1
|
Lucena MI, Villanueva-Paz M, Alvarez-Alvarez I, Aithal GP, Björnsson ES, Cakan-Akdogan G, Cubero FJ, Esteves F, Falcon-Perez JM, Fromenty B, Garcia-Ruiz C, Grove JI, Konu O, Kranendonk M, Kullak-Ublick GA, Miranda JP, Remesal-Doblado A, Sancho-Bru P, Nelson L, Andrade RJ, Daly AK, Fernandez-Checa JC. Roadmap to DILI research in Europe. A proposal from COST action ProEuroDILINet. Pharmacol Res 2024; 200:107046. [PMID: 38159783 PMCID: PMC7617395 DOI: 10.1016/j.phrs.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
In the current article the aims for a constructive way forward in Drug-Induced Liver Injury (DILI) are to highlight the most important priorities in research and clinical science, therefore supporting a more informed, focused, and better funded future for European DILI research. This Roadmap aims to identify key challenges, define a shared vision across all stakeholders for the opportunities to overcome these challenges and propose a high-quality research program to achieve progress on the prediction, prevention, diagnosis and management of this condition and impact on healthcare practice in the field of DILI. This will involve 1. Creation of a database encompassing optimised case report form for prospectively identified DILI cases with well-characterised controls with competing diagnoses, biological samples, and imaging data; 2. Establishing of preclinical models to improve the assessment and prediction of hepatotoxicity in humans to guide future drug safety testing; 3. Emphasis on implementation science and 4. Enhanced collaboration between drug-developers, clinicians and regulatory scientists. This proposed operational framework will advance DILI research and may bring together basic, applied, translational and clinical research in DILI.
Collapse
Affiliation(s)
- M I Lucena
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Plataforma de Investigación Clínica y Ensayos Clínicos UICEC-IBIMA, Plataforma ISCIII de Investigación Clínica, Madrid, Spain.
| | - M Villanueva-Paz
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - I Alvarez-Alvarez
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - G P Aithal
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - E S Björnsson
- Faculty of Medicine, University of Iceland, Department of Gastroenterology and Hepatology, Landspitali University Hospital, Reykjavik, Iceland
| | - G Cakan-Akdogan
- Izmir Biomedicine and Genome Center, Izmir, Turkey. Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - F J Cubero
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Immunology, Ophthalmology and ORL, Complutense University School of Medicine, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - F Esteves
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - J M Falcon-Perez
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain. IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia 48009, Spain
| | - B Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, F-35000 Rennes, France
| | - C Garcia-Ruiz
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain
| | - J I Grove
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - O Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - M Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NMS | FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - G A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - J P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A Remesal-Doblado
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain
| | - P Sancho-Bru
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain
| | - L Nelson
- Institute for Bioengineering, School of Engineering, Faraday Building, The University of Edinburgh, Scotland, UK
| | - R J Andrade
- Servicios de Aparato Digestivo y Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - A K Daly
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J C Fernandez-Checa
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. University of Barcelona, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Farhan F, Trivedi M, Di Wu P, Cui W. Extracellular matrix modulates the spatial hepatic features in hepatocyte-like cells derived from human embryonic stem cells. Stem Cell Res Ther 2023; 14:314. [PMID: 37907977 PMCID: PMC10619266 DOI: 10.1186/s13287-023-03542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) can provide a valuable in vitro model for disease modelling and drug development. However, generating HLCs with characteristics comparable to hepatocytes in vivo is challenging. Extracellular matrix (ECM) plays an important role in supporting liver development and hepatocyte functions, but their impact on hepatocyte differentiation and maturation during hPSC differentiation remains unclear. Here, we investigate the effects of two ECM components-Matrigel and type I collagen on hepatic differentiation of human embryonic stem cells (hESCs). METHODS hESC-derived HLCs were generated through multistage differentiation in two-dimensional (2D) and three-dimensional (3D) cultures, incorporating either type I collagen or Matrigel during hepatic specification and maturation. The resulting HLCs was characterized for their gene expression and functionality using various molecular and cellular techniques. RESULTS Our results showed that HLCs cultured with collagen exhibited a significant increase in albumin and alpha-1 anti-trypsin expression with reduced AFP compared to HLCs cultured with Matrigel. They also secreted more urea than Matrigel cultures. However, these HLCs exhibited lower CYP3A4 activity and glycogen storage than those cultured with Matrigel. These functional differences in HLCs between collagen and Matrigel cultures closely resembled the hepatocytes of periportal and pericentral zones, respectively. CONCLUSION Our study demonstrates that Matrigel and collagen have differential effects on the differentiation and functionality of HLCs, which resemble, to an extent, hepatic zonation in the liver lobules. Our finding has an important impact on the generation of hPSC-HLCs for biomedical and medical applications.
