1
|
Del Chierico F, Masi L, Petito V, Baldelli V, Puca P, Benvenuto R, Fidaleo M, Palucci I, Lopetuso LR, Caristo ME, Carrozza C, Giustiniani MC, Nakamichi N, Kato Y, Putignani L, Gasbarrini A, Pani G, Scaldaferri F. Solute Transporter OCTN1/Slc22a4 Affects Disease Severity and Response to Infliximab in Experimental Colitis: Role of Gut Microbiota and Immune Modulation. Inflamm Bowel Dis 2024; 30:2259-2270. [PMID: 38944815 PMCID: PMC11630256 DOI: 10.1093/ibd/izae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 07/01/2024]
Abstract
BACKGROUND Inflammatory bowel diseases are chronic disabling conditions with a complex and multifactorial etiology, still incompletely understood. OCTN1, an organic cation transporter, could have a role in modulating the inflammatory response, and some genetic polymorphisms of this molecule have been associated with increased risk of inflammatory bowel diseases. Until now, limited information exists on its potential in predicting/modulating patient's response to therapies. The aim of this study was to evaluate the role of OCTN1 in modifying gut microbiota and mucosal immunity in response to infliximab therapy in murine colitis. METHODS A dextran sodium sulphate model of colitis was used to assess the clinical efficacy of infliximab administered intravenously in ocnt1 gene knockout mice and their C57BL/6 controls. Stool, colon, and mesenteric lymph node samples were collected to evaluate differences in gut microbiota composition, histology, and T cell populations, respectively. RESULTS Octn1 -/- influences the microbiota profile and is associated with a worse dysbiosis in mice with colitis. Infliximab treatment attenuates colitis-associated dysbiosis, with an increase of bacterial richness and evenness in both strains. In comparison with wild type, octn1-/- mice have milder disease and a higher baseline percentage of Treg, Tmemory, Th2 and Th17 cells. CONCLUSIONS Our data support the murine model to study OCTN1 genetic contribution to inflammatory bowel diseases. This could be the first step towards the recognition of this membrane transporter as a biomarker in inflammatory conditions and a predictor of response to therapies.
Collapse
Affiliation(s)
- Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Letizia Masi
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Valentina Petito
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Valerio Baldelli
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Pierluigi Puca
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Benvenuto
- Department of Pathology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies Charles Darwin, Università La Sapienza, Rome, Italy
| | - Ivana Palucci
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Institute of Microbiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Loris Riccardo Lopetuso
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Medicine and Ageing Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | | | - Cinzia Carrozza
- Department of Clinical Biochemistry, Laboratory and Infectious Science, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | | | - Noritaka Nakamichi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, 370-0033, Takasaki, Gunma, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD) Translational Research Laboratories, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
- Department of Medical and Surgical Science, Digestive Disease Center (CeMAD), Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Giovambattista Pani
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Franco Scaldaferri
- Department of Medical and Surgical Sciences, UOS Inflammatory Bowel Diseases, Center for Diseases of Digestive System (CeMAD), Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
2
|
Shaban SF, Abdel-Fattah EA, Ali MM, Dessouky AA. The therapeutic efficacy of adipose mesenchymal stem cell-derived microvesicles versus infliximab in a dextran sodium sulfate induced ulcerative colitis rat model. Ultrastruct Pathol 2024; 48:526-549. [PMID: 39545690 DOI: 10.1080/01913123.2024.2426566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic relapsing intestinal inflammation that is becoming of increasing incidence worldwide and has insufficient treatment. Therefore, finding effective therapies remains a priority. A dextran sodium sulfate colitis model was established to elucidate colonic layers alterations and compare adipose mesenchymal stem cell-derived microvesicles (MSC-MVs) versus infliximab (IFX) efficacy through biochemical, light, and electron microscope studies. Fifty-four rats were allocated to 4 groups: Control (Con), UC, UC+IFX, and UC+MSC-MVs groups. End body weights (BW) and serum malondialdehyde (MDA) levels were recorded. Colitis severity was estimated by disease activity index (DAI). Colonic specimens were processed to evaluate the histological structure, collagen content, surface mucous and goblet cells, CD44, TNF-α, and GFAP immune expression. Morphometric and statistical analyses were performed. The UC group revealed congested, stenosed colons, a significant decline in end BW, and a significant increase in serum MDA and DAI. Furthermore, disturbed histoarchitecture, inflammatory infiltration, depletion of surface mucous and goblet cells, increased collagen, and TNF-α expression and decreased GFAP expression were observed. Alterations were partially attenuated by IFX therapy, whereas MSC-MVs significantly improved all parameters. In conclusion, MSC-MVs were a superior therapeutic option, via attenuating oxidative stress and inflammatory infiltration, in addition to restoring intestinal epithelial integrity and mucosal barrier.
Collapse
Affiliation(s)
- Sahar F Shaban
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Eman A Abdel-Fattah
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Manar M Ali
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Medicine, Faculty of medicine, Zagazig University, Zagazig city, Egypt
| |
Collapse
|
3
|
Yang C, Merlin D. Unveiling Colitis: A Journey through the Dextran Sodium Sulfate-induced Model. Inflamm Bowel Dis 2024; 30:844-853. [PMID: 38280217 PMCID: PMC11063560 DOI: 10.1093/ibd/izad312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 01/29/2024]
Abstract
Animal models of inflammatory bowel disease (IBD) are valuable tools for investigating the factors involved in IBD pathogenesis and evaluating new therapeutic options. The dextran sodium sulfate (DSS)-induced model of colitis is arguably the most widely used animal model for studying the pathogenesis of and potential treatments for ulcerative colitis (UC), which is a primary form of IBD. This model offers several advantages as a research tool: it is highly reproducible, relatively easy to generate and maintain, and mimics many critical features of human IBD. Recently, it has also been used to study the role of gut microbiota in the development and progression of IBD and to investigate the effects of other factors, such as diet and genetics, on colitis severity. However, although DSS-induced colitis is the most popular and flexible model for preclinical IBD research, it is not an exact replica of human colitis, and some results obtained from this model cannot be directly applied to humans. This review aims to comprehensively discuss different factors that may be involved in the pathogenesis of DSS-induced colitis and the issues that should be considered when using this model for translational purposes.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Digestive Disease Research Group, Georgia State University, Atlanta, GA, 30303, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, 30033, USA
| |
Collapse
|
4
|
Peña-Cearra A, Castelo J, Lavín JL, Gonzalez-Lopez M, Pascual-Itoiz MA, Fuertes M, Gutiérrez de Juan V, Bárcena L, Martín-Ruiz I, Pellón A, Seoane I, Barriales D, Palacios A, Fullaondo A, Rodríguez-Lago I, Martinez-Chantar ML, Aransay AM, Rodriguez H, Anguita J, Abecia L. Mitochondrial dysfunction-associated microbiota establishes a transmissible refractory response to anti-TNF therapy during ulcerative colitis. Gut Microbes 2023; 15:2266626. [PMID: 37842919 PMCID: PMC10586225 DOI: 10.1080/19490976.2023.2266626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Anti-TNF therapy can induce and maintain a remission status during intestinal bowel disease. However, up to 30% of patients do not respond to this therapy by mechanisms that are unknown. Here, we show that the absence of MCJ, a natural inhibitor of the respiratory chain Complex I, induces gut microbiota changes that are critical determinants of the lack of response in a murine model of DSS-induced inflammation. First, we found that MCJ expression is restricted to macrophages in human colonic tissue. Therefore, we demonstrate by transcriptomic analysis of colon macrophages from DSS-induced mice that MCJ-deficiency is linked to the expression of genes belonging to the FcγR signaling pathway and contains an anti-TNF refractory gene signature identified in ulcerative colitis patients. The gut microbial composition changes observed upon DSS treatment in the MCJ-deficient mice revealed the increased presence of specific colitogenic members, including Ruminococcus gnavus and Oscillospira, which could be associated with the non-response to TNF inhibitors. Further, we show that the presence of a microbiota associated resistance to treatment is dominant and transmissible to responsive individuals. Collectively, our findings underscore the critical role played by macrophage mitochondrial function in the gut ecological niche that can substantially affect not only the severity of inflammation but also the ability to successfully respond to current therapies.
