1
|
Kang YT, Yang WJ, Huang HC, Tang SC, Ko JL. Exposure to nickel chloride induces epigenetic modification on detoxification enzyme glutathione S-transferase M2. ENVIRONMENTAL TOXICOLOGY 2024; 39:1729-1736. [PMID: 38050843 DOI: 10.1002/tox.24055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Nickel (Ni) is a human carcinogen with genotoxic and epigenotoxic effects. Environmental and occupational exposure to Ni increases the risk of cancer and chronic inflammatory diseases. Our previous findings indicate that Ni alters gene expression through epigenetic regulation, specifically impacting E-cadherin and angiopoietin-like 4 (ANGPTL4), involved in epithelial-mesenchymal transition and migration. GST-M2, a member of the glutathione S-transferase (GST) enzyme family, plays a crucial role in cellular defense against oxidative damage and has been increasingly associated with cancer. GST-M2 overexpression inhibits lung cancer invasion and metastasis in vitro and in vivo. Hypermethylation of its promoter in cancer cells reduces gene expression, correlating with poor prognosis in non-small-cell lung cancer patients. The impact of Ni on GST-M2 remains unclear. We will investigate whether nickel exerts regulatory effects on GST-M2 through epigenetic modifications. Additionally, metformin, an antidiabetic drug, is being studied as a chemopreventive agent against nickel-induced damage. Our findings indicate that nickel chloride (NiCl2 ) exposure, both short-term and long-term, represses GST-M2 expression. However, the expression can be restored by demethylation agent 5-aza-2'-deoxycytidine and metformin. NiCl2 promotes hypermethylation of the GST-M2 promoter, as confirmed by methylation-specific PCR and bisulfite sequencing. Additionally, NiCl2 also influences histone acetylation, and metformin counteracts the suppressive effect of NiCl2 on histone H3 expression. Metformin reestablishes the binding of specificity protein 1 to the GST-M2 promoter, which is otherwise disrupted by NiCl2 . These findings elucidate the mechanism by which Ni reduces GST-M2 expression and transcriptional activity, potentially contributing to Ni-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Jung Yang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu Chih Huang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Jou YC, Wang SC, Dia YC, Wang ST, Yu MH, Yang HY, Chen LC, Shen CH, Liu YW. Anti-Cancer Effects and Tumor Marker Role of Glutathione S-Transferase Mu 5 in Human Bladder Cancer. Int J Mol Sci 2021; 22:ijms22063056. [PMID: 33802702 PMCID: PMC8002531 DOI: 10.3390/ijms22063056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous study demonstrated that the glutathione S-transferase Mu 5 (GSTM5) gene is highly CpG-methylated in bladder cancer cells and that demethylation by 5-aza-dC activates GSTM5 gene expression. The aim of the present study was to investigate the role of GSTM5 in bladder cancer. The levels of GSTM5 gene expression and DNA methylation were analyzed in patients with bladder cancer, and functional studies of GSTM5 were conducted using GSTM5 overexpression in cultured bladder cancer cells. Clinical analysis revealed that the GSTM5 mRNA expression was lower in bladder cancer tissues than in normal tissues and that the level of GSTM5 DNA methylation was higher in bladder cancer tissues than in normal urine pellets. Overexpression of GSTM5 decreased cell proliferation, migration and colony formation capacity. Glutathione (GSH) assay results indicated that cellular GSH concentration was decreased by GSTM5 expression and that GSH supplementation reversed the decrease in proliferation and migration of cells overexpressing GSTM5. By contrast, a GSH synthesis inhibitor significantly decreased 5637 cell GSH levels, survival and migration. Furthermore, GSTM5 overexpression inhibited the adhesion of cells to the extracellular matrix protein fibronectin. To elucidate the effect of GSTM5 on anticancer drugs used to treat bladder cancer, cellular viability was compared between cells with or without GSTM5 overexpression. GSTM5-overexpressed cells showed no significant change in the cytotoxicity of cisplatin or mitomycin C in 5637, RT4 and BFTC 905 cells. Though a degree of resistance to doxorubicin was noted in 5637 cells overexpressing GSTM5, no such resistance was observed in RT4 and BFTC 905 cells. In summary, GSTM5 plays a tumor suppressor role in bladder cancer cells without significantly affecting chemoresistance to cisplatin and mitomycin C, and the cellular GSH levels highlight a key mechanism underlying the cancer inhibition effect of GSTM5. These findings suggest that low gene expression and high DNA methylation levels of GSTM5 may act as tumor markers for bladder cancer.