Collapse
Affiliation(s)
- Faiza Farhan
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Manjari Trivedi
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Priscilla Di Wu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
3
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
4
|
Messelmani T, Le Goff A, Souguir Z, Maes V, Roudaut M, Vandenhaute E, Maubon N, Legallais C, Leclerc E, Jellali R. Development of Liver-on-Chip Integrating a Hydroscaffold Mimicking the Liver’s Extracellular Matrix. Bioengineering (Basel) 2022; 9:bioengineering9090443. [PMID: 36134989 PMCID: PMC9495334 DOI: 10.3390/bioengineering9090443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
The 3Rs guidelines recommend replacing animal testing with alternative models. One of the solutions proposed is organ-on-chip technology in which liver-on-chip is one of the most promising alternatives for drug screening and toxicological assays. The main challenge is to achieve the relevant in vivo-like functionalities of the liver tissue in an optimized cellular microenvironment. Here, we investigated the development of hepatic cells under dynamic conditions inside a 3D hydroscaffold embedded in a microfluidic device. The hydroscaffold is made of hyaluronic acid and composed of liver extracellular matrix components (galactosamine, collagen I/IV) with RGDS (Arg-Gly-Asp-Ser) sites for cell adhesion. The HepG2/C3A cell line was cultured under a flow rate of 10 µL/min for 21 days. After seeding, the cells formed aggregates and proliferated, forming 3D spheroids. The cell viability, functionality, and spheroid integrity were investigated and compared to static cultures. The results showed a 3D aggregate organization of the cells up to large spheroid formations, high viability and albumin production, and an enhancement of HepG2 cell functionalities. Overall, these results highlighted the role of the liver-on-chip model coupled with a hydroscaffold in the enhancement of cell functions and its potential for engineering a relevant liver model for drug screening and disease study.
Collapse
Affiliation(s)
- Taha Messelmani
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Anne Le Goff
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Victoria Maes
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Méryl Roudaut
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Elodie Vandenhaute
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
| | - Eric Leclerc
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319, Université de Technologie de Compiègne, 60203 Compiègne, France
- Correspondence: (A.L.G.); (R.J.)
| |
Collapse
|
5
|
Dubois-Pot-Schneider H, Aninat C, Kattler K, Fekir K, Jarnouen K, Cerec V, Glaise D, Salhab A, Gasparoni G, Takashi K, Ishida S, Walter J, Corlu A. Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells. Cells 2022; 11:cells11152298. [PMID: 35892596 PMCID: PMC9331440 DOI: 10.3390/cells11152298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.
Collapse
Affiliation(s)
- Hélène Dubois-Pot-Schneider
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
- Correspondence: ; Tel.: +33-372746115
| | - Caroline Aninat
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathrin Kattler
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Karim Fekir
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Kathleen Jarnouen
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Virginie Cerec
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Denise Glaise
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| | - Abdulrahman Salhab
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Gilles Gasparoni
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Kubo Takashi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki-ku, Kawasaki 2109501, Japan; (K.T.); (S.I.)
| | - Jörn Walter
- Department of Genetics, University of Saarland (UdS), 66123 Saarbrücken, Germany; (K.K.); (A.S.); (G.G.); (J.W.)
| | - Anne Corlu
- INSERM, Université de Rennes, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer), F-35000 Rennes, France; (C.A.); (K.F.); (K.J.); (V.C.); (D.G.); (A.C.)