Collapse
Affiliation(s)
- Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jose Luis Lavín
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Applied Mathematics Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | | | - Miguel Fuertes
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Aize Pellón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Iratxe Seoane
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | - María L. Martinez-Chantar
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Ana Mª Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- CIBERehd, ISCIII, Madrid, Spain
| | - Hector Rodriguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
5
|
Awad A, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed infliximab suppositories for rectal biologic delivery. Int J Pharm X 2023. [DOI: 10.1016/j.ijpx.2023.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
6
|
Guo Y, Li X, Geng C, Song S, Xie X, Wang C. Vitamin D receptor involves in the protection of intestinal epithelial barrier function via up-regulating SLC26A3. J Steroid Biochem Mol Biol 2023; 227:106231. [PMID: 36462760 DOI: 10.1016/j.jsbmb.2022.106231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Vitamin D receptor (VDR) and SLC26A3 (DRA) have been identified as pivotal protective factors in maintaining gut homeostasis in IBD patients. However, the specific mechanism underlying the increased intestinal susceptibility to inflammation induced by the loss of VDR and whether DRA participates in the role of VDR regulating intestinal epithelial barrier function are undefined. AIM The current study is undertaken to elucidate the regulatory effects of VDR on DRA and VDR prevents intestinal epithelial barrier dysfunction via up-regulating the expression of DRA. METHODS WT and VDR-/- mice are used as models for intestinal epithelial response. Paracellular permeability is measured by TEER and FD-4 assays. Immunohistochemistry, immunofluorescence, qPCR and immunoblotting are performed to determine the effects of VDR and DRA on gut epithelial barrier function. RESULTS VDR-/- mice exhibits significant hyperpermeability of intestine with greatly decreased levels of ZO-1 and Claudin1 proteins. DRA is located on the intestinal epithelial apical membrane and is tightly modulated by VDR in vivo and in vitro via activating ERK1/2 MAPK signaling pathway. Notably, the current study for the first time demonstrates that VDR maintains intestinal epithelial barrier integrity via up-regulating DRA expression and the lack of DRA induced by VDR knockdown leads to a more susceptive condition for intestine to DSS-induced colitis. CONCLUSION Our study provides evidence and deep comprehension regarding the role of VDR in modulating DRA expression in gut homeostasis and makes novel contributions to better generally understanding the links between VDR, DRA and intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoxi Xie
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Rommasi F, Nasiri MJ, Mirsaeidi M. Immunomodulatory agents for COVID-19 treatment: possible mechanism of action and immunopathology features. Mol Cell Biochem 2022; 477:711-726. [PMID: 35013850 PMCID: PMC8747854 DOI: 10.1007/s11010-021-04325-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Department of Pulmonary and Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Lee J, Son W, Hong J, Song Y, Yang CS, Kim YH. Down-regulation of TNF-α via macrophage-targeted RNAi system for the treatment of acute inflammatory sepsis. J Control Release 2021; 336:344-353. [PMID: 34147573 DOI: 10.1016/j.jconrel.2021.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by bacterial infection. The sepsis therapy has involved prescription of adequate antibiotics, requiring several days to determine the proper type without reducing the inflammatory response. Thus, it is necessary to rapidly decrease fundamental inflammation, which can induce serious organ damage. In the inflammatory mechanism, tumor necrosis factor-alpha (TNF-α) produced by macrophages has an important role in infiltration of macrophages into infected sites and as a trigger for secretion of pro-inflammatory cytokines. However, commercialized TNF-α antibody medicines have limits such as fibrosis, cytokine storms, and high production costs. There is a growing need for anti-inflammatory sepsis treatment free from side effects. For this reason, TNF-α converting enzyme (TACE) could be an innovative target to break the positive feedback loop of inflammatory mediators (TNF-α) since it converts the inactive TNF-α membrane bound form to the activated soluble form in macrophages. A non-viral gene delivery system was developed in this study to deliver siRNA into inflammation-mediated macrophages without toxicity. The peptide-based gene carrier created by conjugating positively-charged nine arginine (9R) and the TKPR (Thr-Lys-Pro-Arg) sequence from the Fc region of Immunoglobulin G (IgG) specifically binds to the neuropilin-1 (NRP-1) receptor on the macrophage surface. Our results demonstrated that siTACE/TKPR-9R complexes were internalized in macrophages and successfully down-regulated TACE mRNA level. Finally, RNA interference with cell-targeted peptide carriers indicates a fundamental therapy for acute inflammatory sepsis free of off-target effects.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Juhyeong Hong
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Yoonsung Song
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea.
| | - Yong-Hee Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Pabari RM, Tambuwala MM, Lajczak-McGinley N, Aljabali A, Kirby BP, Keely S, Ramtoola Z. Novel polyurethane based particulate formulations of infliximab reduce inflammation in DSS induced murine model of colitis - A preliminary study. Int J Pharm 2021; 604:120717. [PMID: 34015378 DOI: 10.1016/j.ijpharm.2021.120717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Our recent study showed that novel infliximab (INF) loaded polyesterurethane (INF-PU) and INF-PU-PEG particulate formulations reduced inflammation in an in-vitro epithelial inflammation model. In this study we investigated therapeutic potential of novel INF-PU and INF-PU-PEG particulate formulations to reduce inflammation in a dextran sodium sulfate (DSS) induced murine model of colitis. Severity of colitis was assessed by measurement of disease activity index (DAI) score, inflammatory markers (neutrophil infiltration, TNFα) and histological score. Treatment groups orally administered with INF-PU and INF-PU-PEG particulate formulations showed improvement in the clinical signs of colitis, similar to that observed with intraperitoneally administered INF, in both, moderate and severe DSS induced colitis model. This was related to a significant reduction in inflammatory cytokines, resulting in a significant reduction in histological score (ANOVA; p < 0.05), indicative of mucosal healing, a key goal of IBD therapy. This could be attributed to its targeted delivery to the inflamed colon and higher permeation of these particulate formulations across the inflamed colonic mucosa, as observed by the confocal images, resulting in local inhibition of TNFα at its site of production. These promising preliminary results warrant further investigation of orally administered INF and its novel particulate formulations in a wider preclinical study.
Collapse
Affiliation(s)
- Ritesh M Pabari
- RCSI, University of Medicine and Health Sciences, Dublin, Ireland.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry BT52 1SA, Northern Ireland, United Kingdom
| | | | - Alaa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Brian P Kirby
- RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephen Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
10
|
A Review of Selected IBD Biomarkers: From Animal Models to Bedside. Diagnostics (Basel) 2021; 11:diagnostics11020207. [PMID: 33573291 PMCID: PMC7911946 DOI: 10.3390/diagnostics11020207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a dysregulated inflammatory condition induced by multiple factors. The etiology of IBD is largely unknown, and the disease progression and prognosis are variable and unpredictable with uncontrolled disease behavior. Monitoring the status of chronic colitis closely is challenging for physicians, because the assessment of disease activity and severity require invasive methods. Using laboratory biomarkers may provide a useful alternative to invasive methods in the diagnosis and management of IBD. Furthermore, patients with ulcerative colitis or Crohn’s disease are also at risk of developing cancer. Annual colonoscopies can help lower the risk for developing colorectal cancer. However, laboratory biomarkers may also be helpful as non-invasive indicators in predicting treatment responses, improving prognosis, and predicting possible tumors. This review addresses selected laboratory biomarkers (including ANCA, chitinase 3-like 1, S100A12/RAGE, calprotectin, and TNF/TNFR2), which are identified by utilizing two well-accepted animal models of colitis, dextran sodium sulfate-induced and T cell receptor alpha knockout colitis models. In addition to being useful for monitoring disease severity, these biomarkers are associated with therapeutic strategies. The factors may regulate the initiation and perpetuation of inflammatory factors in the gut.