Collapse
Affiliation(s)
- Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
- Department of Health and Nutrition Biotechnology, Asian University, Taichung 41354, Taiwan
| | - Shou-Chieh Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
- Department of Food Science, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kuang Tien General Hospital, Taichung 437, Taiwan
| | - Yuan-Chang Dia
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
- Department of Pathology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
| | - Shou-Tsung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Min-Hua Yu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Hsin-Yi Yang
- Department of Clinical Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
| | - Lei-Chin Chen
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan
- Department of Health and Nutrition Biotechnology, Asian University, Taichung 41354, Taiwan
| | - Yi-Wen Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| |
Collapse
|
3
|
Wang J, Yu L, Jiang H, Zheng X, Zeng S. Epigenetic Regulation of Differentially Expressed Drug-Metabolizing Enzymes in Cancer. Drug Metab Dispos 2020; 48:759-768. [PMID: 32601104 DOI: 10.1124/dmd.120.000008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Drug metabolism is a biotransformation process of drugs, catalyzed by drug-metabolizing enzymes (DMEs), including phase I DMEs and phase II DMEs. The aberrant expression of DMEs occurs in the different stages of cancer. It can contribute to the development of cancer and lead to individual variations in drug response by affecting the metabolic process of carcinogen and anticancer drugs. Apart from genetic polymorphisms, which we know the most about, current evidence indicates that epigenetic regulation is also central to the expression of DMEs. This review summarizes differentially expressed DMEs in cancer and related epigenetic changes, including DNA methylation, histone modification, and noncoding RNAs. Exploring the epigenetic regulation of differentially expressed DMEs can provide a basis for implementing individualized and rationalized medication. Meanwhile, it can promote the development of new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer. SIGNIFICANCE STATEMENT: This review summarizes the aberrant expression of DMEs in cancer and the related epigenetic regulation of differentially expressed DMEs. Exploring the epigenetic regulatory mechanism of DMEs in cancer can help us to understand the role of DMEs in cancer progression and chemoresistance. Also, it provides a basis for developing new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| |
Collapse
|
4
|
Sun X, Chen D, Jin Z, Chen T, Lin A, Jin H, Zhu Y, Lai M. Genome-wide methylation and expression profiling identify methylation-associated genes in colorectal cancer. Epigenomics 2019; 12:19-36. [PMID: 31833403 DOI: 10.2217/epi-2019-0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To identify methylation-associated genes in the carcinogenesis of colorectal cancer (CRC). Materials & methods: Genome-wide patterns of DNA methylation and gene expression in CRC tissues and adjacent normal tissues were determined and further validated in The Cancer Genome Atlas data and Chinese CRC patients, respectively. Gene overexpression and knockdown cells were constructed to investigate their biological roles in CRC. Results: After validations, hypermethylation of eight genes were found to be correlated with their reduced transcription, and hypomethyaltion of three genes were associated with their upregulation. CADM3, CNRIP1, GRHL2, GRIA4, GSTM2 and NRXN1 were associated with the overall survival of CRC patients. CNRIP1 and GSTM2 were mainly responsible for the proliferation in CRC cells. Conclusion: A total of 11 genes may be promising biomarkers for CRC.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Diyu Chen
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, PR China
| | - Ziqi Jin
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Tianhui Chen
- Group of Molecular Epidemiology & Cancer Precision Prevention, Zhejiang Academy of Medical Sciences, Hangzhou 310013, PR China
| | - Aifen Lin
- Human Tissue Bank/Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, 317000, PR China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310020, PR China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.,Department of Respiratory Diseases, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310020, PR China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
5
|
Stoddard EG, Killinger BJ, Nag SA, Corley RA, Smith JN, Wright AT. Benzo[ a]pyrene Induction of Glutathione S-Transferases: An Activity-Based Protein Profiling Investigation. Chem Res Toxicol 2019; 32:1259-1267. [PMID: 30938511 PMCID: PMC7138413 DOI: 10.1021/acs.chemrestox.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.