| |
Collapse
|
6
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
7
|
Messina A, Luce E, Benzoubir N, Pasqua M, Pereira U, Humbert L, Eguether T, Rainteau D, Duclos-Vallée JC, Legallais C, Dubart-Kupperschmitt A. Evidence of Adult Features and Functions of Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells and Self-Organized as Organoids. Cells 2022; 11:cells11030537. [PMID: 35159346 PMCID: PMC8834365 DOI: 10.3390/cells11030537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Human-induced pluripotent stem cell-derived hepatocytes (iHeps) have been shown to have considerable potential in liver diseases, toxicity, and pharmacological studies. However, there is a growing need to obtain iHeps that are truly similar to primary adult hepatocytes in terms of morphological features and functions. We generated such human iHeps, self-assembled as organoids (iHep-Orgs). Methods: iPSC-derived hepatoblasts were self-assembled into spheroids and differentiated into mature hepatocytes modulating final step of differentiation. Results: In about four weeks of culture, the albumin secretion levels and the complete disappearance of α-fetoprotein from iHep-Orgs suggested the acquisition of a greater degree of maturation than those previously reported. The expression of apical transporters and bile acid secretion evidenced the acquisition of complex hepatocyte polarity as well as the development of a functional and well-defined bile canalicular network confirmed by computational analysis. Activities recorded for CYP450, UGT1A1, and alcohol dehydrogenase, response to hormonal stimulation, and glucose metabolism were also remarkable. Finally, iHep-Orgs displayed a considerable ability to detoxify pathological concentrations of lactate and ammonia. Conclusions: With features similar to those of primary adult hepatocytes, the iHep-Orgs thus produced could be considered as a valuable tool for the development and optimization of preclinical and clinical applications.
Collapse
Affiliation(s)
- Antonietta Messina
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| | - Eléanor Luce
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Nassima Benzoubir
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Mattia Pasqua
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Ulysse Pereira
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Lydie Humbert
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Thibaut Eguether
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Dominique Rainteau
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, CRSA, AP-HP, Hôpital Saint Antoine, Metomics, 75012 Paris, France; (L.H.); (T.E.); (D.R.)
| | - Jean-Charles Duclos-Vallée
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
| | - Cécile Legallais
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, 60203 Compiegne, France
| | - Anne Dubart-Kupperschmitt
- UMR_S 1193, INSERM/Université Paris-Saclay, F-94800 Villejuif, France; (E.L.); (N.B.); (J.-C.D.-V.)
- Centre Hépatobiliaire, Fédération Hospitalo-Universitaire (FHU) Hépatinov, AP-HP, Hôpital Paul Brousse, F-94800 Villejuif, France; (M.P.); (U.P.); (C.L.)
- Correspondence: (A.M.); (A.D.-K.)
| |
Collapse
|
8
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
9
|
Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants (Basel) 2021; 11:86. [PMID: 35052590 PMCID: PMC8772881 DOI: 10.3390/antiox11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease in western countries. The molecular mechanisms leading to NAFLD are only partially understood, and effective therapeutic interventions are clearly needed. Therefore, preclinical research is required to improve knowledge about NAFLD physiopathology and to identify new therapeutic targets. Primary human hepatocytes, human hepatic cell lines, and human stem cell-derived hepatocyte-like cells exhibit different hepatic phenotypes and have been widely used for studying NAFLD pathogenesis. In this paper, apart from employing the different in vitro cell models for the in vitro assessment of NAFLD, we also reviewed other approaches (metabolomics, transcriptomics, and high-content screening). We aimed to summarize the characteristics of different cell types and methods and to discuss their major advantages and disadvantages for NAFLD modeling.
Collapse
Affiliation(s)
- María Pelechá
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
| | - Estela Villanueva-Bádenas
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique Timor-López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
10
|
Pluripotency transcription factors at the focus: the phase separation paradigm in stem cells. Biochem Soc Trans 2021; 49:2871-2878. [PMID: 34812855 DOI: 10.1042/bst20210856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
The transcription factors (TFs) OCT4, SOX2 and NANOG are key players of the gene regulatory network of pluripotent stem cells. Evidence accumulated in recent years shows that even small imbalances in the expression levels or relative concentrations of these TFs affect both, the maintenance of pluripotency and cell fate decisions. In addition, many components of the transcriptional machinery including RNA polymerases, cofactors and TFs such as those required for pluripotency, do not distribute homogeneously in the nucleus but concentrate in multiple foci influencing the delivery of these molecules to their DNA-targets. How cells control strict levels of available pluripotency TFs in this heterogeneous space and the biological role of these foci remain elusive. In recent years, a wealth of evidence led to propose that many of the nuclear compartments are formed through a liquid-liquid phase separation process. This new paradigm early penetrated the stem cells field since many key players of the pluripotency circuitry seem to phase-separate. Overall, the formation of liquid compartments may modulate the kinetics of biochemical reactions and consequently regulate many nuclear processes. Here, we review the state-of-the-art knowledge of compartmentalization in the cell nucleus and the relevance of this process for transcriptional regulation, particularly in pluripotent stem cells. We also highlight the recent advances and new ideas in the field showing how compartmentalization may affect pluripotency preservation and cell fate decisions.