Collapse
|
11
|
Wang X, Yan J, Wang L, Pan D, Xu Y, Wang F, Sheng J, Li X, Yang M. Oral delivery of anti-TNF antibody shielded by natural polyphenol-mediated supramolecular assembly for inflammatory bowel disease therapy. Am J Cancer Res 2020; 10:10808-10822. [PMID: 32929381 PMCID: PMC7482796 DOI: 10.7150/thno.47601] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Anti-tumor necrosis factor (TNF) therapy is a very effective way to treat inflammatory bowel disease. However, systemic exposure to anti-TNF-α antibodies through current clinical systemic administration can cause serious adverse effects in many patients. Here, we report a facile prepared self-assembled supramolecular nanoparticle based on natural polyphenol tannic acid and poly(ethylene glycol) containing polymer for oral antibody delivery. Method: This supramolecular nanoparticle was fabricated within minutes in aqueous solution and easily scaled up to gram level due to their pH-dependent reversible assembly. DSS-induced colitis model was prepared to evaluate the ability of inflammatory colon targeting ability and therapeutic efficacy of this antibody-loaded nanoparticles. Results: This polyphenol-based nanoparticle can be aqueous assembly without organic solvent and thus scaled up easily. The oral administration of antibody loaded nanoparticle achieved high accumulation in the inflamed colon and low systemic exposure. The novel formulation of anti-TNF-α antibodies administrated orally achieved high efficacy in the treatment of colitis mice compared with free antibodies administered orally. The average weight, colon length, and inflammatory factors in colon and serum of colitis mice after the treatment of novel formulation of anti-TNF-α antibodies even reached the similar level to healthy controls. Conclusion: This polyphenol-based supramolecular nanoparticle is a promising platform for oral delivery of antibodies for the treatment of inflammatory bowel diseases, which may have promising clinical translation prospects.
Collapse
|
12
|
Gareb B, Otten AT, Frijlink HW, Dijkstra G, Kosterink JGW. Review: Local Tumor Necrosis Factor-α Inhibition in Inflammatory Bowel Disease. Pharmaceutics 2020; 12:E539. [PMID: 32545207 PMCID: PMC7356880 DOI: 10.3390/pharmaceutics12060539] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) characterized by intestinal inflammation. Increased intestinal levels of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) are associated with disease activity and severity. Anti-TNF-α therapy is administered systemically and efficacious in the treatment of IBD. However, systemic exposure is associated with adverse events that may impede therapeutic treatment. Clinical studies show that the efficacy correlates with immunological effects localized in the gastrointestinal tract (GIT) as opposed to systemic effects. These data suggest that site-specific TNF-α inhibition in IBD may be efficacious with fewer expected side effects related to systemic exposure. We therefore reviewed the available literature that investigated the efficacy or feasibility of local TNF-α inhibition in IBD. A literature search was performed on PubMed with given search terms and strategy. Of 8739 hits, 48 citations were included in this review. These studies ranged from animal studies to randomized placebo-controlled clinical trials. In these studies, local anti-TNF-α therapy was achieved with antibodies, antisense oligonucleotides (ASO), small interfering RNA (siRNA), microRNA (miRNA) and genetically modified organisms. This narrative review summarizes and discusses these approaches in view of the clinical relevance of local TNF-α inhibition in IBD.
Collapse
Affiliation(s)
- Bahez Gareb
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
- Martini Hospital Groningen, Department of Clinical Pharmacy and Toxicology, Van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Antonius T. Otten
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.T.O.); (G.D.)
| | - Jos G. W. Kosterink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Lopetuso LR, Gasbarrini A. Fighting the Hype for Predictors of Efficacy in Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:764-765. [PMID: 31689346 DOI: 10.1093/ibd/izz274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Indexed: 12/31/2022]
Abstract
Primary or secondary nonresponse to anti-TNF–α due to immunogenicity or treatment-related side effects and the growing presence of innovative biological therapies targeting different cytokines and immune processes raise a clear need for predictors of efficacy for anti-TNF-α treatment.
Collapse
Affiliation(s)
- Loris Riccardo Lopetuso
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma, Italia.,UOC Medicina Interna e Gastroenterologia, Area Medicina Interna, Gastroenterologia ed Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Antonio Gasbarrini
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma, Italia.,UOC Medicina Interna e Gastroenterologia, Area Medicina Interna, Gastroenterologia ed Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|
14
|
Wei F, Lang Y, Shen Q, Xu L, Cheng N, Chu Y, Lyu H, Chen F. Osteopontin-loaded PLGA nanoparticles enhance the intestinal mucosal barrier and alleviate inflammation via the NF-κB signaling pathway. Colloids Surf B Biointerfaces 2020; 190:110952. [PMID: 32172161 DOI: 10.1016/j.colsurfb.2020.110952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/20/2023]
Abstract
Osteopontin is a multifunctional glycoprotein that is secreted by a variety of tissues or cells, but the role of osteopontin in the epithelial mucosal barrier has not been clearly established. We loaded osteopontin into hyaluronic acid-functionalized polymeric nanoparticles, which were administered by gavage to a colitis mouse model. The disease activity index, weight gain and colon length were calculated to assess the degree of symptoms. Epithelial permeability was measured using fluorescein isothiocyanate-conjugated dextran. The enzymatic activity of myeloperoxidase in the colon and inflammatory cytokines were assayed to assess the levels of inflammation. The histological appearance of the colon was observed by H&E staining. Tight junction proteins and signaling pathway proteins (NF-κB and phospho-NF-κB) were determined by western blotting. The resultant spherical osteopontin-loaded nanoparticles were characterized by the expected particle size (approximately 272.3 nm) and a slightly negative zeta potential (approximately -5.3 mV). Interestingly, we found that the osteopontin-loaded nanoparticles exerted remedial effects on colitis by both enhancing the intestinal barrier and alleviating inflammation in vivo according to the tested parameters. These results suggest that OPN plays a positive role in protecting the epithelial mucosal barrier and may be a therapeutic drug in gut homeostasis.
Collapse
Affiliation(s)
- Feng Wei
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Yuhuang Lang
- Department of Emergency, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Qiang Shen
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Lin Xu
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Nuo Cheng
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Yan Chu
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Hongwei Lyu
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China
| | - Fengyuan Chen
- Department of Gastroenterology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
15
|
Wang H, Vilches-Moure JG, Cherkaoui S, Tardy I, Alleaume C, Bettinger T, Lutz A, Paulmurugan R. Chronic Model of Inflammatory Bowel Disease in IL-10 -/- Transgenic Mice: Evaluation with Ultrasound Molecular Imaging. Am J Cancer Res 2019; 9:6031-6046. [PMID: 31534535 PMCID: PMC6735517 DOI: 10.7150/thno.37397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Acute mouse models of inflammatory bowel disease (IBD) fail to mirror the chronic nature of IBD in patients. We sought to develop a chronic mouse IBD model for assessing long-term anti-inflammatory effects with ultrasound molecular imaging (USMI) by using dual P- and E-selectin targeted microbubbles (MBSelectin). Materials and Methods: Interleukin 10 deficient (IL-10-/- on a C57BL/6 genetic background; n=55) and FVB (n=16) mice were used. In IL-10-/-mice, various experimental regimens including piroxicam, 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS), respectively were used for promoting colitis; colitis was induced with DSS in FVB mice. Using clinical and small animal ultrasound scanners, evolution of inflammation in proximal, middle and distal colon, was monitored with USMI by using MBSelectin at multiple time points. Imaged colon segments were analyzed ex vivo for inflammatory changes on H&E staining and for P-selectin expression on immunofluorescence staining. Results: Sustained colitis was not detected with USMI in IL-10-/- or FVB mice with various experimental regimens. USMI signals either gradually decreased after the colitis enhancing/inducing drug/agents were discontinued, or the mortality rate of mice was high. Inflammation was observed on H&E staining in IL-10-/- mice with piroxicam promotion, while stable overexpression of P-selectin was not found on immunofluorescence staining in the same mice. Conclusion: Sustained colitis in IL-10-/- mice induced with piroxicam, TNBS or DSS, and in FVB mice induced with DSS, was not detected with USMI using MBSelectin, and this was verified by immunofluorescence staining for inflammation marker P-selectin. Thus, these models may not be appropriate for long-term monitoring of chronic colitis and subsequent treatment response with dual-selectin targeted USMI.
