1
|
Tingey M, Ruba A, Jiang Z, Yang W. Deciphering vesicle-assisted transport mechanisms in cytoplasm to cilium trafficking. Front Cell Neurosci 2024; 18:1379976. [PMID: 38860265 PMCID: PMC11163138 DOI: 10.3389/fncel.2024.1379976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.
Collapse
Affiliation(s)
| | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Cideciyan AV, Jacobson SG, Ho AC, Swider M, Sumaroka A, Roman AJ, Wu V, Russell RC, Viarbitskaya I, Garafalo AV, Schwartz MR, Girach A. Durable vision improvement after a single intravitreal treatment with antisense oligonucleotide in CEP290-LCA: Replication in two eyes. Am J Ophthalmol Case Rep 2023; 32:101873. [PMID: 37388818 PMCID: PMC10302566 DOI: 10.1016/j.ajoc.2023.101873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose An intravitreally injected antisense oligonucleotide, sepofarsen, was designed to modulate splicing within retinas of patients with severe vision loss due to deep intronic c.2991 + 1655A > G variant in the CEP290 gene. A previous report showed vision improvements following a single injection in one eye with unexpected durability lasting at least 15 months. The current study evaluated durability of efficacy beyond 15 months in the previously treated left eye. In addition, peak efficacy and durability were evaluated in the treatment-naive right eye, and re-injection of the left eye 4 years after the first injection. Observations Visual function was evaluated with best corrected standard and low-luminance visual acuities, microperimetry, dark-adapted chromatic perimetry, and full-field sensitivity testing. Retinal structure was evaluated with OCT imaging. At the fovea, all visual function measures and IS/OS intensity of the OCT showed transient improvements peaking at 3-6 months, remaining better than baseline at ∼2 years, and returning to baseline by 3-4 years after each single injection. Conclusions and Importance These results suggest that sepofarsen reinjection intervals may need to be longer than 2 years.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C. Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
3
|
Wang L, Wen X, Wang Z, Lin Z, Li C, Zhou H, Yu H, Li Y, Cheng Y, Chen Y, Lou G, Pan J, Cao M. Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding. Nat Commun 2022; 13:3997. [PMID: 35810181 PMCID: PMC9271036 DOI: 10.1038/s41467-022-31751-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
The transition zone (TZ) of the cilium/flagellum serves as a diffusion barrier that controls the entry/exit of ciliary proteins. Mutations of the TZ proteins disrupt barrier function and lead to multiple human diseases. However, the systematic regulation of ciliary composition and signaling-related processes by different TZ proteins is not completely understood. Here, we reveal that loss of TCTN1 in Chlamydomonas reinhardtii disrupts the assembly of wedge-shaped structures in the TZ. Proteomic analysis of cilia from WT and three TZ mutants, tctn1, cep290, and nphp4, shows a unique role of each TZ subunit in the regulation of ciliary composition, explaining the phenotypic diversity of different TZ mutants. Interestingly, we find that defects in the TZ impair the formation and biological activity of ciliary ectosomes. Collectively, our findings provide systematic insights into the regulation of ciliary composition by TZ proteins and reveal a link between the TZ and ciliary ectosomes. Cilia project from cells to serve sensory functions, and ciliary disruption can result in multiple disorders known as ciliopathies. Here the authors show that the ciliopathy gene TCTN1 functions to regulate the ciliary transition zone and ectosome formation.
Collapse
Affiliation(s)
- Liang Wang
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China.
