1
|
Budluang P, Kim JE, Park ES, Seol A, Jang HJ, Kang MS, Kim YH, Choi J, Kim S, Kim S, Koh M, Kang HY, Kim BH, Han DW, Hwang DY, Chung YH. N-benzyl-N-methyldecane-1-amine derived from garlic ameliorates UVB-induced photoaging in HaCaT cells and SKH-1 hairless mice. Sci Rep 2025; 15:6979. [PMID: 40011526 PMCID: PMC11865569 DOI: 10.1038/s41598-025-88634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Skin tissue is susceptible to oxidative stress-induced senescence provoked by ultraviolet (UV) exposure in our daily lives, resulting in photoaging. Herein, we explore whether N-benzyl-N-methyldecan-1-amine (BMDA) derived from garlic ameliorates UVB-induced photoaging. To address this issue, HaCaT keratinocytes were exposed to UVB irradiation under BMDA treatment. The presence of BMDA substantially reduced UVB-induced ROS levels in a dose-dependent manner. BMDA administration counteracted UVB-induced senescence in the β-galactosidase assay. Treatment with BMDA also rescued UVB-exposed cells (S phase; from 18.3 to 25.8%) from cell cycle arrest, similar to the level observed in untreated normal cells. These findings might support our observation that elevated levels of γ-H2AX, a DNA damage marker, under UVB exposure were reduced following BMDA administration. Additionally, BMDA treatment indirectly reduced UVB-induced melanin synthesis in melanocytes since BMDA failed to inhibit tyrosinase activity, a crucial enzyme in melanin synthesis. The topical application of BMDA on the skin of SKH-1 hairless mice also diminished wrinkle formation, supported by recovered collagen levels and the thickness of the epidermis and dermis, compared to those of UVB-control mice. Finally, the BMDA treatment diminished the expression of inflammatory cytokine transcripts such as TNF-α, IL-1β, IL-4, and IL-6 in the UVB-exposed skin tissues. This finding is further supported by Immunofluorescence microscopy, which showed a decrease in the expression of TNF-α, and IL-1β during BMDA treatment. Altogether, as BMDA mitigates UVB-induced photoaging by reducing ROS production, protecting against DNA damage, and suppressing inflammatory cytokine production, it has been proposed as an effective anti-photoaging molecule.
Collapse
Affiliation(s)
- Phatcharaporn Budluang
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Eun Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Yeon Ha Kim
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonghye Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Bae-Hwan Kim
- Department of Public Health, Keimyung University, Daegu, 42601, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea.
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Optomechatronics Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Wang Z, Jin C, Li P, Li Y, Tang J, Yu Z, Jiao T, Ou J, Wang H, Zou D, Li M, Mang X, Liu J, Lu Y, Li K, Zhang N, Yu J, Miao S, Wang L, Song W. Identification of quiescent FOXC2 + spermatogonial stem cells in adult mammals. eLife 2023; 12:RP85380. [PMID: 37610429 PMCID: PMC10446825 DOI: 10.7554/elife.85380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
In adult mammals, spermatogenesis embodies the complex developmental process from spermatogonial stem cells (SSCs) to spermatozoa. At the top of this developmental hierarchy lie a series of SSC subpopulations. Their individual identities as well as the relationships with each other, however, remain largely elusive. Using single-cell analysis and lineage tracing, we discovered both in mice and humans the quiescent adult SSC subpopulation marked specifically by forkhead box protein C2 (FOXC2). All spermatogenic progenies can be derived from FOXC2+ SSCs and the ablation of FOXC2+ SSCs led to the depletion of the undifferentiated spermatogonia pool. During germline regeneration, FOXC2+ SSCs were activated and able to completely restore the process. Germ cell-specific Foxc2 knockout resulted in an accelerated exhaustion of SSCs and eventually led to male infertility. Furthermore, FOXC2 prompts the expressions of negative regulators of cell cycle thereby ensures the SSCs reside in quiescence. Thus, this work proposes that the quiescent FOXC2+ SSCs are essential for maintaining the homeostasis and regeneration of spermatogenesis in adult mammals.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Cheng Jin
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiran Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tao Jiao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jinhuan Ou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Han Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Zhang