Collapse
Affiliation(s)
- Ethan G. Stoddard
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryan J. Killinger
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| | - Subhasree A. Nag
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard A. Corley
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N. Smith
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Aaron T. Wright
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
6
|
Vázquez-Gómez G, Rubio-Lightbourn J, Espinosa-Aguirre JJ. MECANISMOS DE ACCIÓN DEL RECEPTOR DE HIDROCARBUROS DE ARILOS EN EL METABOLISMO DEL BENZO[A]PIRENO Y EL DESARROLLO DE TUMORES. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Oluwole DO, Nyokong T. Physicochemical behavior of nanohybrids of mono and tetra substituted carboxyphenoxy phthalocyanine covalently linked to GSH–CdTe/CdS/ZnS quantum dots. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Spink BC, Bloom MS, Wu S, Sell S, Schneider E, Ding X, Spink DC. Analysis of the AHR gene proximal promoter GGGGC-repeat polymorphism in lung, breast, and colon cancer. Toxicol Appl Pharmacol 2014; 282:30-41. [PMID: 25447411 DOI: 10.1016/j.taap.2014.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023]
Abstract
The aryl hydrocarbon receptor (AhR) regulates expression of numerous genes, including those of the CYP1 gene family. With the goal of determining factors that control AHR gene expression, our studies are focused on the role of the short tandem repeat polymorphism, (GGGGC)n, located in the proximal promoter of the human AHR gene. When luciferase constructs containing varying GGGGC repeats were transfected into cancer cell lines derived from the lung, colon, and breast, the number of GGGGC repeats affected AHR promoter activity. The number of GGGGC repeats was determined in DNA from 327 humans and from 38 samples representing 5 species of non-human primates. In chimpanzees and 3 species of macaques, only (GGGGC)2 alleles were observed; however, in western gorilla, (GGGGC)n alleles with n=2, 4, 5, 6, 7, and 8 were identified. In all human populations examined, the frequency of (GGGGC)n was n=4>5≫2, 6. When frequencies of the (GGGGC)n alleles in DNA from patients with lung, colon, or breast cancer were evaluated, the occurrence of (GGGGC)2 was found to be 8-fold more frequent among lung cancer patients in comparison with its incidence in the general population, as represented by New York State neonates. Analysis of matched tumor and non-tumor DNA samples from the same individuals provided no evidence of microsatellite instability. These studies indicate that the (GGGGC)n short tandem repeats are inherited, and that the (GGGGC)2 allele in the AHR proximal promoter region should be further investigated with regard to its potential association with lung cancer susceptibility.
Collapse
Affiliation(s)
- Barbara C Spink
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Michael S Bloom
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201, United States
| | - Susan Wu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201, United States
| | - Erasmus Schneider
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201, United States
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201, United States; Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201, United States
| | - David C Spink
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, United States; Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Albany, NY 12201, United States.
| |
Collapse
|
9
|
Ashour N, Angulo JC, Andrés G, Alelú R, González-Corpas A, Toledo MV, Rodríguez-Barbero JM, López JI, Sánchez-Chapado M, Ropero S. A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis. Prostate 2014; 74:1171-82. [PMID: 24961912 DOI: 10.1002/pros.22833] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND DNA hypermethylation has emerged as a novel molecular biomarker for the evaluation of prostate cancer diagnosis and prognosis. Defining the specific gene hypermethylation profile for prostate cancer could involve groups of genes that specifically discriminate patients with indolent and aggressive tumors. METHODS Genome-wide methylation analysis was performed on 83 tumor and 10 normal prostate samples using the GoldenGate Methylation Cancer Panel I (Illumina, Inc.). All clinical stages of disease were considered. RESULTS We found 41 genes hypermethylated in more than 20% of the tumors analyzed (P < 0.01). Of these, we newly identified GSTM2 and PENK as being genes that are hypermethylated in prostate cancer and that were simultaneously methylated in 40.9% of the tumors analyzed. We also identified panels of genes that are more frequently methylated in tumor samples with clinico-pathological indicators of poor prognosis: a high Gleason score, elevated Ki-67, and advanced disease. Of these, we found simultaneous hypermethylation of CFTR and HTR1B to be common in patients with a high Gleason score and high Ki-67 levels; this might indicate the population at higher risk of therapeutic failure. The DNA hypermethylation profile was associated with cancer-specific mortality (log-rank test, P = 0.007) and biochemical recurrence-free survival (log-rank test, P = 0.0008). CONCLUSIONS Our findings strongly indicate that epigenetic silencing of GSTM2 and PENK is a common event in prostate cancer that could be used as a molecular marker for prostate cancer diagnosis. In addition, simultaneous HTR1B and CFTR hypermethylation could help discriminate aggressive from indolent prostate tumors.