| | - Xin Wen
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Zhengmao Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Zaisheng Lin
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chunhong Li
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Huilin Zhou
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Huimin Yu
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yuhan Li
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yifei Cheng
- School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
| | - Yuling Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Geer Lou
- Shanghai Biotree Biotech Co. Ltd, 201815, Shanghai, China
| | - Junmin Pan
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266071, Qingdao, China.,MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
4
|
Wensel TG, Potter VL, Moye A, Zhang Z, Robichaux MA. Structure and dynamics of photoreceptor sensory cilia. Pflugers Arch 2021; 473:1517-1537. [PMID: 34050409 PMCID: PMC11216635 DOI: 10.1007/s00424-021-02564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures that enable them to carry out their function of light detection over a broad range of illumination intensities with optimized spatial and temporal resolution. Most prominent are their unusually large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme is assembled. These structures form a highway through which an enormous flux of material moves on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands of phototransduction. After decades of study, the details of the fine structure and distribution of molecular components of these structures are still incompletely understood, but recent advances in cellular imaging techniques and animal models of inherited ciliary defects are yielding important new insights. This knowledge informs our understanding both of the mechanisms of trafficking and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
Collapse
Affiliation(s)
- Theodore G Wensel
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Valencia L Potter
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology and Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Medical Scientist Training Program (MSTP), Baylor College of Medicine, Houston, TX, 77030, USA
| | - Abigail Moye
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhixian Zhang
- Vera and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael A Robichaux
- Departments of Ophthalmology and Biochemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
5
|
Kulkarni S, Abro B, Duque Lasio ML, Stoll J, Grange DK, He M. Clinical and Pathological Features of a Newborn With Compound Heterozygous ANKS6 Variants. Pediatr Dev Pathol 2020; 23:235-239. [PMID: 31635528 DOI: 10.1177/1093526619881541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report a term female infant born to nonconsanguineous parents who presented with renal failure at birth, hypothyroidism, cholestasis, and progressive cardiac dysfunction. Multigene next-generation sequencing panels for cholestasis, cardiomyopathy, and cystic renal disease did not reveal a unifying diagnosis. Whole exome sequencing revealed compound heterozygous pathogenic variants in ANKS6 (Ankyrin Repeat and Sterile Alpha Motif Domain Containing 6), which encodes a protein that interacts with other proteins of the Inv compartment of cilium (NEK8, NPHP2/INVS, and NPHP3). ANKS6 has been shown to be important for early renal development and cardiac looping in animal models. Autopsy revealed cystic renal dysplasia and cardiomyocyte hypertrophy, disarray, and focal necrosis. Liver histology revealed cholestasis and centrilobular necrosis, which was likely a result of progressive cardiac failure. This is the first report of compound heterozygous variants in ANKS6 leading to a nephronopthisis-related ciliopathy-like phenotype. We conclude that pathogenic variants in ANKS6 may present early in life with severe renal and cardiac failure, similar to subjects with variants in genes encoding other proteins in the Inv compartment of the cilium.
Collapse
Affiliation(s)
- Sakil Kulkarni
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Brooj Abro
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Maria Laura Duque Lasio
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Janis Stoll
- Division of Pediatric Gastroenterology Hepatology and Nutrition, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Stayner C, Poole CA, McGlashan SR, Pilanthananond M, Brauning R, Markie D, Lett B, Slobbe L, Chae A, Johnstone AC, Jensen CG, McEwan JC, Dittmer K, Parker K, Wiles A, Blackburne W, Leichter A, Leask M, Pinnapureddy A, Jennings M, Horsfield JA, Walker RJ, Eccles MR. An ovine hepatorenal fibrocystic model of a Meckel-like syndrome associated with dysmorphic primary cilia and TMEM67 mutations. Sci Rep 2017; 7:1601. [PMID: 28487520 PMCID: PMC5431643 DOI: 10.1038/s41598-017-01519-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/29/2017] [Indexed: 01/20/2023] Open
Abstract
Meckel syndrome (MKS) is an inherited autosomal recessive hepatorenal fibrocystic syndrome, caused by mutations in TMEM67, characterized by occipital encephalocoele, renal cysts, hepatic fibrosis, and polydactyly. Here we describe an ovine model of MKS, with kidney and liver abnormalities, without polydactyly or occipital encephalocoele. Homozygous missense p.(Ile681Asn; Ile687Ser) mutations identified in ovine TMEM67 were pathogenic in zebrafish phenotype rescue assays. Meckelin protein was expressed in affected and unaffected kidney epithelial cells by immunoblotting, and in primary cilia of lamb kidney cyst epithelial cells by immunofluorescence. In contrast to primary cilia of relatively consistent length and morphology in unaffected kidney cells, those of affected cyst-lining cells displayed a range of short and extremely long cilia, as well as abnormal morphologies, such as bulbous regions along the axoneme. Putative cilia fragments were also consistently located within the cyst luminal contents. The abnormal ciliary phenotype was further confirmed in cultured interstitial fibroblasts from affected kidneys. These primary cilia dysmorphologies and length control defects were significantly greater in affected cells compared to unaffected controls. In conclusion, we describe abnormalities involving primary cilia length and morphology in the first reported example of a large animal model of MKS, in which we have identified TMEM67 mutations.