Collapse
|
11
|
Gao X, Li R, Yourick JJ, Sprando RL. Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Toxicol In Vitro 2021; 79:105274. [PMID: 34798274 DOI: 10.1016/j.tiv.2021.105274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
Silver nanoparticles (AgNPs) have been increasingly used in a variety of consumer products over the last decades. However, their potential adverse effects have not been fully understood. In a previous study, we characterized transcriptomic changes in human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) in response to AgNP exposure. Here, we report findings of a follow-up proteomic study that evaluated alternations at the protein level in the same cell after being exposed to 10 μg/ml AgNPs for 24 h. In total, 6287 proteins were identified across two groups of samples (n = 3). Among these proteins, 665 were found to be differentially regulated (fold change ≥1.25, p < 0.01) between the AgNP-treated group and the untreated control group, including 264 upregulated and 401 downregulated. Bioinformatics analysis of the proteomics data, in side-by-side comparison to the transcriptomics data, confirms and substantiates previous findings on AgNP-induced alterations in metabolism, oxidative stress, inflammation, and potential association with cancer. A mechanism of action was proposed based on these results. Collectively, the findings of the current proteomic study are consistent with those of the previous transcriptomic study and further demonstrate the usefulness of iPSC-derived HLCs as an in vitro model for liver nanotoxicology.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
12
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Xu H, Wu L, Yuan G, Liang X, Liu X, Li Z, Chen N, Farzaneh M. MicroRNAs: Crucial Players in the Differentiation of Human Pluripotent and Multipotent Stem Cells into Functional Hepatocyte-Like Cells. Curr Stem Cell Res Ther 2021; 17:734-740. [PMID: 34615452 DOI: 10.2174/1574888x16666211006102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
Hepatic disease negatively impacts liver function and metabolism. Primary human hepatocytes are the gold standard for the prediction and successful treatment of liver disease. However, the sources of hepatocytes for drug toxicity testing and disease modeling are limited. To overcome this issue, pluripotent stem cells (PSCs) have emerged as an alternative strategy for liver disease therapy. Human PSCs, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) can self-renew and give rise to all cells of the body. Human PSCs are attractive cell sources for regenerative medicine, tissue engineering, drug discovery, and developmental studies. Several recent studies have shown that mesenchymal stem cells (MSCs) can also differentiate (or trans-differentiate) into hepatocytes. Differentiation of human PSCs and MSCs into functional hepatocyte-like cells (HLCs) opens new strategies to study genetic diseases, hepatotoxicity, infection of hepatotropic viruses, and analyze hepatic biology. Numerous in vitro and in vivo differentiation protocols have been established to obtain human PSCs/MSCs-derived HLCs and mimic their characteristics. It was recently discovered that microRNAs (miRNAs) play a critical role in controlling the ectopic expression of transcription factors and governing the hepatocyte differentiation of human PSCs and MSCs. In this review, we focused on the role of miRNAs in the differentiation of human PSCs and MSCs into hepatocytes.
Collapse
Affiliation(s)
- Hao Xu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Liying Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Guojia Yuan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Xiaolu Liang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Xiaoguang Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Zuobiao Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Nianping Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong. China
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz. Iran
| |
Collapse
|
14
|
Thyroid Hormone Effect on the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells. Pharmaceuticals (Basel) 2021; 14:ph14060544. [PMID: 34200130 PMCID: PMC8230271 DOI: 10.3390/ph14060544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver maturation takes place. Here we assessed the influence of thyroid hormone on hepatic progenitor differentiation to HLCs. We analyzed gene and protein expression of early and late hepatic markers and demonstrated the selective activity of thyroid hormone on different genes. Particularly, we demonstrated thyroid hormone-dependent inhibition of the fetal hepatic marker AFP. Our study sheds light on the role of thyroid hormone during liver differentiation and maturation.