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Linfang Wang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Wang H, Cao Q, Zhao Q, Arfan M, Liu W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. CHEMOSPHERE 2020; 246:125614. [PMID: 31883478 DOI: 10.1016/j.chemosphere.2019.125614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is found widely in soil and is severely toxic for plants, causing oxidative damage in plant cells because of its heavy metal characteristics. The DNA damage response (DDR) is triggered in plants to cope with the Cd stress. The DNA mismatch repair (MMR) system known for its mismatch repair function determines DDR, as mispairs are easily generated by a translesional synthesis under Cd-induced genomic instability. Cd-induced mismatches are recognized by three heterodimeric complexes including MutSα (MSH2/MSH6), MutSβ (MSH2/MSH3), and MutSγ (MSH2/MSH7). MutLα (MLH1/PMS1), PCNA/RFC, EXO1, DNA polymerase δ and DNA ligase participate in mismatch repair in turn. Meanwhile, ATR is preferentially activated by MSH2 to trigger DDR including the regulation of the cell cycle, endoreduplication, cell death, and recruitment of other DNA repair, which enhances plant tolerance to Cd. However, plants with deficient MutS will bypass MMR-mediated DDR and release the multiple-effect MLH1 from requisition of the MMR system, which leads to weak tolerance to Cd in plants. In this review, we systematically illustrate how the plant DNA MMR system works in a Cd-induced DDR, and how MMR genes regulate plant tolerance to Cd. Additionally, we also reviewed multiple epigenetic regulation systems acting on MMR genes under stress.
Collapse
Affiliation(s)
- Hetong Wang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qijiang Cao
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Muhammad Arfan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
4
|
Li Z, Pearlman AH, Hsieh P. DNA mismatch repair and the DNA damage response. DNA Repair (Amst) 2016; 38:94-101. [PMID: 26704428 PMCID: PMC4740233 DOI: 10.1016/j.dnarep.2015.11.019] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted.
Collapse
Affiliation(s)
- Zhongdao Li
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Alexander H Pearlman
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA
| | - Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 5 Rm. 324, 5 Memorial Dr. MSC 0538, Bethesda, MD 20892-0538, USA.
| |
Collapse
|
5
|
Tsaalbi-Shtylik A, Ferrás C, Pauw B, Hendriks G, Temviriyanukul P, Carlée L, Calléja F, van Hees S, Akagi JI, Iwai S, Hanaoka F, Jansen JG, de Wind N. Excision of translesion synthesis errors orchestrates responses to helix-distorting DNA lesions. J Cell Biol 2015; 209:33-46. [PMID: 25869665 PMCID: PMC4395481 DOI: 10.1083/jcb.201408017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/13/2015] [Indexed: 01/13/2023] Open
Abstract
In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects.
Collapse
Affiliation(s)
| | - Cristina Ferrás
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Bea Pauw
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Piya Temviriyanukul
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Leone Carlée
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Fabienne Calléja
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Sandrine van Hees
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Jun-Ichi Akagi
- Faculty of Science, Gakushuin University, Tokyo 171-0031, Japan
| | - Shigenori Iwai
- School of Engineering Science, Osaka University, Osaka 565-0871, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Tokyo 171-0031, Japan
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| |
Collapse
|
6
|
Guillemette S, Branagan A, Peng M, Dhruva A, Schärer OD, Cantor SB. FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation. Cancer Res 2013; 74:932-44. [PMID: 24351291 DOI: 10.1158/0008-5472.can-13-2474] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nucleotide excision repair (NER) is critical for the repair of DNA lesions induced by UV radiation, but its contribution in replicating cells is less clear. Here, we show that dual incision by NER endonucleases, including XPF and XPG, promotes the S-phase accumulation of the BRCA1 and Fanconi anemia-associated DNA helicase FANCJ to sites of UV-induced damage. FANCJ promotes replication protein A phosphorylation and the arrest of DNA synthesis following UV irradiation. Interaction defective mutants of FANCJ reveal that BRCA1 binding is not required for FANCJ localization, whereas interaction with the mismatch repair (MMR) protein MLH1 is essential. Correspondingly, we find that FANCJ, its direct interaction with MLH1, and the MMR protein MSH2 function in a common pathway in response to UV irradiation. FANCJ-deficient cells are not sensitive to killing by UV irradiation, yet we find that DNA mutations are significantly enhanced. Thus, we considered that FANCJ deficiency could be associated with skin cancer. Along these lines, in melanoma we found several somatic mutations in FANCJ, some of which were previously identified in hereditary breast cancer and Fanconi anemia. Given that, mutations in XPF can also lead to Fanconi anemia, we propose collaborations between Fanconi anemia, NER, and MMR are necessary to initiate checkpoint activation in replicating human cells to limit genomic instability.