Collapse
Affiliation(s)
- C Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - C A Poole
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.,150 Warren Street, Wanaka, 9305, New Zealand
| | - S R McGlashan
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - M Pilanthananond
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - D Markie
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - B Lett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L Slobbe
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Chae
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A C Johnstone
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - C G Jensen
- Department of Anatomy and Medical Imaging, The University of Auckland 1142, Private Bag, 92019, Auckland, New Zealand
| | - J C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel, 9053, New Zealand
| | - K Dittmer
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Tennant Drive, Palmerston North, 4472, New Zealand
| | - K Parker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Wiles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - W Blackburne
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - A Pinnapureddy
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Jennings
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - J A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - R J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
7
|
Ronquillo CC, Hanke-Gogokhia C, Revelo MP, Frederick JM, Jiang L, Baehr W. Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation. FASEB J 2016; 30:3400-3412. [PMID: 27328943 PMCID: PMC5789158 DOI: 10.1096/fj.201600511r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
Abstract
Null mutations in the human IQCB1/NPHP5 (nephrocystin-5) gene that encodes NPHP5 are the most frequent cause of Senior-Løken syndrome, a ciliopathy that is characterized by Leber congenital amaurosis and nephronophthisis. We generated germline Nphp5-knockout mice by placing a β-Geo gene trap in intron 4, thereby truncating NPHP5 at Leu87 and removing all known functional domains. At eye opening, Nphp5-/- mice exhibited absence of scotopic and photopic electroretinogram responses, a phenotype that resembles Leber congenital amaurosis. Outer segment transmembrane protein accumulation in Nphp5-/- endoplasmic reticulum was evident as early as postnatal day (P)6. EGFP-CETN2, a centrosome and transition zone marker, identified basal bodies in Nphp5-/- photoreceptors, but without fully developed transition zones. Ultrastructure of P6 and 10 Nphp5-/- photoreceptors revealed aberrant transition zones of reduced diameter. Nphp5-/- photoreceptor degeneration was complete at 1 mo of age but was delayed significantly in Nphp5-/-;Nrl-/- (cone only) retina. Nphp5-/- mouse embryonic fibroblast developed normal cilia, and Nphp5-/- kidney histology at 1 yr of age showed no significant pathology. Results establish that nephrocystin-5 is essential for photoreceptor outer segment formation but is dispensable for kidney and mouse embryonic fibroblast ciliary formation.-Ronquillo, C. C., Hanke-Gogokhia, C., Revelo, M. P., Frederick, J. M., Jiang, L., Baehr, W. Ciliopathy-associated IQCB1/NPHP5 protein is required for mouse photoreceptor outer segment formation.
Collapse
Affiliation(s)
- Cecinio C Ronquillo
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA; Department of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Jeanne M Frederick
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Li Jiang
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA;
| | - Wolfgang Baehr
- Department of Ophthalmology, John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah, USA; Department of Neurobiology and Anatomy, University of Utah Health Science Center, Salt Lake City, Utah, USA; and Department of Biology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Tsuji T, Matsuo K, Nakahari T, Marunaka Y, Yokoyama T. Structural basis of the Inv compartment and ciliary abnormalities in Inv/nphp2 mutant mice. Cytoskeleton (Hoboken) 2015; 73:45-56. [PMID: 26615802 DOI: 10.1002/cm.21264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/17/2023]
Abstract
The primary cilium is a hair like structure protruding from most mammalian cells. The basic design of the primary cilium consists of a nine microtubule doublet structure (the axoneme). The Inv compartment, a distinct proximal segment of the ciliary body, is defined as the region in which the Inv protein is localized. Inv gene is a responsible gene for human nephronophthisis type2 (NPHP2). Here, we show that renal cilia have a short proximal microtubule doublet region and a long distal microtubule singlet region. The length of the Inv compartment was similar to that of the microtubule doublet region, suggesting a possibility that the doublet region is the structural basis of the Inv compartment. Respiratory cilia of inv mouse mutants had ciliary rootlet malformation and showed reduced ciliary beating frequency and ciliary beating angle, which may explain recurrent bronchitis in NPHP2 patients. In multiciliated tracheal cells, most Inv proteins were retained in the basal body and did not accumulate in the Inv compartment. These results suggest that the machinery to transport and retain Inv in cilia is different between renal and tracheal cilia and that Inv may function in the basal body of tracheal cells.