Collapse
|
16
|
Chiabai MJ, Almeida JF, de Azevedo MGD, Fernandes SS, Pereira VB, de Castro RJA, Jerônimo MS, Sousa IG, de Souza Vianna LM, Miyoshi A, Bocca AL, Maranhão AQ, Brigido MM. Mucosal delivery of Lactococcus lactis carrying an anti-TNF scFv expression vector ameliorates experimental colitis in mice. BMC Biotechnol 2019; 19:38. [PMID: 31238939 PMCID: PMC6593574 DOI: 10.1186/s12896-019-0518-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Anti-Tumor Necrosis Factor-alpha therapy has become clinically important for treating inflammatory bowel disease. However, the use of conventional immunotherapy requires a systemic exposure of patients and collateral side effects. Lactic acid bacteria have been shown to be effective as mucosal delivering system for cytokine and single domain antibodies, and it is amenable to clinical purposes. Therefore, lactic acid bacteria may function as vehicles for delivery of therapeutic antibodies molecules to the gastrointestinal tract restricting the pharmacological effect towards the gut. Here, we use the mucosal delivery of Lactococcus lactis carrying an anti-TNFα scFv expression plasmid on a DSS-induced colitis model in mice. Results Experimental colitis was induced with DSS administered in drinking water. L. lactis carrying the scFv expression vector was introduced by gavage. After four days of treatment, animals showed a significant improvement in histological score and disease activity index compared to those of untreated animals. Moreover, treated mice display IL-6, IL17A, IL1β, IL10 and FOXP3 mRNA levels similar to health control mice. Therefore, morphological and molecular markers suggest amelioration of the experimentally induced colitis. Conclusion These results provide evidence for the use of this alternative system for delivering therapeutic biopharmaceuticals in loco for treating inflammatory bowel disease, paving the way for a novel low-cost and site-specific biotechnological route for the treatment of inflammatory disorders. Electronic supplementary material The online version of this article (10.1186/s12896-019-0518-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria José Chiabai
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Juliana Franco Almeida
- Centro de Biotecnologia, Departamento de Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Suelen Soares Fernandes
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Vanessa Bastos Pereira
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raffael Júnio Araújo de Castro
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Márcio Sousa Jerônimo
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Isabel Garcia Sousa
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | | | - Anderson Miyoshi
- Laboratório de Tecnologia Genética, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anamelia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Andrea Queiroz Maranhão
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil.,Instituto Nacional de Investigação em Imunologia, INCTii, Brasília, Distrito Federal, Brazil
| | - Marcelo Macedo Brigido
- Laboratório de Imunologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, Distrito Federal, Brazil. .,Instituto Nacional de Investigação em Imunologia, INCTii, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
17
|
Reisdorf WC, Xie Q, Zeng X, Xie W, Rajpal N, Hoang B, Burgert ME, Kumar V, Hurle MR, Rajpal DK, O’Donnell S, MacDonald TT, Vossenkämper A, Wang L, Reilly M, Votta BJ, Sanchez Y, Agarwal P. Preclinical evaluation of EPHX2 inhibition as a novel treatment for inflammatory bowel disease. PLoS One 2019; 14:e0215033. [PMID: 31002701 PMCID: PMC6474586 DOI: 10.1371/journal.pone.0215033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by cytochrome P450 epoxygenation of arachidonic acid, which are metabolized by EPHX2 (epoxide hydrolase 2, alias soluble epoxide hydrolase or sEH). EETs have pleiotropic effects, including anti-inflammatory activity. Using a Connectivity Map (CMAP) approach, we identified an inverse-correlation between an exemplar EPHX2 inhibitor (EPHX2i) compound response and an inflammatory bowel disease patient-derived signature. To validate the gene-disease link, we tested a pre-clinical tool EPHX2i (GSK1910364) in a mouse disease model, where it showed improved outcomes comparable to or better than the positive control Cyclosporin A. Up-regulation of cytoprotective genes and down-regulation of proinflammatory cytokine production were observed in colon samples obtained from EPHX2i-treated mice. Follow-up immunohistochemistry analysis verified the presence of EPHX2 protein in infiltrated immune cells from Crohn's patient tissue biopsies. We further demonstrated that GSK2256294, a clinical EPHX2i, reduced the production of IL2, IL12p70, IL10 and TNFα in both ulcerative colitis and Crohn's disease patient-derived explant cultures. Interestingly, GSK2256294 reduced IL4 and IFNγ in ulcerative colitis, and IL1β in Crohn's disease specifically, suggesting potential differential effects of GSK2256294 in these two diseases. Taken together, these findings suggest a novel therapeutic use of EPHX2 inhibition for IBD.
Collapse
Affiliation(s)
- William C. Reisdorf
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- * E-mail:
| | - Qing Xie
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Xin Zeng
- Target & Pathway Validation, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Wensheng Xie
- Target & Pathway Validation, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Neetu Rajpal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Bao Hoang
- Exploratory Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mark E. Burgert
- Research Statistics, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Vinod Kumar
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mark R. Hurle
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Deepak K. Rajpal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Sarah O’Donnell
- Centre for Digestive Diseases, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Anna Vossenkämper
- Centre for Immunobiology, Blizard Institute, QMUL, London, United Kingdom
| | - Lin Wang
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Mike Reilly
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Bart J. Votta
- Pattern Recognition Receptor DPU, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Yolanda Sanchez
- Stress and Repair DPU, Respiratory Therapy Area, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Pankaj Agarwal
- Computational Biology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| |
Collapse
|
18
|
Petito V, Graziani C, Lopetuso LR, Fossati M, Battaglia A, Arena V, Scannone D, Quaranta G, Quagliariello A, Del Chierico F, Putignani L, Masucci L, Sanguinetti M, Sgambato A, Gasbarrini A, Scaldaferri F. Anti-tumor necrosis factor α therapy associates to type 17 helper T lymphocytes immunological shift and significant microbial changes in dextran sodium sulphate colitis. World J Gastroenterol 2019; 25:1465-1477. [PMID: 30948910 PMCID: PMC6441917 DOI: 10.3748/wjg.v25.i12.1465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anti-tumor necrosis factor α (TNFα) represents the best therapeutic option to induce mucosal healing and clinical remission in patients with moderate-severe ulcerative colitis. On the other side gut microbiota plays a crucial role in pathogenesis of ulcerative colitis but few information exists on how microbiota changes following anti-TNFα therapy and on microbiota role in mucosal healing.
AIM To elucidate whether gut microbiota and immune system changes appear following anti TNFα therapy during dextran sulfate sodium (DSS) colitis.
METHODS Eighty C57BL/6 mice were divided into four groups: “No DSS”, “No DSS + anti-TNFα”, “DSS” and “DSS + anti-TNFα”. “DSS” and “DSS + anti-TNFα” were treated for 5 d with 3% DSS. At day 3, mice whithin “No DSS+anti-TNFα” and “DSS+anti-TNFα” group received 5 mg/kg of an anti-TNFα agent. Forty mice were sacrificed at day 5, forty at day 12, after one week of recovery post DSS. The severity of colitis was assessed by a clinical score (Disease Activity Index), colon length and histology. Bacteria such as Bacteroides, Clostridiaceae, Enterococcaceae and Fecalibacterium prausnitzii (F. prausnitzii) were evaluated by quantitative PCR. Type 1 helper T lymphocytes (Th1), type 17 helper T lymphocytes (Th17) and CD4+ regulatory T lymphocytes (Treg) distributions in the mesenteric lymph node (MLN) were studied by flow cytometry.
RESULTS Bacteria associated with a healthy state (i.e., such as Bacteroides, Clostridiaceae and F. prausnitzii) decreased during colitis and increased in course of anti-TNFα treatment. Conversely, microorganisms belonging to Enterococcaceae genera, which are linked to inflammatory processes, showed an opposite trend. Furthermore, in colitic mice treated with anti-TNFα microbial changes were associated with an initial increase (day 5 of the colitis) in Treg cells and a consequent decrease (day 12 post DSS) in Th1 and Th17 frequency cells. Healthy mice treated with anti-TNFα showed the same histological, microbial and immune features of untreated colitic mice. “No DSS + anti-TNFα” group showed a lymphomononuclear infiltrate both at 5th and 12th d at hematoxylin and eosin staining, an increase of in Th1 and Th17 frequency at day 12, an increase of Enterococcaceae at day 5, a decrease of Bacteroides and Clostridiaceae at day 12.
