; 113:771-7. [PMID: 22425523 DOI: 10.1016/j.jbiosc.2012.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are capable of crossing germinative layer borders and are obtainable in high numbers via in vitro cultures. Therefore, many researchers have searched for diverse sources of MSCs. Recently the generation of glucose-responsive insulin-producing cells (IPCs) from MSCs has shown immense potential for the treatment of type 1 diabetes mellitus (T1DM) due to a lack of pancreas donors. In this study, we compared the growth potency of four kinds of MSCs derived from bone marrow, Wharton's jelly, adipose tissue, and the periosteum. In addition, in vitro differentiation of these MSCs into IPCs was also investigated. After 2weeks of IPCs differentiation, we compared the expression of the insulin gene and protein using RT-qPCR and immunofluorescence staining. Only IPCs derived from periosteum-derived progenitor cells (PDPCs) showed a response to glucose concentration. Glucose stimulated insulin secretion was conclusive evidence of the potential functionality of IPCs. Therefore, PDPCs are a promising alternative stem cell source for IPCs differentiation.
Collapse
Affiliation(s)
- Su-Jung Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | | | | | | | | | | |
Collapse
|