Collapse
Affiliation(s)
- Takuma Tsuji
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuhiko Matsuo
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takashi Nakahari
- Division of Molecular Cell Physiology, Department of Physiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Division of Molecular Cell Physiology, Department of Physiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takahiko Yokoyama
- Division of Anatomy and Developmental Biology, Department of Anatomy, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
9
|
Ciliary subcompartments and cysto-proteins. Anat Sci Int 2015; 92:207-214. [DOI: 10.1007/s12565-015-0302-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
|
10
|
Non-Overlapping Distributions and Functions of the VDAC Family in Ciliogenesis. Cells 2015; 4:331-53. [PMID: 26264029 PMCID: PMC4588040 DOI: 10.3390/cells4030331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
Centrosomes are major microtubule-organizing centers of animal cells that consist of two centrioles. In mitotic cells, centrosomes are duplicated to serve as the poles of the mitotic spindle, while in quiescent cells, centrosomes move to the apical membrane where the oldest centriole is transformed into a basal body to assemble a primary cilium. We recently showed that mitochondrial outer membrane porin VDAC3 localizes to centrosomes where it negatively regulates ciliogenesis. We show here that the other two family members, VDAC1 and VDAC2, best known for their function in mitochondrial bioenergetics, are also found at centrosomes. Like VDAC3, centrosomal VDAC1 is predominantly localized to the mother centriole, while VDAC2 localizes to centriolar satellites in a microtubule-dependent manner. Down-regulation of VDAC1 leads to inappropriate ciliogenesis, while its overexpression suppresses cilia formation, suggesting that VDAC1 and VDAC3 both negatively regulate ciliogenesis. However, this negative effect on ciliogenesis is not shared by VDAC2, which instead appears to promote maturation of primary cilia. Moreover, because overexpression of VDAC3 cannot compensate for depletion of VDAC1, our data suggest that while the entire VDAC family localizes to centrosomes, they have non-redundant functions in cilogenesis.
Collapse
|
11
|
Awata J, Takada S, Standley C, Lechtreck KF, Bellvé KD, Pazour GJ, Fogarty KE, Witman GB. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone. J Cell Sci 2014; 127:4714-27. [PMID: 25150219 DOI: 10.1242/jcs.155275] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier.
Collapse
Affiliation(s)
- Junya Awata
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Saeko Takada
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clive Standley
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl D Bellvé
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kevin E Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
12
|
Madhivanan K, Aguilar RC. Ciliopathies: the trafficking connection. Traffic 2014; 15:1031-56. [PMID: 25040720 DOI: 10.1111/tra.12195] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/28/2014] [Accepted: 07/08/2014] [Indexed: 12/15/2022]
Abstract
The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/disassembles in a cell-cycle-dependent manner and is present in almost every cell type. Despite being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers the PC properties of a separate organelle with very specific characteristics and membrane composition. Therefore, vesicle trafficking is the major process by which components are acquired for cilium formation and maintenance. In fact, a system of specific sorting signals controls the right of cargo admission into the cilia. Disruption to the ciliary structure or its function leads to multiorgan diseases known as ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci linked to these conditions. Therefore, it is not surprising that symptom variability (specific manifestations and severity) among and within ciliopathies appears to be an emerging characteristic. Nevertheless, one can speculate that mutations occurring in genes whose products contribute to the overall vesicle trafficking to the PC (i.e. affecting cilia assembly) will lead to more severe symptoms, whereas those involved in the transport of specific cargoes will result in milder phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide a description of the trafficking defects observed in some ciliopathies which can be correlated to the severity of the pathology.