Collapse
Affiliation(s)
- Shawna Guillemette
- Authors' Affiliations: Department of Cancer Biology, University of Massachusetts Medical School, Women's Cancers Program, UMASS Memorial Cancer Center, Worcester, Massachusetts; and Department of Pharmacological Sciences & Department of Chemistry, Stony Brook University, Stony Brook, New York
| | | | | | | | | | | |
Collapse
|
7
|
MSH2 is required for cell proliferation, cell cycle control and cell invasiveness in colorectal cancer cells. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Rhee JS, Kim BM, Choi BS, Lee JS. Expression pattern analysis of DNA repair-related and DNA damage response genes revealed by 55K oligomicroarray upon UV-B irradiation in the intertidal copepod, Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:359-68. [PMID: 22051804 DOI: 10.1016/j.cbpc.2011.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/23/2022]
Abstract
Ultraviolet-B (UV-B) radiation affects the genome stability of aquatic organisms by absorption of certain wavelength at the molecular level. Recently, extensive gene information has been identified from the intertidal copepod, Tigriopus japonicus. Here, we developed a 55K (54,254 genes) oligomicroarray and tested its usefulness to identify the effect of single dose of UV-B irradiation (12 kJ/m(2)) on transcriptomes of the copepod T. japonicus. A total of 35,361 spots were identified to be significantly modulated on the 55K oligomicroarray by hierarchical clustering after exposure to UV-B irradiation over 48 h (6, 12, 24, and 48 h). Of them, 1300 and 588 genes were observed to be up-regulated and down-regulated at all time points, respectively. Particularly, it was observed that several genes involved in DNA repair mechanism were significantly modulated in the UV-B-exposed T. japonicus by microarray and quantitative real-time RT-PCR analysis. In detail, UV-B irradiation specifically up-regulated some genes in non-homologous end-joining (NHEJ), homologous recombination (HR), base excision repair (BER), and mismatch repair (MMR) pathways. On the other hand, a majority of down-regulated genes were representatives for the nucleotide excision repair (NER) mechanism. These results demonstrated that DNA damage would be induced by UV-B irradiation in this species, resulting in reliable induction or repression of various DNA repair mechanism on UV-B-induced DNA damage. In this report, we suggest that a high density microarray-based approach for risk assessment of UV-B irradiation would be useful to elucidate the mechanistic analysis in a non-model organism. This study could also provide a better understanding of molecular mechanisms of cellular protection against UV-B-induced stress.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | |
Collapse
|
9
|
Verhofstad N, Pennings JLA, van Oostrom CTM, van Benthem J, van Schooten FJ, van Steeg H, Godschalk RWL. Benzo(a)pyrene induces similar gene expression changes in testis of DNA repair proficient and deficient mice. BMC Genomics 2010; 11:333. [PMID: 20504355 PMCID: PMC2887421 DOI: 10.1186/1471-2164-11-333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/26/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Benzo [a]pyrene (B[a]P) exposure induces DNA adducts at all stages of spermatogenesis and in testis, and removal of these lesions is less efficient in nucleotide excision repair deficient Xpc-/- mice than in wild type mice. In this study, we investigated by using microarray technology whether compromised DNA repair in Xpc-/- mice may lead to a transcriptional reaction of the testis to cope with increased levels of B[a]P induced DNA damage. RESULTS Two-Way ANOVA revealed only 4 genes differentially expressed between wild type and Xpc-/- mice, and 984 genes between testes of B[a]P treated and untreated mice irrespective of the mouse genotype. However, the level in which these B[a]P regulated genes are expressed differs between Wt and Xpc-/- mice (p = 0.000000141), and were predominantly involved in the regulation of cell cycle, translation, chromatin structure and spermatogenesis, indicating a general stress response. In addition, analysis of cell cycle phase dependent gene expression revealed that expression of genes involved in G1-S and G2-M phase arrest was increased after B[a]P exposure in both genotypes. A slightly higher induction of average gene expression was observed at the G2-M checkpoint in Xpc-/- mice, but this did not reach statistical significance (P = 0.086). Other processes that were expected to have changed by exposure, like apoptosis and DNA repair, were not found to be modulated at the level of gene expression. CONCLUSION Gene expression in testis of untreated Xpc-/- and wild type mice were very similar, with only 4 genes differentially expressed. Exposure to benzo(a)pyrene affected the expression of genes that are involved in cell cycle regulation in both genotypes, indicating that the presence of unrepaired DNA damage in testis blocks cell proliferation to protect DNA integrity in both DNA repair proficient and deficient animals.