Collapse
Affiliation(s)
- Nadia Ashour
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tang SC, Wu CH, Lai CH, Sung WW, Yang WJ, Tang LC, Hsu CP, Ko JL. Glutathione S-transferase mu2 suppresses cancer cell metastasis in non-small cell lung cancer. Mol Cancer Res 2013; 11:518-529. [PMID: 23653452 DOI: 10.1158/1541-7786.mcr-12-0488] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glutathione S-transferase mu2 (GST-M2) is a phase II detoxification enzyme. Low expression of GST-M2 in lung cancers is due to hypermethylation of its promoter. Lung cancer with the GST mu-null genotype is associated with shorter survival. However, a correlation between GST-M2 and important clinical parameters, as well as the migration of GST-M2-defective cells in lung cancer, has not been established. In the present study, we investigate the role of GST-M2 in cell migration and actin disassembly in lung cancer cells. GST-M2 and CCN2 mRNA levels were significantly reduced in non-small cell lung cancer (NSCLC) tumors when compared with matched normal lung tissues in 82 patients with NSCLC. We found that high expressions of both GST-M2 and CCN2 are correlated with favorable survival of patients with lung cancer when compared with similar patients without GST-M2 or CCN2 expression. GST-M2 can induce CCN2 expression by driving the CCN2 proximal promoter. Overexpression of GST-M2 decreases the formation of filopodia, resulting in remodeling of the reorganized cytoskeletons. Overexpression of GST-M2 significantly suppressed cancer cell migration on wound-healing assay. In addition, overexpression of GST-M2 dramatically reduced tumor growth and metastasis in a xenograft mouse model. These data highlight the potential of GST-M2 as a novel tumor suppressor. GST-M2 increases the expression of CCN2 in lung cancer cells, which inhibits cancer cell migration in lung cancer and animal models.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/enzymology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Movement/physiology
- Connective Tissue Growth Factor/biosynthesis
- Connective Tissue Growth Factor/genetics
- Connective Tissue Growth Factor/metabolism
- Female
- Glutathione Transferase/biosynthesis
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Heterografts
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Confocal
- Neoplasm Metastasis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Institute of Medicine, Chung Shan Medical University, Taichung City 40203,Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kumar M, Jain M, Sehgal A, Sharma V. Modulation of CYP1A1, CYP1B1 and DNA adducts level by green and white tea in Balb/c mice. Food Chem Toxicol 2012; 50:4375-81. [DOI: 10.1016/j.fct.2012.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 01/02/2023]
|
12
|
Tang SC, Wu MF, Wong RH, Liu YF, Tang LC, Lai CH, Hsu CP, Ko JL. Epigenetic mechanisms for silencing glutathione S-transferase m2 expression by hypermethylated specificity protein 1 binding in lung cancer. Cancer 2011; 117:3209-21. [PMID: 21246532 DOI: 10.1002/cncr.25875] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/25/2010] [Accepted: 11/29/2010] [Indexed: 11/12/2022]
Abstract
BACKGROUND Glutathione S-transferases M2 (GST-M2) is a detoxifying enzyme. Low expression levels of GST-M2 have been detected in lung cancer cells. However, little is known about the regulation of GST-M2 in lung cancer cells. In this study, the authors investigated the epigenetic regulatory mechanisms of GST-M2 in lung cancer cells. METHODS The authors evaluated the promoter methylation of GST-M2 in lung cancer cells after treatment with the DNA methyltransferase (DNMT) inhibitor 5'-aza-2'-deoxycytidine (5'-aza-dC). Reporter activity assays, chromatin immunoprecipitation (ChIP), electrophoretic mobility-shift assays, and small interfering RNA (siRNA) assays were used to determine whether the methylation of specificity protein 1 (Sp1) affected binding to the GST-M2 promoter or regulated GST-M2 transcription. Real-time polymerase chain reaction was used to determine GST-M2 and DNMT-3b messenger RNA levels in 73 nonsmall cell lung cancer (NSCLC) tissues. RESULTS GST-M2 expression was restored after treatment with 5'-aza-dC in lung cancer cells. GST-M2 exhibited