Collapse
|
13
|
Abstract
The primary cilium is an antenna-like organelle that plays a vital role in organ generation and maintenance. It protrudes from the cell surface where it receives signals from the surrounding environment and relays them into the cell. These signals are then integrated to give the required outputs in terms of proliferation, differentiation, migration and polarization that ultimately lead to organ development and homeostasis. Defects in cilia function underlie a wide range of diverse but related human developmental or degenerative diseases. Collectively known as ciliopathies, these disorders present with varying severity and multiple organ involvement. The appreciation of the medical importance of the primary cilium has stimulated a huge effort into studies of the underlying cellular mechanisms. These in turn have revealed that ciliopathies result not only from defective assembly or organization of the primary cilium, but also from impaired ciliary signaling. This special edition of Organogenesis contains a set of review articles that highlight the role of the primary cilium in organ development and homeostasis, much of which has been learnt from studies of the associated human diseases. Here, we provide an introductory overview of our current understanding of the structure and function of the cilium, with a focus on the signaling pathways that are coordinated by primary cilia to ensure proper organ generation and maintenance.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry; University of Leicester; Leicester, UK
| | | | - Richard Bayliss
- Department of Biochemistry; University of Leicester; Leicester, UK
| |
Collapse
|
14
|
Diverse cell type-specific mechanisms localize G protein-coupled receptors to Caenorhabditis elegans sensory cilia. Genetics 2014; 197:667-84. [PMID: 24646679 DOI: 10.1534/genetics.114.161349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The localization of signaling molecules such as G protein-coupled receptors (GPCRs) to primary cilia is essential for correct signal transduction. Detailed studies over the past decade have begun to elucidate the diverse sequences and trafficking mechanisms that sort and transport GPCRs to the ciliary compartment. However, a systematic analysis of the pathways required for ciliary targeting of multiple GPCRs in different cell types in vivo has not been reported. Here we describe the sequences and proteins required to localize GPCRs to the cilia of the AWB and ASK sensory neuron types in Caenorhabditis elegans. We find that GPCRs expressed in AWB or ASK utilize conserved and novel sequences for ciliary localization, and that the requirement for a ciliary targeting sequence in a given GPCR is different in different neuron types. Consistent with the presence of multiple ciliary targeting sequences, we identify diverse proteins required for ciliary localization of individual GPCRs in AWB and ASK. In particular, we show that the TUB-1 Tubby protein is required for ciliary localization of a subset of GPCRs, implying that defects in GPCR localization may be causal to the metabolic phenotypes of tub-1 mutants. Together, our results describe a remarkable complexity of mechanisms that act in a protein- and cell-specific manner to localize GPCRs to cilia, and suggest that this diversity allows for precise regulation of GPCR-mediated signaling as a function of external and internal context.
Collapse
|
15
|
Wojtyniak M, Brear AG, O'Halloran DM, Sengupta P. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 2013; 126:4381-95. [PMID: 23886944 DOI: 10.1242/jcs.127274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.
Collapse
Affiliation(s)
- Martin Wojtyniak
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
16
|
Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia 2012; 1:22. [PMID: 23351659 PMCID: PMC3563624 DOI: 10.1186/2046-2530-1-22] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/19/2012] [Indexed: 02/08/2023] Open
Abstract
Ciliopathies encompass a broad array of clinical findings associated with genetic defects in biogenesis and/or function of the primary cilium, a ubiquitous organelle involved in the transduction of diverse biological signals. Degeneration or dysfunction of retinal photoreceptors is frequently observed in diverse ciliopathies. The sensory cilium in a photoreceptor elaborates into unique outer segment discs that provide extensive surface area for maximal photon capture and efficient visual transduction. The daily renewal of approximately 10% of outer segments requires a precise control of ciliary transport. Here, we review the ciliopathies with associated retinal degeneration, describe the distinctive structure of the photoreceptor cilium, and discuss mouse models that allow investigations into molecular mechanisms of cilia biogenesis and defects. We have specifically focused on two ciliary proteins - CEP290 and RPGR - that underlie photoreceptor degeneration and syndromic ciliopathies. Mouse models of CEP290 and RPGR disease, and of their multiple interacting partners, have helped unravel new functional insights into cell type-specific phenotypic defects in distinct ciliary proteins. Elucidation of multifaceted ciliary functions and associated protein complexes will require concerted efforts to assimilate diverse datasets from in vivo and in vitro studies. We therefore discuss a possible framework for investigating genetic networks associated with photoreceptor cilia biogenesis and pathology.
