1
|
Khedr M, Youssef FS, El-Kattan N, Abozahra MS, Selim MN, Yousef A, Khalil KMA, Mekky AE. FolE gene expression for folic acid productivity from optimized and characterized probiotic Lactobacillus delbrueckii. J Genet Eng Biotechnol 2023; 21:169. [PMID: 38108957 PMCID: PMC10728034 DOI: 10.1186/s43141-023-00603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Lactobacillus delbrueckii was one of the most common milk lactic acid bacterial strains (LAB) which characterized as probiotic with many health influencing properties. RESULTS Among seven isolates, KH1 isolate was the best producer of folic acid with 100 µg/ml after 48 h of incubation; FolE gene expression after 24 h of incubation was in the highest value in case of KH1 with three folds. Lactose was the best carbon source for this KH1, besides the best next isolates KH80 and KH98. The selected three LAB isolates were identified through 16S rDNA as Lactobacillus delbrueckii. These three isolates have high tolerance against acidic pH 2-3; they give 45, 10, and 22 CFUs at pH 3, besides 9, 6, and 4 CFUs at pH2, respectively. They also have resistance against elevated bile salt range 0.1-0.4%. KH1 recorded 99% scavenging against 97.3% 1000 µg/ml ascorbic acid. Docking study exhibits the binding mode of folic acid which exhibited an energy binding of - 8.65 kcal/mol against DHFR. Folic acid formed four Pi-alkyl, Pi-Pi, and Pi-sigma interactions with Ala9, Ile7, Phe34, and Ile60. Additionally, folic acid interacted with Glu30 and Asn64 by three hydrogen bonds with 1.77, 1.76, and 1.96 Å. CONCLUSION LAB isolates have probiotic properties, antioxidant activity, and desired organic natural source for folic acid supplementation that improve hemoglobin that indicated by docking study interaction.
Collapse
Affiliation(s)
- Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt.
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University, Giza, 1221, Egypt
| | - Noura El-Kattan
- Department of Microbiology, Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Giza, Egypt
| | - Mahmoud S Abozahra
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt
| | - Mohammed N Selim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33433, USA
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, 12622, Cairo, Egypt
| | - Abdullah Yousef
- Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Al ryada, Egypt
| | - Kamal M A Khalil
- Genetic Engineering and Biotechnology Division, Genetics and Cytology Department, National Research Centre, 33 El-Buhouth Street, Dokki, 12622, Cairo, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr, 11884, Cairo, Egypt
| |
Collapse
|
2
|
Identification and validation of the mode of action of the chalcone anti-mycobacterial compounds. ACTA ACUST UNITED AC 2020; 6:100041. [PMID: 32743153 PMCID: PMC7388970 DOI: 10.1016/j.tcsw.2020.100041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/03/2022]
Abstract
Chalcone 1a inhibits the growth of Mycobacterium bovis BCG (MIC 6.25 µg.ml−1). Chalcone 1a directly targets InhA.
Objectives The search for new TB drugs has become one of the great challenges for modern medicinal chemistry. An improvement in the outcomes of TB chemotherapy can be achieved by the development of new, shorter, cheap, safe and effective anti-TB regimens. Methods Chalcones (1a-1o) were synthesized and evaluated for their antimycobacterial activity against Mycobacterium bovis BCG using growth inhibition assays. Compound 1a was selected as a ‘hit’ compound. The mode of action of compound 1a, was identified by mycolic acid methyl esters (MAMEs) and fatty acid methyl esters (FAMEs) analysis using thin layer chromatography. Dose dependent experiments were conducted by over-expressing components of FAS-II in M. bovis BCG to confirm the target. Ligand binding using intrinsic tryptophan assay and molecular docking were used to further validate the target. Results MAMEs and FAMEs analysis showed dose-dependent reduction of MAMEs with the overall abundance of FAMEs suggesting that compound 1a targets mycolic acid biosynthesis. Direct binding of 1a to InhA was observed using an intrinsic tryptophan fluorescence binding assay, and a 2-fold IC50 shift was observed with an InhA overexpressing strain confirming InhA as the cellular target. Conclusion The chalcone 1a exhibits potent antimycobacterial activity, displays a good safety profile and is a direct inhibitor of InhA, a key component in mycolic acid synthesis, validating this series for further anti-TB drug development.
Collapse
|
3
|
Patil KK, Meshram RJ, Barage SH, Gacche RN. Dietary flavonoids inhibit the glycation of lens proteins: implications in the management of diabetic cataract. 3 Biotech 2019; 9:47. [PMID: 30729071 DOI: 10.1007/s13205-019-1581-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
The intervention of functional foods as complementary therapeutic approach for the amelioration of diabetes and sugar induced cataractogenesis is more appreciated over the present day chemotherapy agents owing to their nontoxic and increased bioavailability concerns. Dietary flavonoids, a class of bioactive phytochemicals is known to have wide range of biological activities against variety of human ailments. In the present study, we demonstrate anti-cataract effect of eight dietary flavonoids in sugar induced lens organ culture study. We present data on processes like inhibition of glycation-induced lens cloudiness, lens protein aggregation, glycation reaction and advanced glycation end products formation that can act as biochemical markers for this disease. The selected flavonoids were also tested for their aldose reductase (AR) inhibition (experimental and in silico). The molecular dynamics simulation results shed light on mechanistic details of flavonoid induced AR inhibition. The outcome of the present study clearly focuses the significance of kaempferol, taxifolin and quercetin as potential candidates for controlling diabetic cataract.