Collapse
Affiliation(s)
- Nicole Verhofstad
- Department of Health Risk Analysis and Toxicology, School for Nutrition, Toxicology and Metabolism, Maastricht University, PO box 616, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Darroudi F, Bergs JWJ, Bezrookove V, Buist MR, Stalpers LJ, Franken NAP. PCC and COBRA-FISH a new tool to characterize primary cervical carcinomas: to assess hall-marks and stage specificity. Cancer Lett 2009; 287:67-74. [PMID: 19553004 DOI: 10.1016/j.canlet.2009.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/15/2022]
Abstract
A newly developed assay based on chemically induced premature chromosome condensation (PCC) and multi-color combined binary ratio labeling (COBRA) fluorescence in situ hybridization (FISH) techniques have been implemented in order to investigate for the first time for recurrent cytogenetic aberrations in primary cervical carcinoma (derived directly from biopsies) at different stages of progression. The cytogenetic profiles of 17 biopsies derived from 14 and 3 cervical cancer patients with squamous-cell carcinomas (Sq) and with adenocarcinomas (Ad), respectively, were assessed. Frequencies of both structural as well as numerical aberrations were found to be higher in Sq than in Ad. The analysis revealed that even in early tumors stages (IB1) have a higher frequency of chromosome-losses and -gains as well as chromosomal alterations as compared to normal cells. A positive trend was found between stage advancement of cervical tumors and the frequency of numerical and structural aberrations. No specific and common chromosomal abnormality (e.g. distinct clones of translocation) was found among cervical carcinoma at the different stages (IB1, IIA and IIB). However, a distinct difference was found between stage IIIB and lower tumor stages, as all analyzed IIIB samples revealed a near tetraploid karyotype. Furthermore, all studied metaphases were aberrant and had a high frequency of translocations. PCC-COBRA-FISH characterization of a common type of an established culture from cervical carcinoma CSCC-1 revealed a triploidy/tetraploidy karyotype with several structural aberrations. In general, no similarity was found between this model and early stages of primary tumors. The newly established assay has a novel potential and can reveal the original status of primary tumors at different stages.
Collapse
Affiliation(s)
- Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2300RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
Seifert M, Scherer SJ, Edelmann W, Böhm M, Meineke V, Löbrich M, Tilgen W, Reichrath J. The DNA-mismatch repair enzyme hMSH2 modulates UV-B-induced cell cycle arrest and apoptosis in melanoma cells. J Invest Dermatol 2007; 128:203-13. [PMID: 17611581 DOI: 10.1038/sj.jid.5700941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanisms by which the post-replicative DNA mismatch repair (MMR) enzyme MSH2 is involved in the complex response mechanisms to UV damage are yet to be clarified. Here, we show increased levels of MSH2 mRNA in malignant melanoma, metastases of melanoma, and melanoma cell (MeWo) lines as compared with melanocytic nevi or primary cultured benign melanocytes. UV-B treatment modulated MSH2 expression and silencing of MSH2 gene expression using small interfering RNA technology regulated UV-B-induced cell cycle arrest and apoptosis in human MeWo. We show that MSH2-deficient non-malignant mouse fibroblasts (MEF-/-) are partially resistant against UV-B-induced apoptosis and show reduced S-Phase accumulation. In addition, we show that an Msh2 point mutation (MEFGA) that affects MMR does not affect UV-B-induced apoptosis. In conclusion, we demonstrate that MSH2 modulates in human melanocytes both UV-B-induced cell cycle regulation and apoptosis, most likely via independent, uncoupled mechanisms.