CONCLUSION Anti-TNFα treatment in experimental model of colitis improves disease activity but it is associated to an increase in Th17 pathway together with gut microbiota alteration.
Collapse
Affiliation(s)
- Valentina Petito
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Cristina Graziani
- UOC di Medicina Interna e Gastroenterologia, Area di Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
| | - Loris R Lopetuso
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Area di Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
| | - Marco Fossati
- Dipartimento delle Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
| | - Alessandra Battaglia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Vincenzo Arena
- U.O.S.A. Gineco-Patologia e Patologia Mammaria, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Domenico Scannone
- Dipartimento di Anatomia Patologica e Istologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
| | - Gianluca Quaranta
- Dipartimento di Microbiologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Andrea Quagliariello
- Unità di Microbioma Umano, Ospedale Pediatrico Bambino Gesù IRCCS, Roma 00146, Italy
| | - Federica Del Chierico
- Unità di Microbioma Umano, Ospedale Pediatrico Bambino Gesù IRCCS, Roma 00146, Italy
| | - Lorenza Putignani
- Unità di Microbioma Umano, Ospedale Pediatrico Bambino Gesù IRCCS, Roma 00146, Italy
- Unità di Parassitologia, Ospedale Pediatrico Bambino Gesù IRCCS, Roma 00146, Italy
| | - Luca Masucci
- Dipartimento di Microbiologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Microbiologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Alessandro Sgambato
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Roma 00168, Italy
| | - Antonio Gasbarrini
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Area di Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
| | - Franco Scaldaferri
- Istituto di Patologia Speciale Medica, Università Cattolica del Sacro Cuore, Roma 00168, Italy
- UOC di Medicina Interna e Gastroenterologia, Area di Gastroenterologia e Oncologia Medica, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Roma 00168, Italy
| |
Collapse
|
19
|
Aprodu A, Mantaj J, Raimi-Abraham B, Vllasaliu D. Evaluation of a Methylcellulose and Hyaluronic Acid Hydrogel as a Vehicle for Rectal Delivery of Biologics. Pharmaceutics 2019; 11:pharmaceutics11030127. [PMID: 30893796 PMCID: PMC6471061 DOI: 10.3390/pharmaceutics11030127] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022] Open
Abstract
Biologics have changed the management of Inflammatory Bowel Disease (IBD), but there are concerns regarding unexpected systemic toxicity and loss of therapeutic response following administration by injection. Local delivery of biologics directly to the inflamed mucosa via rectal enema administration addresses the problems associated with systemic administration. Hydrogels are potentially useful delivery vehicles enabling rectal administration of biologics. Here, we prepared a hydrogel system based on methylcellulose (MC) and hyaluronic acid (HA), which possesses mucosal healing properties, incorporating a model macromolecular drug, namely (fluorescently-labeled) bovine serum albumin (BSA). The BSA-loaded MCHA hydrogel showed temperature-dependent gelation (liquid-like at 20 °C and gel-like at 37 °C) and shear thinning behavior, with these being important and desirable characteristics for rectal application (enabling easy application and retention). BSA release from the MCHA system at 37 °C was linear, with 50% of the loaded drug released within 2 h. The system demonstrated acceptable toxicity towards intestinal (colon) Caco-2 epithelial cells, even at high concentrations. Importantly, application of the BSA-loaded MCHA hydrogel to polarized Caco-2 monolayers, with or without an exemplar absorption enhancer, resulted in transintestinal permeability of BSA. The study therefore indicates that the MCHA hydrogel shows potential for topical (rectal) delivery of biologics in IBD.
Collapse
Affiliation(s)
- Andreea Aprodu
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| | - Julia Mantaj
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| | - Bahijja Raimi-Abraham
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| | - Driton Vllasaliu
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NH, UK.
| |
Collapse
|
20
|
Trapani V, Petito V, Di Agostini A, Arduini D, Hamersma W, Pietropaolo G, Luongo F, Arena V, Stigliano E, Lopetuso LR, Gasbarrini A, Wolf FI, Scaldaferri F. Dietary Magnesium Alleviates Experimental Murine Colitis Through Upregulation of the Transient Receptor Potential Melastatin 6 Channel. Inflamm Bowel Dis 2018; 24:2198-2210. [PMID: 29788266 DOI: 10.1093/ibd/izy186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Magnesium (Mg) is essential for human health and is absorbed mainly in the intestine. In view of the likely occurrence of an Mg deficit in inflammatory bowel disease (IBD) and the documented role of Mg in modulating inflammation, the present study addresses whether Mg availability can affect the onset and progression of intestinal inflammation. METHODS To study the correlation between Mg status and disease activity, we measured magnesemia by atomic absorption spectroscopy in a cohort of IBD patients. The effects of dietary Mg modulation were assessed in a murine model of dextran sodium sulfate (DSS)-induced colitis by monitoring magnesemia, weight, fecal occult blood, diarrhea, colon length, and histology. Expression of the transient receptor potential melastatin (TRPM) 6 channel was assessed by real-time reverse transcription polymerase chain reaction and immunohistochemistry in murine colon tissues. The effect of Mg on epithelial barrier formation/repair was evaluated in human colon cell lines. RESULTS Inflammatory bowel disease patients presented with a substantial Mg deficit, and serum Mg levels were inversely correlated with disease activity. In mice, an Mg-deficient diet caused hypomagnesemia and aggravated DSS-induced colitis. Colitis severely compromised intestinal Mg2+ absorption due to mucosal damage and reduction in TRPM6 expression, but Mg supplementation resulted in better restoration of mucosal integrity and channel expression. CONCLUSIONS Our results highlight the importance of evaluating and correcting magnesemia in IBD patients. The murine model suggests that Mg supplementation may represent a safe and cost-effective strategy to reduce inflammation and restore normal mucosal function.
Collapse
Affiliation(s)
- Valentina Trapani
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Valentina Petito
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Angelica Di Agostini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Daniela Arduini
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Willem Hamersma
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Giuseppe Pietropaolo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Francesca Luongo
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Vincenzo Arena
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Egidio Stigliano
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Loris R Lopetuso
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Antonio Gasbarrini
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Federica I Wolf
- Istituto di Patologia Generale, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| | - Franco Scaldaferri
- Polo di Scienze Gastroenterologiche ed Endocrino-Metaboliche, Area Gastroenterologia, Medicina Interna, Gastroenterologia e Malattie del Fegato, Fondazione Policlinico Universitario "Agostino Gemelli," Rome, Italy
| |
Collapse
|
21
|
Schwartz J, Moreno E, Calvo A, Blanco L, Fernández-Rubio C, Sanmartín C, Nguewa P, Irache JM, Larrea E, Espuelas S. Combination of paromomycin plus human anti-TNF-α antibodies to control the local inflammatory response in BALB/ mice with cutaneous leishmaniasis lesions. J Dermatol Sci 2018; 92:78-88. [PMID: 30037731 DOI: 10.1016/j.jdermsci.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) skin lesions are the result of a deregulated immune response, which is unable to eliminate Leishmania parasites. The control of both, parasites and host immune response, is critical to prevent tissue destruction. The skin ulceration has been correlated with high TNF-α level. OBJECTIVE Because human anti-TNF-α antibodies (Ab) have been successfully assayed in several mice inflammatory diseases, we hypothesized that their anti-inflammatory effect could optimize the healing of CL lesions achieved after topical application of paromomycin (PM), the current chemotherapy against CL. METHODS AND RESULTS We first compared the in vitro efficacy of PM and Ab alone and the drug given in combination with Ab to assess if the Ab could interfere with PM leishmanicidal activity in L. major-infected bone marrow-derived macrophages. The combination therapy had similar antileishmanial activity to the drug alone and showed no influence on NO production, which allows macrophage-mediated parasite killing. Next, we demonstrated in an in vivo model of Imiquimod®-induced inflammation that topical Ab and PM inhibit the infiltration of inflammatory cells in the skin. In the efficacy studies in L. major-infected BALB/c mice, PM combined with Ab led to a sharp infection reduction and showed a stronger anti-inflammatory activity than PM alone. This was confirmed by the down-regulation of TNF-α, IL-1β, iNOS, IL-17, and CCL3 as well as by a decrease of the neutrophilic infiltrate during infection upon treatment with the Ab. CONCLUSIONS In terms of parasite elimination and inflammation reduction, topical application of Ab in combination with PM was more effective than the drug alone.