high frequency of promoter hypermethylation in lung cancer cells and NSCLC tumor tissues. CpG hypermethylation abated Sp1 binding to the GST-M2 promoter in lung cancer. Knockdown of Sp1 in normal lung cells reduced GST-M2 expression, and silencing of DNMT-3b increased GST-M2 expression in lung cancer cells. In addition, DNMT-3b expression was significantly higher in lung tumors with low levels of GST-M2 expression than in lung tumors with high levels of GST-M2 expression, especially among women and among patients who had stage I disease. CONCLUSIONS Epigenetic silencing of GST-M2 was distinguished from Sp1-mediated GST-M2 transcriptional expression. The authors concluded that this represents a mechanism that leads to decreased expression of GST-M2 in lung cancer cells.
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tang SC, Sheu GT, Wong RH, Huang CY, Weng MW, Lee LW, Hsu CP, Ko JL. Expression of glutathione S-transferase M2 in stage I/II non-small cell lung cancer and alleviation of DNA damage exposure to benzo[a]pyrene. Toxicol Lett 2009; 192:316-23. [PMID: 19900515 DOI: 10.1016/j.toxlet.2009.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
Abstract
Glutathione S-transferases (GSTs) are a family of inducible enzymes that are important in carcinogen detoxification. GST-Mu class is showing the high activity towards most polycyclic aromatic hydrocarbon (PAH) epoxide. Our objective is to clarify the expression of GST-M2 in non-small-cell lung carcinoma (NSCLC) patients and to determine the role of GST-M2 in protecting against DNA damage. We detected changes in GST-M2 expression at mRNA levels with a panel of lung cell lines and clinical samples of malignant and paired adjacent non-malignant tissues from 50 patients with stage I or II non-small-cell lung carcinoma using real-time RT-PCR. Comet assay and gamma-H2AX were used to clarify whether DNA damaged was protected by GST-M2. Our data demonstrate that the expression of GST-M2 in tumor tissues is significantly lower than in paired adjacent non-malignant tissues (p=0.016). Loss of GST-M2 is closely associated with age, gender, T value, N value and cell differentiation (p<0.05) in early stage I/II patients. Downregulation of GST-M2 is mediated through aberrant hypermethylation in lung cancer cell lines. Protection against B[a]P-induced DNA damage by GST-M2 in lung cancer cells was detected by Comet assay and gamma-H2AX. In conclusion, DNA hypermethylation altered and reduced GST-M2 expression that resulted in susceptible to benzo[a]pyrene (B[a]P) induced DNA damage. It implies that GST-M2 reduction occurs prior to tumorigenesis.
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Devi KP, Kiruthiga PV, Pandian SK, Archunan G, Arun S. Olive oil protects rat liver microsomes against benzo(a)pyrene-induced oxidative damages: an in vitro study. Mol Nutr Food Res 2008; 52 Suppl 1:S95-102. [PMID: 18551459 DOI: 10.1002/mnfr.200800047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Benzo(a)pyrene (B(a)P), a member of the polycyclic aromatic hydrocarbon family is present ubiquitously in the environment. One of its toxic effects is induction of oxidative stress (mediated by the enzyme B(a)P hydroxylase) which leads to various diseases like cancer. Olive oil (OO) that consists of many antioxidant compounds is reported to have many beneficial properties including protection against cancer. The objective of the present study is to evaluate the effect of OO on B(a)P hydroxylase enzyme and further elucidate the antioxidant capacity of OO against B(a)P-induced toxicity. Rat liver microsomes were divided into three groups: vehicle control, B(a)P treated group, and OO + B(a)P co-incubated group. Antioxidant enzymes which were decreased and protein carbonyl content and lipid peroxidation products which were increased on exposure to B(a)P was attenuated to near normal on OO exposure. B(a)P hydroxylase enzyme was very low in OO incubated group which may be due to inhibition of the enzyme by OO or high utilization for the metabolism of B(a)P. Further, no B(a)P metabolites (3-OH B(a)P and B(a)P 7,8-dihydrodiol) were identified in HPLC during B(a)P + OO exposure. The results prove the protective role of OO against B(a)P-induced oxidative damage.