Collapse
Affiliation(s)
- Markus Seifert
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pitsikas P, Lee D, Rainbow AJ. Reduced host cell reactivation of oxidative DNA damage in human cells deficient in the mismatch repair gene hMSH2. Mutagenesis 2007; 22:235-43. [PMID: 17351251 DOI: 10.1093/mutage/gem008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Germ line mutations in the mismatch repair (MMR) genes hMSH2 and hMLH1 account for approximately 98% of hereditary non-polyposis colorectal cancers. In addition, there is increasing evidence for an involvement of MMR gene expression in the response of cells to UV-induced skin cancer. The link between MMR and skin cancer suggests an involvement of MMR gene expression in the response of skin cells to UV-induced DNA damage. In this report, we have used two reporter gene assays to examine the role of hMSH2 and hMLH1 in the repair of oxidative DNA damage induced by UVA light and DNA damage caused by methylene blue plus visible light (MB+VL). UVA and MB+VL produce 8-hydroxyguanines in DNA that are repaired by base excision repair (BER). AdHCMVlacZ is a replication-deficient recombinant adenovirus that expresses the beta-galactosidase (beta-gal) reporter gene under the control of the human cytomegalovirus (CMV) immediate-early promoter. We show a reduced host cell reactivation for beta-gal expression of UVA-treated and MB+VL-treated AdHCMVlacZ in hMSH2-deficient LoVo human colon adenocarcinoma cells compared to their hMSH2-proficient counterpart SW480 cells, but not in hMLH1-deficient HCT116 human colon adenocarcinoma cells compared to hMLH1-proficient HCT116-chr3 cells. We have also reported previously that enhanced expression of the undamaged AdHCMVlacZ reporter gene is induced by the pre-treatment of cells with lower levels of the DNA-damaging agent and to higher expression levels in transcription-coupled repair (TCR)-deficient compared to TCR-proficient cells. Here we show that pre-treatment of cells with UVA or MB+VL enhanced expression of the undamaged reporter gene to a higher level in LoVo compared to SW480 cells but there was little or no difference in HCT116 compared to HCT116-chr3 cells. These results suggest a substantial involvement of hMSH2 but little or no involvement of hMLH1 in the repair of UVA- and MB+VL-induced oxidative DNA damage by BER.
Collapse
Affiliation(s)
- Photini Pitsikas
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
13
|
Seifert M, Reichrath J. The role of the human DNA mismatch repair gene hMSH2 in DNA repair, cell cycle control and apoptosis: implications for pathogenesis, progression and therapy of cancer. J Mol Histol 2006; 37:301-7. [PMID: 17080293 DOI: 10.1007/s10735-006-9062-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/26/2006] [Indexed: 01/12/2023]
Abstract
The cellular DNA mismatch repair (MMR) pathway, involving the DNA mismatch repair genes MLH1 and MSH2, detects and repairs DNA replication errors. Defects in MSH2 and MLH1 account for most cases of hereditary non-polyposis colorectal cancer as well as for sporadic colorectal tumors. Additionally, increased expression of MSH2 RNA and/or protein has been reported in various malignancies. Loss of DNA MMR in mammalian cells has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. Due to other functions besides its role in DNA repair, that include regulation of cell proliferation and apoptosis, MSH2 has recently been shown to be of importance for pathogenesis and progression of cancer. This review summarizes our present understanding of the function of MSH2 for DNA repair, cell cycle control, and apoptosis and discusses its importance for pathogenesis, progression and therapy of cancer.
Collapse
Affiliation(s)
- Markus Seifert
- Department of Dermatology, The Saarland University Hospital, Building 18, Kirrberger Strasse, 66421 Homburg, Germany.