Collapse
Affiliation(s)
- Kapil K Patil
- 1School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS 431 606 India
| | - Rohan J Meshram
- 2Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS 411007 India
| | - Sagar H Barage
- 2Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS 411007 India
- 4Amity Institute of Biotechnology, Amity University, Panvel, MS India
| | - Rajesh N Gacche
- 1School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, MS 431 606 India
- 3Department of Biotechnology, Savitribai Phule Pune University, Pune, MS 411007 India
| |
Collapse
|
4
|
Sharma K, Tanwar O, Sharma S, Ali S, Alam M, Zaman M, Akhter M. Structural comparison of Mtb-DHFR and h-DHFR for design, synthesis and evaluation of selective non-pteridine analogues as antitubercular agents. Bioorg Chem 2018; 80:319-333. [DOI: 10.1016/j.bioorg.2018.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 11/29/2022]
|
5
|
de Oliveira Viana J, Scotti MT, Scotti L. Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Putri JF, Widodo N, Sakamoto K, Kaul SC, Wadhwa R. Induction of senescence in cancer cells by 5′-Aza-2′-deoxycytidine: Bioinformatics and experimental insights to its targets. Comput Biol Chem 2017; 70:49-55. [DOI: 10.1016/j.compbiolchem.2017.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/27/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
|
7
|
Arshad S, Pillai RR, Zainuri DA, Khalib NC, Razak IA, Armaković S, Armaković SJ. Synthesis, crystal structure analysis, molecular docking studies and density functional theory predictions of the local reactive properties and degradation properties of a novel halochalcone. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Shelke RU, Degani MS, Raju A, Ray MK, Rajan MGR. Fragment Discovery for the Design of Nitrogen Heterocycles asMycobacterium tuberculosisDihydrofolate Reductase Inhibitors. Arch Pharm (Weinheim) 2016; 349:602-13. [DOI: 10.1002/ardp.201600066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/21/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Rupesh U. Shelke
- Institute of Chemical Technology; Nathalal Parekh Marg, Matunga; Mumbai India
| | - Mariam S. Degani
- Institute of Chemical Technology; Nathalal Parekh Marg, Matunga; Mumbai India
| | - Archana Raju
- Institute of Chemical Technology; Nathalal Parekh Marg, Matunga; Mumbai India
| | - Mukti Kanta Ray
- Radiation Medicine Centre; Tata Memorial Hospital, Parel; Mumbai India
| | | |
Collapse
|
9
|
Patil KK, Meshram RJ, Gacche RN. Effect of monohydroxylated flavonoids on glycation-induced lens opacity and protein aggregation. J Enzyme Inhib Med Chem 2016; 31:148-156. [DOI: 10.1080/14756366.2016.1180593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Kapil K. Patil
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Rohan J. Meshram
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| | - Rajesh N. Gacche
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
11
|
Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents. Comput Biol Chem 2016; 61:86-96. [PMID: 26844536 DOI: 10.1016/j.compbiolchem.2016.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 11/23/2022]
Abstract
Searching novel, safe and effective anti-inflammatory agents has remained an evolving research enquiry in the mainstream of inflammatory disorders. In the present investigation series of thiazoles bearing pyrazole as a possible pharmacophore were synthesized and assessed for their anti inflammatory activity using in vitro and in vivo methods. In order to decipher the possible anti-inflammatory mechanism of action of the synthesized compounds, cyclooxygenase I and II (COX-I and COX-II) inhibition assays were also carried out. The results obtained clearly focus the significance of compounds 5d, 5h and 5i as selective COX-II inhibitors. Moreover, compound 5h was also identified as a lead molecule for inhibition of the carrageenin induced rat paw edema in animal model studies. Molecular docking results revealed significant interactions of the test compounds with the active site of COX-II, which perhaps can be explored for design and development of novel COX-II selective anti-inflammatory agents.
Collapse
|
12
|
Flavonoids as a scaffold for development of novel anti-angiogenic agents: An experimental and computational enquiry. Arch Biochem Biophys 2015; 577-578:35-48. [PMID: 25937258 DOI: 10.1016/j.abb.2015.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/21/2022]
Abstract
Relationship between structural diversity and biological activities of flavonoids has remained an important discourse in the mainstream of flavonoid research. In the current study anti-angiogenic, cytotoxic, antioxidant and cyclooxygenase (COX) inhibitory activities of diverse class of flavonoids including hydroxyl and methoxy substituted flavones, flavonones and flavonols have been evaluated in the light of developing flavonoids as a potential scaffold for designing novel anti-antiangiogenic agents. We demonstrate anti-angiogenic potential of flavonoids using in vivo chorioallantoic membrane model (CAM) and further elaborate the possible structural reasoning behind observed anti-angiogenic effect using in silico methods. Additionally, we report antioxidant potential and kinetics of free radical scavenging activity using DPPH and SOR scavenging assays. Current study indicates that selected flavonoids possess considerable COX inhibition potential. Furthermore, we describe cytotoxicity of flavonoids against selected cancer cell lines using MTT cell viability assay. Structural analysis of in silico docking poses and predicted binding free energy values are not only in accordance with the experimental anti-angiogenic CAM values from this study but also are in agreement with the previously reported literature on crystallographic data concerning EGFR and VEGFR inhibition.
Collapse
|