Collapse
|
15
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
16
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Donato MT, Tolosa L. High-Content Screening for the Detection of Drug-Induced Oxidative Stress in Liver Cells. Antioxidants (Basel) 2021; 10:antiox10010106. [PMID: 33451093 PMCID: PMC7828515 DOI: 10.3390/antiox10010106] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a major cause of drug development failure, post-marketing warnings and restriction of use. An improved understanding of the mechanisms underlying DILI is required for better drug design and development. Enhanced reactive oxygen species (ROS) levels may cause a wide spectrum of oxidative damage, which has been described as a major mechanism implicated in DILI. Several cell-based assays have been developed as in vitro tools for early safety risk assessments. Among them, high-content screening technology has been used for the identification of modes of action, the determination of the level of injury and the discovery of predictive biomarkers for the safety assessment of compounds. In this paper, we review the value of in vitro high-content screening studies and evaluate how to assess oxidative stress induced by drugs in hepatic cells, demonstrating the detection of pre-lethal mechanisms of DILI as a powerful tool in human toxicology.
Collapse
Affiliation(s)
- María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Correspondence: (M.T.D.); (L.T.); Tel.: +34-961-246-649 (M.D.); +34-961-246-619 (L.T.)
| |
Collapse
|
18
|
Donato MT, Tolosa L. Application of high-content screening for the study of hepatotoxicity: Focus on food toxicology. Food Chem Toxicol 2020; 147:111872. [PMID: 33220391 DOI: 10.1016/j.fct.2020.111872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/12/2020] [Accepted: 11/15/2020] [Indexed: 01/17/2023]
Abstract
Safety evaluation of thousands of chemicals that are directly added to or come in contact with food is needed. Due to the central role of the liver in intermediary and energy metabolism and in the biotransformation of foreign compounds, the hepatotoxicity assessment is essential. New approach methodologies have been proposed for the safety evaluation of compounds with the idea of rapidly gaining insight into effects on biochemical mechanisms and cellular processes and screening large number of compounds. In this sense, high-content screening (HCS) is the application of automated microscopy and image analysis for better understanding of complex biological functions and mechanisms of toxicity. HCS multiparametric measurements have been shown to be a useful tool in early toxicity testing during drug development, but also in assessing the impact from food chemicals and environmental toxicants. Reviewing the use of cellular imaging technology in the safety evaluation of food-relevant chemicals offers evidence about the impact of this technology in safety assessment.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain.
| |
Collapse
|
19
|
Concentration-dependent toxicogenomic changes of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Cell Biol Toxicol 2020; 37:245-259. [PMID: 32447489 DOI: 10.1007/s10565-020-09529-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
The application of silver nanoparticles (AgNPs) in consumer products has been increasing rapidly over the past decades. Therefore, in vitro models capable of accurately predicting the toxicity of AgNPs are much needed. Hepatocyte-like cells (HLCs) derived from human induced pluripotent stem cells (iPSCs) represent an attractive alternative in vitro hepatotoxicity model. Yet, the use of iPSC-derived HLCs (iPSC-HLCs) for the study of nanoparticle toxicity has not been reported so far. In the present study, transcriptomic changes induced by varying concentrations (5-25 μg/ml) of AgNPs were characterized in iPSC-HLCs after 24-h exposure. AgNPs caused concentration-dependent gene expression changes in iPSC-HLCs. At all the concentrations, members of the metallothionein (MT) and the heat shock protein (HSP) families were the dominating upregulated genes, suggesting that exposure to AgNPs induced oxidative stresses in iPSC-HLCs and as a result elicited cellular protective responses in the cells. Functional analysis showed that the differentially expressed genes (DEGs) were majorly involved in the biological processes of metabolism, response to stress, and cell organization and biogenesis. Ingenuity Pathway Analysis revealed that cancer was at the top of diseases and disorders associated with the DEGs at all concentrations. These results were in accordance with those reported previously on hepatoma cell lines and primary hepatocytes. Considering the advantages iPSC-HLCs have over other liver cell models in terms of unlimited supply, consistency in quality, sustainability of function in long-term culture, and, more importantly, affordability of donor specificity, the results of the current study suggest that iPSC-HLCs may serve as a better in vitro model for liver nanotoxicology.