| | | |
Collapse
|
14
|
Borgdorff V, Pauw B, van Hees-Stuivenberg S, de Wind N. DNA mismatch repair mediates protection from mutagenesis induced by short-wave ultraviolet light. DNA Repair (Amst) 2006; 5:1364-72. [PMID: 16880010 DOI: 10.1016/j.dnarep.2006.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 01/24/2023]
Abstract
To investigate involvement of DNA mismatch repair in the response to short-wave ultraviolet (UVC) light, we compared UVC-induced mutant frequencies and mutational spectra at the Hprt gene between wild type and mismatch-repair-deficient mouse embryonic stem (ES) cells. Whereas mismatch repair gene status did not significantly affect survival of these cells after UVC irradiation, UVC induced substantially more mutations in ES cells that lack the MutSalpha mismatch-recognizing heterodimer than in wild type ES cells. The global UVC-induced mutational spectra at Hprt and the distribution of most spectral mutational hotspots were found to be similar in mismatch-repair-deficient and wild type cells. However, at one predominant spectral hot spot for mutagenesis in wild type cells, the UVC-induced mutation frequency was not affected by the mismatch repair status. Together these data reveal a major role of mismatch repair in controlling mutagenesis induced by UVC light and may suggest the sequence context-dependent direct mismatch repair of misincorporations opposite UVC-induced pyrimidine dimers.
Collapse
Affiliation(s)
- Viola Borgdorff
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Wang H, Hoffman PD, Lawrence C, Hays JB. Testing excision models for responses of mismatch-repair systems to UV photoproducts in DNA. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:296-306. [PMID: 16493608 DOI: 10.1002/em.20206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mismatch-repair (MMR) systems correct DNA replication errors and respond to a variety of DNA lesions. Previous observations that MMR antagonizes UV mutagenesis, and that the mismatch-recognition protein heterodimer MSH2*MSH6 (MutSalpha) selectively binds DNA containing "mismatched" photoproducts (T[CPD]T/AG, T[6-4]T/AG) but not "matched" photoproducts (T[CPD]T/AA, T[6-4]T/AA), suggested that mismatched photoproducts would provoke MMR excision similar to mismatched bases. Excision of incorrect nucleotides inserted opposite template photoproducts might then prevent UV-induced mutation. We tested T[CPD]T/AG DNA, in a sequence context in which it is bound substantially by hMutSalpha and in three other contexts, for stimulation of 3' MMR excision in mammalian nuclear extracts. T[CPD]T/AG was inactive in HeLa extracts, or in extracts deficient in the photoproduct-binding proteins DDB or XPC* hHR23B, arguing against interference from the nucleotide excision repair pathway. Prior incubation with hMutSalpha and MLH2.PMS2 (hMutLalpha) did not increase excision relative to homoduplex controls. T[6-4]T/AG also failed to provoke excision. T/G, C/A, and T/T substrates, even though bound by hMutSalpha no better than T[CPD]T/AG substrates, efficiently provoked excision. Even a substrate containing three T[CPD]T/AG photoproducts (in different contexts) did not significantly provoke excision. Thus, MMR may suppress UV mutagenesis by non-excisive mechanisms.
Collapse
Affiliation(s)
- Huxian Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Significant advances have been made in identifying and characterizing the roles of DNA mismatch repair (MMR) proteins in cellular response to DNA damage. Insights into this process have been obtained by performing interactions of mismatch recognition proteins (e.g., MutSalpha) with DNA adduct-containing duplexes and by analyzing cellular responses (including cell cycle checkpoints and apoptosis) of cell lines and animals with various MMR capacities. This chapter presents detailed methods for gel-shift analysis to determine the interaction between MutSalpha and oligonucleotide duplex containing a single DNA adduct and for apoptotic assays in cell lines and experimental animals. In addition, a step-by-step protocol is also provided for the purification of MutSalpha from human cells, the preparation of DNA substrates containing a defined DNA adduct, and the treatment of MMR-proficient and deficient cell lines as well as MMR knockout mice.