Collapse
Affiliation(s)
- Juana Schwartz
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Esther Moreno
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Organic and Pharmaceutical Chemistry Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Alba Calvo
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Laura Blanco
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Celia Fernández-Rubio
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Microbiology and Parasitology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Carmen Sanmartín
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Organic and Pharmaceutical Chemistry Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Paul Nguewa
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain; Microbiology and Parasitology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain
| | - Juan M Irache
- Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Esther Larrea
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain
| | - Socorro Espuelas
- Tropical Health Institute, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Pharmacy and Pharmaceutical Technology Department, University of Navarra, Irunlarrea 1, E-31008, Pamplona, Spain; Navarra Institute for Health Research, IdisNA, Spain.
| |
Collapse
|
22
|
SLC26A3 (DRA) prevents TNF-alpha-induced barrier dysfunction and dextran sulfate sodium-induced acute colitis. J Transl Med 2018; 98:462-476. [PMID: 29330471 DOI: 10.1038/s41374-017-0005-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
SLC26A3 encodes a Cl-/HCO3- ion transporter that is also known as downregulated in adenoma (DRA) and is involved in HCO3-/mucus formation. The role of DRA in the epithelial barrier has not been previously established. In this study, we investigated the in vivo and in vitro mechanisms of DRA in the colon epithelial barrier. Immunofluorescence (IF) and co-immunoprecipitation (co-IP) studies reveal that DRA binds directly to tight junction (TJ) proteins and affects the expression of TJ proteins in polarized Caco-2BBe cells. Similarly, DRA colocalizes with ZO-1 in the intestinal epithelium. Knockdown or overexpression of DRA leads to alterations in TJ proteins and epithelial permeability. In addition, TNF-α treatment downregulates DRA by activating NF-кB and subsequently affecting intestinal epithelial barrier integrity. Furthermore, overexpression of DRA partly reverses the TNF-α-induced damage by stabilizing TJ proteins. Neutralization of TNF-α in dextran sulfate sodium (DSS)-induced colitis mice demonstrates improved the outcomes, and the therapeutic effect of the TNF-α neutralizing mAb is mediated in part by the preservation of DRA expression. These data suggest that DRA may be one of the therapeutic targets of TNF-α. Moreover, DRA delivered by adenovirus vector significantly prevents the exacerbation of colitis and improves epithelial barrier function by promoting the recovery of TJ proteins in DSS-treated mice. In conclusion, DRA plays a role in protecting the epithelial barrier and may be a therapeutic target in gut homeostasis.
Collapse
|
23
|
Zhao X, Fan W, Xu Z, Chen H, He Y, Yang G, Yang G, Hu H, Tang S, Wang P, Zhang Z, Xu P, Yu M. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma. Oncotarget 2018; 7:81110-81122. [PMID: 27835602 PMCID: PMC5348380 DOI: 10.18632/oncotarget.13212] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. Results and Methods To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. Conclusions In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.
Collapse
Affiliation(s)
- Xianda Zhao
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.,Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Wei Fan
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zhigao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yuyu He
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.,Biomedical Sciences Graduate Program, Temple University, Philadelphia, Pennsylvania, 19140, USA
| | - Gui Yang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Gang Yang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Hanning Hu
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shihui Tang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Ping Wang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Zheng Zhang
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Peipei Xu
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for gene diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
24
|
Lopetuso LR, Gerardi V, Papa V, Scaldaferri F, Rapaccini GL, Gasbarrini A, Papa A. Can We Predict the Efficacy of Anti-TNF-α Agents? Int J Mol Sci 2017; 18:ijms18091973. [PMID: 28906475 PMCID: PMC5618622 DOI: 10.3390/ijms18091973] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022] Open
Abstract
The use of biologic agents, particularly anti-tumor necrosis factor (TNF)-α, has revolutionized the treatment of inflammatory bowel diseases (IBD), modifying their natural history. Several data on the efficacy of these agents in inducing and maintaining clinical remission have been accumulated over the past two decades: their use avoid the need for steroids therapy, promote mucosal healing, reduce hospitalizations and surgeries and therefore dramatically improve the quality of life of IBD patients. However, primary non-response to these agents or loss of response over time mainly due to immunogenicity or treatment-related side-effects are a frequent concern in IBD patients. Thus, the identification of predicting factors of efficacy is crucial to allow clinicians to efficiently use these therapies, avoiding them when they are ineffective and eventually shifting towards alternative biological therapies with the end goal of optimizing the cost-effectiveness ratio. In this review, we aim to identify the predictive factors of short- and long-term benefits of anti-TNF-α therapy in IBD patients. In particular, multiple patient-, disease- and treatment-related factors have been evaluated.
Collapse
Affiliation(s)
- Loris Riccardo Lopetuso
- Internal Medicine and Gastroenterology Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy; (L.R.L.); (V.G.); (F.S.); (G.L.R.); (A.G.)
| | - Viviana Gerardi
- Internal Medicine and Gastroenterology Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy; (L.R.L.); (V.G.); (F.S.); (G.L.R.); (A.G.)
| | - Valerio Papa
- Digestive Surgery Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy;
| | - Franco Scaldaferri
- Internal Medicine and Gastroenterology Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy; (L.R.L.); (V.G.); (F.S.); (G.L.R.); (A.G.)
| | - Gian Lodovico Rapaccini
- Internal Medicine and Gastroenterology Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy; (L.R.L.); (V.G.); (F.S.); (G.L.R.); (A.G.)
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy; (L.R.L.); (V.G.); (F.S.); (G.L.R.); (A.G.)
| | - Alfredo Papa
- Internal Medicine and Gastroenterology Department, Fondazione Policlinico Gemelli, Catholic University of Rome, 00168 Rome, Italy; (L.R.L.); (V.G.); (F.S.); (G.L.R.); (A.G.)
- Correspondence: ; Tel.: +39-06-3503310
| |
Collapse
|
25
|
Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, Bousvaros A, Goldsmith JD, Geha RS, Chou J. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med 2017; 214:1937-1947. [PMID: 28600438 PMCID: PMC5502421 DOI: 10.1084/jem.20160724] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
Badran et al. demonstrate an essential contribution of biallelic RELA expression in protecting stromal and epithelial cells from TNF-mediated cell death in patients with chronic mucocutaneous ulceration. The treatment of chronic mucocutaneous ulceration is challenging, and only some patients respond selectively to inhibitors of tumor necrosis factor-α (TNF). TNF activates opposing pathways leading to caspase-8–mediated apoptosis as well as nuclear factor κB (NF-κB)–dependent cell survival. We investigated the etiology of autosomal-dominant, mucocutaneous ulceration in a family whose proband was dependent on anti-TNF therapy for sustained remission. A heterozygous mutation in RELA, encoding the NF-κB subunit RelA, segregated with the disease phenotype and resulted in RelA haploinsufficiency. The patients’ fibroblasts exhibited increased apoptosis in response to TNF, impaired NF-κB activation, and defective expression of NF-κB–dependent antiapoptotic genes. Rela+/− mice have similarly impaired NF-κB activation, develop cutaneous ulceration from TNF exposure, and exhibit severe dextran sodium sulfate–induced colitis, ameliorated by TNF inhibition. These findings demonstrate an essential contribution of biallelic RELA expression in protecting stromal cells from TNF-mediated cell death, thus delineating the mechanisms driving the effectiveness of TNF inhibition in this disease.