Collapse
|
20
|
Jellali R, Lereau Bernier M, Tauran Y, Gilard F, Danoy M, Kido T, Miyajima A, Sakai Y, Leclerc E. Metabolomic profiling during the differentiation of human induced pluripotent stem cells into hepatocyte-like cells. Differentiation 2019; 112:17-26. [PMID: 31869687 DOI: 10.1016/j.diff.2019.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are potentially an invaluable source of cells for regenerative medicine, disease modeling and drug discovery. However, the differentiation of hiPSCs into fully functional hepatocytes remains a major challenge. Despite the importance of the information carried by metabolomes, the exploitation of metabolomics for characterizing and understanding hiPSC differentiation remains largely unexplored. Here, to increase knowledge of hiPSC maturation into mature hepatocytes, we investigated their metabolomics profiles during sequential step-by-step differentiation: definitive endoderm (DE), specification into hepatocytes (HB-pro (hepatoblast progenitors)), progenitor hepatocytes (Pro-HEP) and mature hepatocyte-like cells (HLCs). Metabolomics analysis illustrated a switch from glycolysis-based respiration in DE step to oxidative phosphorylation in HLCs step. DE was characterized by fatty acid beta oxidation, sorbitol metabolism and pentose phosphate pathway, and glutamine and glucose metabolisms as various potential energy sources. The complex lipid metabolism switch was monitored via the reduction of lipid production from DE to HLCs step, whereas high glycerol production occurred mainly in HLCs. The nitrogen cycle, via urea production, was also a typical mechanism revealed in HLCs step. Our analysis may contribute to better understanding of differentiation and suggest new targets for improving iPSC maturation into functional hepatocytes.
Collapse
Affiliation(s)
- Rachid Jellali
- CNRS UMR 7338, Laboratoire de Biomécanique et Bioingénierie, Sorbonne Universités, Université de Technologies de Compiègne, France.
| | - Myriam Lereau Bernier
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yannick Tauran
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan; LMI CNRS UMR5615, Université Lyon 1, Villeurbanne, 69622, France
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université D'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Saclay Plant Sciences, Bâtiment 630, 91405, Orsay, France
| | - Mathieu Danoy
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Taketomo Kido
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yasuyuki Sakai
- CIBIS, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Eric Leclerc
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
21
|
Progenitors of the liver. Differentiation 2019; 110:17-18. [PMID: 31563067 DOI: 10.1016/j.diff.2019.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Yang H, Guo D, Xu Y, Zhu M, Yao C, Chen C, Jia W. Comparison of Different Liver Test Thresholds for Drug-Induced Liver Injury: Updated RUCAM versus Other Methods. Front Pharmacol 2019; 10:816. [PMID: 31379581 PMCID: PMC6658872 DOI: 10.3389/fphar.2019.00816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022] Open
Abstract
According to the updated Roussel Uclaf Causality Assessment Method (RUCAM), drug-induced liver injury (DILI) is currently defined based on thresholds of alanine aminotransferase (ALT) levels above 5 × the upper limit of normal (ULN) and/or alkaline phosphatase (ALP) levels greater than 2 × the ULN. However, many parameters with different thresholds are also currently used in the clinic. We therefore performed a comparative analysis to evaluate which set of criteria was the most appropriate to detect DILI. We enrolled hospitalized patients who received fluoroquinolones to treat or prevent infections. Three liver test criteria were used to diagnose DILI in these patients. RUCAM criteria were defined as the gold standard, and the other two criteria were as follows: 1) ALT or aspartate aminotransferase (AST) levels greater than 5 × the ULN on two consecutive occasions and/or ALP levels greater than 2 × the ULN on two consecutive occasions [issued by DILI Network (DILIN)]; 2) ALT levels greater than 1 × the ULN on two consecutive occasions or ALT levels greater than 2 × the ULN [issued by the National Medical Products Administration (NMPA) of China]. We found that the RUCAM criteria resulted in 657 warnings, DILIN criteria resulted in 358, NMPA criteria resulted in 1,377, and the positive predictive value (PPV) were 9.74%, 10.89%, and 9.73% (P = 0.80), respectively. The levels of agreement of the DILIN and NMPA criteria with the RUCAM criteria were moderate, but the agreement between the DILIN criteria and NMPA criteria was poor. In conclusion, the NMPA criteria with relatively lax thresholds for the parameters require much more labor to determine the diagnosis, making them unsuitable for clinical practice. Conversely, the DILIN criteria employing stricter thresholds for the parameters were more effective but would miss some positive cases, and the cases it identified were usually quite serious, which is not conductive to early intervention. Therefore, we still recommend the use of the RUCAM criteria in clinical practice.
Collapse
Affiliation(s)
- Hongyi Yang
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Daihong Guo
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuanjie Xu
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Man Zhu
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chong Yao
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chao Chen
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wangping Jia
- Department of Pharmaceutical Care, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|