Collapse
Affiliation(s)
- Liya Gu
- Department of Toxicology and Pathology, University of Kentucky Medical Center, Lexington, USA
| | | |
Collapse
|
18
|
Stout GJ, Westdijk D, Calkhoven DM, Pijper O, Backendorf CMP, Willemze R, Mullenders LHF, de Gruijl FR. Epidermal transit of replication-arrested, undifferentiated keratinocytes in UV-exposed XPC mice: an alternative to in situ apoptosis. Proc Natl Acad Sci U S A 2005; 102:18980-5. [PMID: 16365302 PMCID: PMC1323157 DOI: 10.1073/pnas.0505505102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interplay among nucleotide excision repair, cell-cycle regulation, and apoptosis in the UV-exposed epidermis is extremely important to avoid mutations and malignant transformation. In Xpc(-/-) mice deficient in global genome nucleotide excision repair (GGR), a cell-cycle arrest of epidermal cells in late S-phase [with near-double normal diploid (4N) DNA content] was observed 48-72 h after UV exposure. This arrest resolved without apoptosis (96-168 h). We surmised that these arrested keratinocytes with persistent DNA damage were removed by epidermal turnover. In vivo BrdUrd pulse-chase labeling (>17 h after UV exposure) showed that DNA replication after UV exposure was resumed in Xpc(-/-) mice, but it did not reveal any evidence of retained BrdUrd-labeled S-phase cells in the basal layer of the epidermis at 72 h. Interestingly, by this time a maximum number of cytokeratin 10-negative and cytokeratin 5-positive cells had appeared in the suprabasal epidermal cell layers of UV-exposed Xpc(-/-) mice. Accumulation of these "basal cell"-like keratinocytes in the suprabasal layers was clearly aberrant and was not observed in WT and heterozygous mice. Flow cytometric analyses of single-cell suspensions from UV-exposed Xpc(-/-) epidermis further showed that the "near-4N" arrested cells retained cytokeratin 5 and lacked cytokeratin 10. Hence, we conclude that the arrested near-4N cells became detached from the basal layer without entering a proper differentiation program and were indeed subsequently lost through the epidermal turnover. This expulsion apparently constitutes an alternative route, different from in situ apoptosis, to eliminate DNA-damaged arrested cells from the epidermis.
Collapse
Affiliation(s)
- Gerdine J Stout
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoffman PD, Wang H, Lawrence CW, Iwai S, Hanaoka F, Hays JB. Binding of MutS mismatch repair protein to DNA containing UV photoproducts, "mismatched" opposite Watson--Crick and novel nucleotides, in different DNA sequence contexts. DNA Repair (Amst) 2005; 4:983-93. [PMID: 15996534 DOI: 10.1016/j.dnarep.2005.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
Mismatch-repair (MMR) systems suppress mutation via correction of DNA replication errors (base-mispairs) and responses to mutagenic DNA lesions. Selective binding of mismatched or damaged DNA by MutS-homolog proteins-bacterial MutS, eukaryotic MSH2.MSH6 (MutSalpha) and MSH2.MSH3-initiates mismatch-correction pathways and responses to lesions, and may cumulatively increase discrimination at downstream steps. MutS-homolog binding selectivity and the well-known but poorly understood effects of DNA-sequence contexts on recognition may thus be primary determinants of MMR specificity and efficiency. MMR processes that modulate UV mutagenesis might begin with selective binding by MutS homologs of "mismatched" T[CPD]T/AG and T[6--4]T/AG photoproducts, reported previously for hMutSalpha and described here for E. coli MutS protein. If MMR suppresses UV mutagenesis by acting directly on pre-mutagenic products of replicative bypass, mismatched photoproducts should be recognized in most DNA-sequence contexts. In three of four contexts tested here (three substantially different), T[CPD]T/AG was bound only slightly better by MutS than was T[CPD]T/AA or homoduplex DNA; only one of two contexts tested promoted selective binding of T[6--4]T/AG. Although the T:G pairs in T[CPD]T/AG and T/G both adopt wobble conformations, MutS bound T/G well in all contexts (K(1/2) 2.1--2.9 nM). Thus, MutS appears to select the two mismatches by different mechanisms. NMR analyses elsewhere suggest that in the (highly distorted) T[6--4]T/AG a forked H-bond between O2 of the 3' thymine and the ring 1-imino and exocyclic 2-amino guanine protons stabilizes a novel planar structure not possible in T[6--4]T/AA. Replacement of G by purines lacking one (inosine, 2-aminopurine) or both (nebularine) protons markedly reduced or eliminated selective MutS binding, as predicted. Previous studies and the work here, taken together, suggest that in only about half of DNA sequence contexts could MutS (and presumably MutSalpha) selectively bind mismatched UV photoproducts and directly suppress UV mutagenesis.