Collapse
Affiliation(s)
- Yousef R Badran
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | | | - Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Toshiro K Ohsumi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
26
|
Lee HN, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, Coligan JE, Krzewski K. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest 2017; 127:1905-1917. [PMID: 28414292 DOI: 10.1172/jci89531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022] Open
Abstract
Proinflammatory cytokine overproduction and excessive cell death, coupled with impaired clearance of apoptotic cells, have been implicated as causes of failure to resolve gut inflammation in inflammatory bowel diseases. Here we have found that dendritic cells expressing the apoptotic cell-recognizing receptor CD300f play a crucial role in regulating gut inflammatory responses in a murine model of colonic inflammation. CD300f-deficient mice failed to resolve dextran sulfate sodium-induced colonic inflammation as a result of defects in dendritic cell function that were associated with abnormal accumulation of apoptotic cells in the gut. CD300f-deficient dendritic cells displayed hyperactive phagocytosis of apoptotic cells, which stimulated excessive TNF-α secretion predominantly from dendritic cells. This, in turn, induced secondary IFN-γ overproduction by colonic T cells, leading to prolonged gut inflammation. Our data highlight a previously unappreciated role for dendritic cells in controlling gut homeostasis and show that CD300f-dependent regulation of apoptotic cell uptake is essential for suppressing overactive dendritic cell-mediated inflammatory responses, thereby controlling the development of chronic gut inflammation.
Collapse
|
27
|
Lopetuso LR, Petito V, Zinicola T, Graziani C, Gerardi V, Arena V, Caristo ME, Poscia A, Cammarota G, Papa A, Cufino V, Sgambato A, Gasbarrini A, Scaldaferri F. Infliximab does not increase colonic cancer risk associated to murine chronic colitis. World J Gastroenterol 2016; 22:9727-9733. [PMID: 27956796 PMCID: PMC5124977 DOI: 10.3748/wjg.v22.i44.9727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the influence of Infliximab (IFX) on cancer progression in a murine model of colonic cancer associated to chronic colitis.
METHODS AOM/DSS model was induced in C57BL/6 mice. Mice were injected with IFX (5 mg/kg) during each DSS cycle while control mice received saline. Body weight, occult blood test and stool consistency were measured to calculate the disease activity index (DAI). Mice were sacrificed at week 10 and colons were analyzed macroscopically and microscopically for number of cancers and degree of inflammation. MTT assay was performed on CT26 to evaluate the potential IFX role on metabolic activity and proliferation. Cells were incubated with TNF-α or IFX or TNF-α plus IFX, and cell vitality was evaluated after 6, 24 and 48 h. The same setting was used after pre-incubation with TNF-α for 24 h.
RESULTS IFX significantly reduced DAI and body weight loss in mice compared with controls, preserving also colon length at sacrifice. Histological score was also reduced in treated mice. At macroscopic analysis, IFX treated mice showed a lower number of tumor lesions compared to controls. This was confirmed at microscopic analysis, although differences were not statistically significant. In vitro, IFX treated CT26 maintained similar proliferation ability at MTT test, both when exposed to IFX alone and when associated to TNF-α.
CONCLUSION IFX did not increase colonic cancer risk in AOM-DSS model of cancer on chronic colitis nor influence directly the proliferation of murine colon cancer epithelial cells.
Collapse
|
28
|
Assas MB, Levison SE, Little M, England H, Battrick L, Bagnall J, McLaughlin JT, Paszek P, Else KJ, Pennock JL. Anti-inflammatory effects of infliximab in mice are independent of tumour necrosis factor α neutralization. Clin Exp Immunol 2016; 187:225-233. [PMID: 27669117 PMCID: PMC5217947 DOI: 10.1111/cei.12872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Infliximab (IFX) has been used repeatedly in mouse preclinical models with associated claims that anti‐inflammatory effects are due to inhibition of mouse tumour necrosis factor (TNF)‐α. However, the mechanism of action in mice remains unclear. In this study, the binding specificity of IFX for mouse TNF‐α was investigated ex vivo using enzyme‐linked immunosorbent assay (ELISA), flow cytometry and Western blot. Infliximab (IFX) did not bind directly to soluble or membrane‐bound mouse TNF‐α nor did it have any effect on TNF‐α‐induced nuclear factor kappa B (NF‐κB) stimulation in mouse fibroblasts. The efficacy of IFX treatment was then investigated in vivo using a TNF‐α‐independent Trichuris muris‐induced infection model of chronic colitis. Infection provoked severe transmural colonic inflammation by day 35 post‐infection. Colonic pathology, macrophage phenotype and cell death were determined. As predicted from the in‐vitro data, in‐vivo treatment of T. muris‐infected mice with IFX had no effect on clinical outcome, nor did it affect macrophage cell phenotype or number. IFX enhanced apoptosis of colonic immune cells significantly, likely to be driven by a direct effect of the humanized antibody itself. We have demonstrated that although IFX does not bind directly to TNF‐α, observed anti‐inflammatory effects in other mouse models may be through host cell apoptosis. We suggest that more careful consideration of xenogeneic responses should be made when utilizing IFX in preclinical models.
Collapse
Affiliation(s)
- M B Assas
- Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah, Saudi Arabia.,Faculty of Biology Medicine and Health, University of Manchester, Manchester
| | | | - M Little
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - H England
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - L Battrick
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - J Bagnall
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - J T McLaughlin
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - P Paszek
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - K J Else
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| | - J L Pennock
- School of Biological Sciences, Faculty of Medicine Biology and Health, University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Román ID, Cano-Martínez D, Lobo MVT, Fernández-Moreno MD, Hernández-Breijo B, Sacristán S, Sanmartín-Salinas P, Monserrat J, Gisbert JP, Guijarro LG. Infliximab therapy reverses the increase of allograft inflammatory factor-1 in serum and colonic mucosa of rats with inflammatory bowel disease. Biomarkers 2016; 22:133-144. [PMID: 27781498 DOI: 10.1080/1354750x.2016.1252950] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our purpose was to study the molecular basis of infliximab (IFX) effect on colon mucosa in a colitis model and to identify new biomarkers of mucosal healing. METHODS Healthy rats and rats which were subjected to experimental colitis induced by dextran sulfate sodium, with or without IFX treatment (in the short- and long-term), were studied along with forty-seven IBD patients. Colon mucosal integrity by periodic acid Schiff (PAS) staining, intestinal damage by immunohistochemistry (proliferating cell nuclear antigen, β-catenin, E-cadherin, phosphotyrosine, p-p38, allograft inflammatory factor-1 (AIF-1) and colonic mucosal apoptosis by TUNEL staining were evaluated in rats while serum and colon AIF-1 levels were determined in IBD patients. RESULTS In rats with colitis, IFX reestablished the epithelial barrier integrity, recovered mucus production and decreased colon inflammation, as verified by reduced serum and colon AIF-1 levels; colon and serum AIF-1 levels were also lower in inactive IBD patients compare to active ones. P38 activation after IFX treatment tended to induce differentiation/proliferation of epithelial cells along the colonic crypt-villous axis. CONCLUSIONS These findings support AIF-1 as a new biomarker of mucosal healing in experimental colitis and suggest that p38 activation is involved in the mucosal healing intracellular mechanism induced by IFX treatment.