Collapse
|
17
|
French VM, van de Laar IMBH, Wessels MW, Rohe C, Roos-Hesselink JW, Wang G, Frohn-Mulder IME, Severijnen LA, de Graaf BM, Schot R, Breedveld G, Mientjes E, van Tienhoven M, Jadot E, Jiang Z, Verkerk A, Swagemakers S, Venselaar H, Rahimi Z, Najmabadi H, Meijers-Heijboer H, de Graaff E, Helbing WA, Willemsen R, Devriendt K, Belmont JW, Oostra BA, Amack JD, Bertoli-Avella AM. NPHP4 variants are associated with pleiotropic heart malformations. Circ Res 2012; 110:1564-74. [PMID: 22550138 DOI: 10.1161/circresaha.112.269795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Congenital heart malformations are a major cause of morbidity and mortality, especially in young children. Failure to establish normal left-right (L-R) asymmetry often results in cardiovascular malformations and other laterality defects of visceral organs. OBJECTIVE To identify genetic mutations causing cardiac laterality defects. METHODS AND RESULTS We performed a genome-wide linkage analysis in patients with cardiac laterality defects from a consanguineous family. The patients had combinations of defects that included dextrocardia, transposition of great arteries, double-outlet right ventricle, atrioventricular septal defects, and caval vein abnormalities. Sequencing of positional candidate genes identified mutations in NPHP4. We performed mutation analysis of NPHP4 in 146 unrelated patients with similar cardiac laterality defects. Forty-one percent of these patients also had laterality defects of the abdominal organs. We identified 8 additional missense variants that were absent or very rare in control subjects. To study the role of nphp4 in establishing L-R asymmetry, we used antisense morpholinos to knockdown nphp4 expression in zebrafish. Depletion of nphp4 disrupted L-R patterning as well as cardiac and gut laterality. Cardiac laterality defects were partially rescued by human NPHP4 mRNA, whereas mutant NPHP4 containing genetic variants found in patients failed to rescue. We show that nphp4 is involved in the formation of motile cilia in Kupffer's vesicle, which generate asymmetrical fluid flow necessary for normal L-R asymmetry. CONCLUSIONS NPHP4 mutations are associated with cardiac laterality defects and heterotaxy. In zebrafish, nphp4 is essential for the development and function of Kupffer's vesicle cilia and is required for global L-R patterning.
Collapse
Affiliation(s)
- Vanessa M French
- Department of Clinical Genetics, Erasmus MC Rotterdam, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nakata K, Shiba D, Kobayashi D, Yokoyama T. Targeting of Nphp3 to the primary cilia is controlled by an N-terminal myristoylation site and coiled-coil domains. Cytoskeleton (Hoboken) 2012; 69:221-34. [PMID: 22328406 DOI: 10.1002/cm.21014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/26/2012] [Accepted: 01/29/2012] [Indexed: 11/08/2022]
Abstract
Primary cilia are organelles that extend from the cell surface. More than 600 proteins have been identified in cilia, but ciliary targeting mechanisms are poorly understood. Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease with 11 responsible genes (NPHP1-11) thus far being identified. The mouse Nphp3 gene product is localized in the cilia and contains coiled-coil (CC) domains and tetratricopeptide repeats, but the ciliary targeting sequences (CTSs) are unknown. In the present study, we generated a series of GFP-tagged deletion constructs of Nphp3 and tried to find the CTSs of Nphp3. We found that the N-terminal 201 amino acid fragment (Nphp3 [1-201]), which contains two CC domains, is necessary and sufficient for cilia localization. Further analysis revealed that an N-terminal glycine (G2), which is a conserved myristoylation site among vertebrates, is also essential for trafficking of Nphp3 to the ciliary shaft. Interestingly, the N-terminal fragments, Nphp3 (8-201), Nphp3 (52-201), and Nphp3 (96-201), that contain the CC domains, targeted the basal body, but could not enter into the ciliary shaft. Our results showed the importance of myristoylation in ciliary trafficking, and suggest that Nphp3 trafficking to the ciliary shaft occurs in a two-step process.
Collapse
Affiliation(s)
- Kana Nakata
- Department of Anatomy and Developmental Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|