Collapse
Affiliation(s)
- Peter D Hoffman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis Oregon 97331-7301, USA
| | | | | | | | | | | |
Collapse
|
20
|
Stout GJ, Oosten MV, Acherrat FZ, Wit JD, Vermeij WP, Mullenders LHF, Gruijl FRD, Backendorf C. Selective DNA damage responses in murine Xpa-/-, Xpc-/- and Csb-/- keratinocyte cultures. DNA Repair (Amst) 2005; 4:1337-44. [PMID: 16182614 DOI: 10.1016/j.dnarep.2005.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 07/20/2005] [Accepted: 07/21/2005] [Indexed: 11/18/2022]
Abstract
Cellular DNA damage responses (DDRs) are induced by unrepaired DNA lesions and constitute a protective back-up system that prevents the expansion of damaged cells. These cellular signaling pathways trigger either growth arrest or cell death and are believed to be major components of an early anti-cancer barrier. Cultures of C57BL/6J keratinocytes with various defects in NER sub-pathways allowed us to follow the kinetics of DDRs in an isogenic background and in the proper (physiologically relevant) target cells, supplementing earlier studies in heterogenic human fibroblasts. In a series of well-controlled parallel experiments we have shown that, depending on the NER deficiency, murine keratinocytes elicited highly selective DDRs. After a dose of UV-B that did not affect wild-type keratinocytes, Xpa(-/-) keratinocytes (complete NER deficiency) showed a rapid depletion of DNA replicating S-phase cells, a transient increase in quiescent S-phase cells (not replicating DNA), followed by massive apoptosis. Csb(-/-) keratinocytes (TC-NER deficient) responded by a more sustained increase in QS-phase cells and appeared more resistant to UV-B induced apoptosis than Xpa(-/-). In irradiated Xpc(-/-) keratinocytes (GG-NER deficient) the loss of replicating S-phase cells was associated with a gradual build-up of both QS-phase cells and cells arrested in late-S phase, in complete absence of apoptosis. Our analysis complements and extends previous in vivo investigations and highlights both similarities and differences with earlier fibroblast studies. In vitro cultures of murine keratinocytes provide a new tool to unravel the molecular mechanisms of UV-induced cellular stress responses in great detail and in a physiologically relevant background. This will be essential to fully appreciate the implications of DDRs in tumor suppression and cancer prevention.
Collapse
Affiliation(s)
- Gerdine J Stout
- Department of Dermatology, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chaturvedi V, Sitailo LA, Qin JZ, Bodner B, Denning MF, Curry J, Zhang W, Brash D, Nickoloff BJ. Knockdown of p53 levels in human keratinocytes accelerates Mcl-1 and Bcl-xL reduction thereby enhancing UV-light induced apoptosis. Oncogene 2005; 24:5299-312. [PMID: 15940268 DOI: 10.1038/sj.onc.1208650] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultraviolet (UV) light exposure is a common cause of epithelial-derived skin cancers, and the epidermal response to UV-light has been extensively studied using both mouse models and cultured human keratinocytes (KCs). Elimination of cells with UV-induced DNA damage via apoptosis provides a powerful mechanism to minimize retention or expansion of genetically abnormal cells. This cell editing function has largely been ascribed to the biological role of the p53 tumor suppressor gene, as mutations or deletions involving p53 have been linked to skin cancer development. Rather than introducing mutations, or using cells with complete loss of wild-type p53, we used an siRNA-based approach to knockdown, but not eliminate, p53 levels in primary cultures of human KCs followed by UV-irradiation. Surprisingly, when p53 levels were reduced by 50-80% the apoptosis induced by exposure to UV-light was accelerated and markedly enhanced (two- to three- fold) compared to control siRNA treated KCs. The p53 siRNA treated KCs were characterized by elevated E2F-1 levels accompanied by accelerated elimination of the Mcl-1 and Bcl-x(L) antiapoptotic proteins, as well as enhanced Bax oligomerization. Forced overexpression of either Mcl-1 or Bcl-x(L) reduced the UV-light enhanced apoptotic response in p53 siRNA treated KCs. We conclude that p53 not only can provide proapoptotic signals but also regulates a survival pathway influencing Mcl-1 and Bcl-x(L) levels. This overlooked survival function of p53 may explain previous paradoxical responses noted by investigators using p53 heterozygous and knockout mouse models, and opens up the possibility that not all liaisons within the cell involving p53 necessarily represent fatal attractions.
Collapse
Affiliation(s)
- Vijaya Chaturvedi
- Department of Pathology, Oncology Institute, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|