Collapse
Affiliation(s)
- Irene D Román
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - David Cano-Martínez
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - María Val T Lobo
- b Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - María Dolores Fernández-Moreno
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - Borja Hernández-Breijo
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - Silvia Sacristán
- c Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS) , Madrid , Spain
| | - Patricia Sanmartín-Salinas
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| | - Jorge Monserrat
- d Department of Medicine , University of Alcalá , Alcalá de Henares , Spain
| | - Javier P Gisbert
- e Gastroenterology Unit , Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) , Madrid , Spain
| | - Luis G Guijarro
- a Department of Systems Biology , Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Alcalá , Alcalá de Henares , Spain
| |
Collapse
|
30
|
RNAi-mediated silencing of TNF-α converting enzyme to down-regulate soluble TNF-α production for treatment of acute and chronic colitis. J Control Release 2016; 239:231-41. [DOI: 10.1016/j.jconrel.2016.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 01/26/2023]
|
31
|
de Paula-Silva M, Barrios BE, Macció-Maretto L, Sena AA, Farsky SHP, Correa SG, Oliani SM. Role of the protein annexin A1 on the efficacy of anti-TNF treatment in a murine model of acute colitis. Biochem Pharmacol 2016; 115:104-13. [PMID: 27343762 DOI: 10.1016/j.bcp.2016.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
Abstract
TNF-α is involved in the mechanisms that initiate inflammatory bowel diseases (IBDs). Anti-TNF-α drugs, such as infliximab (IFX), cause non-responsiveness and side effects, indicating the need to investigate alternative therapies for these diseases. The anti-inflammatory protein, annexin A1 (AnxA1), has been associated with the protection of the gastrointestinal mucosa. To further address the role of endogenous AnxA1 on the TNF-α blockade efficacy in a murine model, we assessed colitis induced by Dextran Sulfate Sodium (DSS) in wild-type (WT) and AnxA1(-/-) Balb/c mice treated with IFX. We consistently observed endogenous AnxA1 prevented clinical and physiological manifestations of experimental colitis treated with IFX, additionally the manifestation of the disease was observed earlier in AnxA1(-)(/-) mice. Rectal bleeding, diarrhea, histological score, epithelial damages and collagen degradation caused by DSS were prevented following IFX treatment only in WT mice. IL-6 increased during colitis in WT and AnxA1(-)(/-) mice, decreasing under IFX treatment in WT. The influx of neutrophils and TNF-α secretion were largely elevated in AnxA1(-)(/-) mice when compared to WT mice. In the group WT/DSS+IFX, phagocytes were more susceptible to apoptosis following treatment with IFX. Endogenous expression of AnxA1 increased after DSS and decreased with IFX treatment, demonstrating an attenuated inflammatory response. The data indicate that AnxA1 contributes to the establishment of intestinal homeostasis after blocking of TNF-α was used as a treatment of IBD, constituting a key molecule in the mechanism of action and a potential biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
- Marina de Paula-Silva
- Post-graduation in Structural and Functional Biology, São Paulo Federal University (UNIFESP), São Paulo, São Paulo, Brazil
| | - Bibiana Elisabeth Barrios
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Lisa Macció-Maretto
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Angela Aparecida Sena
- Department of Biology, Laboratory of Immunomorphology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | | | - Silvia Graciela Correa
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Sonia Maria Oliani
- Post-graduation in Structural and Functional Biology, São Paulo Federal University (UNIFESP), São Paulo, São Paulo, Brazil; Department of Biology, Laboratory of Immunomorphology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
32
|
Direct effect of infliximab on intestinal mucosa sustains mucosal healing: exploring new mechanisms of action. Dig Liver Dis 2016; 48:391-8. [PMID: 26804809 DOI: 10.1016/j.dld.2015.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Infliximab is effective in inflammatory bowel disease through several mechanisms, possibly acting at the mucosal level. AIM To assess the role of infliximab on intestinal mucosa and whether it contributes to mucosal healing. METHODS Human colonic mucosal biopsies were incubated with or without infliximab. Cultured biopsies were evaluated for histological staining, CD68, CD3, E-cadherin and phospho-extracellular signal-regulated kinases (ERK) expression, and apoptosis. A scratch assay and MTT assay were performed with Caco2 cells in the presence of infliximab and/or tumour necrosis factor (TNF)-α or treated with supernatants obtained from human peripheral blood mononuclear cells or human intestinal fibroblasts treated with TNF-α and infliximab alone or in association. RESULTS Infliximab-treated biopsies displayed a better histological appearance, reduced inflammation with an increase of E-cadherin, phospho-ERK and apoptosis. Supernatants showed lower TNF-α, IL-17, IL-6 and IL-8 concentration, with an increase in fibroblast-growth-factor. Motility at scratch assay and proliferation at MTT assay of Caco2 cells displayed differential modulation by TNF-α and infliximab, directly or through supernatants of human intestinal fibroblasts and human peripheral blood mononuclear cells exposed to them. CONCLUSION Infliximab contributes to the mucosal healing process by acting directly at an intestinal mucosal level; infliximab indirectly affects epithelial cell migration and proliferation by acting on both fibroblasts and leukocytes.
Collapse
|
33
|
Benhamou Y, Miranda S, Armengol G, Harouki N, Drouot L, Zahr N, Thuillez C, Boyer O, Levesque H, Joannides R, Richard V. Infliximab improves endothelial dysfunction in a mouse model of antiphospholipid syndrome: Role of reduced oxidative stress. Vascul Pharmacol 2015; 71:93-101. [DOI: 10.1016/j.vph.2015.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/24/2015] [Accepted: 03/30/2015] [Indexed: 11/15/2022]
|
34
|
Myrelid P, Salim SY, Darby T, Almer S, Melgar S, Andersson P, Söderholm JD. Effects of anti-inflammatory therapy on bursting pressure of colonic anastomosis in murine dextran sulfate sodium induced colitis. Scand J Gastroenterol 2015; 50:991-1001. [PMID: 25861827 DOI: 10.3109/00365521.2014.964760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim of this study was to examine the effect of colitis and anti-inflammatory therapies on the healing of colonic anastomoses in mice. METHODS Female C57BL/6 mice were randomized into eight groups; four groups receiving plain tap-water and four groups receiving dextran sulfate sodium. Intra-peritoneal treatment was given therapeutically for 14 days with placebo, prednisolone, azathioprine, or infliximab (IFX). Colonic anastomoses were performed and bursting pressure (BP) measurements were recorded and the inflammation evaluated with histology and zymography. RESULTS The mice with colitis had a more active inflammation based on histology and bowel weight compared with the tap water group, 8.3 (7.6-9.5) mg/mm and 5.5 (4.8-6.2) mg/mm respectively (p < 0.0001). Similarly mice with colitis receiving placebo had a more active inflammation, 12.8 (10.6-15.0) mg/mm, which differed significantly from all the other therapy arms among the colitic mice; prednisolone 8.1 (7.5-9.1) mg/mm (p = 0.014), azathioprine 8.2 (7.0-8.5) mg/mm (p = 0.0046), IFX 6.7 (6.4-7.9) mg/mm (p = 0.0055). BP for the placebo group was 90.0 (71.5-102.8) mmHg and did not differ from azathioprine or IFX groups, 84.4 (70.5-112.5) and 92.3 (75.8-122.3) mmHg respectively. In contrast BP for the prednisolone group was significantly decreased compared to placebo, 55.5 (42.8-73.0) mmHg (p = 0.0004). CONCLUSIONS All therapies had a beneficial effect on the colitis. An impaired BP of colonic anastomoses was noted after preoperative steroids but not after azathioprine or IFX in this model.
Collapse
Affiliation(s)
- Pär Myrelid
- Department of Surgery and Department of Clinical and Experimental Medicine, Linköping University , Linköping , Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Sinha SR, Nguyen LP, Inayathullah M, Malkovskiy A, Habte F, Rajadas J, Habtezion A. A Thermo-Sensitive Delivery Platform for Topical Administration of Inflammatory Bowel Disease Therapies. Gastroenterology 2015; 149:52-55.e2. [PMID: 25863215 PMCID: PMC4509789 DOI: 10.1053/j.gastro.2015.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 03/26/2015] [Accepted: 04/01/2015] [Indexed: 12/11/2022]
Abstract
Systemic therapies for inflammatory bowel disease are associated with an increased risk of infections and malignancies. Topical therapies reduce systemic exposure, but can be difficult to retain or have limited proximal distribution. To mitigate these issues, we developed a thermo-sensitive platform, using a polymer-based system that is liquid at room temperature but turns into a viscous gel on reaching body temperature. After rectal administration to mice with dextran sulfate sodium-induced colitis, the platform carrying budesonide or mesalamine becomes more viscoelastic near body temperature. Mice given the drug-containing platform gained more weight and had reduced histologic and biologic features of colitis than mice given the platform alone or liquid drugs via enema. Image analysis showed that enemas delivered with and without the platform reached similar distances in the colons of mice, but greater colonic retention was achieved by using the platform.
Collapse
Affiliation(s)
- Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| | - Linh P Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California
| | - Andrey Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California
| | - Frezghi Habte
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, California.
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
36
|
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colonic mucosa, and its etiology remains unclear. Animal models are commonly used to study UC, including the murine model of colitis induced with dextran sulfate sodium (DSS). The murine model of DSS-induced colitis is well appreciated and widely used because of its simplicity, cheapness and high success rate. DSS-induced colitis has many similarities to human UC in location, clinical and histological features. In view of its indispensable position in the study of UC, we provide a brief overview of the animal model of DSS-induced colitis in terms of its features, modelling methods, pathogenesis and influencing factors.
Collapse
|