Collapse
Affiliation(s)
- Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
15
|
Giannini PJ, Morse MA, Weghorst CM, Pei P, Mallery SR. Functional activities and immunohistochemical cellular distribution of glutathione s-transferases in normal, dysplastic, and squamous cell carcinoma human oral tissues. Clin Med Oncol 2008; 2:159-68. [PMID: 20305732 PMCID: PMC2841403 DOI: 10.4137/cmo.s491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Clinical data show a strong correlation between tobacco and alcohol use and the development of oral squamous cell carcinoma (SCC). While this association implies that the oral mucosa actively metabolizes carcinogens, there is little information which depicts the carcinogen metabolizing enzymes within the oral cavity. Glutathione S-transferases (GSTs) primary function is to detoxify carcinogens by increasing their water solubility, GSTs represent key carcinogen metabolizing enzymes. Notably, individuals with a null phenotype for certain GST isoforms are at an increased risk to develop cancer. This study investigated the function and distribution of GSTs in human oral tissues. Our results from this pilot study showed a trend towards higher GST activities in SCC tissues relative to normal mucosa. Also, relative to normal tissues, the SCC and epithelial dysplasia samples showed a more intense and uniform GST intracellular distribution. GST activities are increased in many high grade cancers. Similarly, our data suggest that GST upregulation occurs in at least a subset of precancerous and malignant oral lesions.
Collapse
Affiliation(s)
- Peter J. Giannini
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska
| | - Mark A. Morse
- Senior Toxicologist, Springborn Laboratories, Spencerville, Ohio
| | - Christopher M. Weghorst
- Division of Environmental Health Sciences, School of Public Health, The Ohio State University, College of Medicine, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ping Pei
- Department of Oral and Maxillofacial Surgery and Pathology, The Ohio State University, College of Dentistry, Columbus, Ohio
| | - Susan R. Mallery
- Department of Oral and Maxillofacial Surgery and Pathology, The Ohio State University, College of Dentistry, Columbus, Ohio
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
16
|
Cook JA, Chuang EY, Tsai MH, Coffin D, Degraff W, Sowers AL, Mitchell JB. Radiation-induced changes in gene-expression profiles for the SCC VII tumor cells grown in vitro and in vivo. Antioxid Redox Signal 2006; 8:1263-72. [PMID: 16910774 DOI: 10.1089/ars.2006.8.1263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SCCVII tumor cells that grow in vitro or in vivo as a solid tumor were used to compare and contrast geneexpression profiles with or without exposure to two doses of ionizing radiation. Exponentially growing SCCVII cell cultures and tumors (1 cm diameter) were treated with 0, 2, or 10 Gy, and RNA was collected 1, 3, 6, 12, and 24 h after treatment. Growth under in vitro conditions increased the expression of genes associated with the unfolded protein response (UPR) including ATF4, Ero-1 like, and cystathionase. Growth in vivo indicated that the HIF-1a genes were not upregulated, whereas genes such as hemoglobin alpha and crystallin alpha B were significantly upregulated. Ninety genes of 16K were found to be significantly modulated under either growth condition by radiation treatment. Gene expression was not dose dependent. Sixty percent of these genes exhibited similar modulation under both in vitro and in vivo conditions; however, 29% of the genes were modulated by radiation under in vivo conditions only. Gene-expression profiles for the same tumor cells can differ, dependent on growth conditions, underscoring the influence that the tumor microenvironment exerts on gene expression for both growth of solid tumors and their response to radiation treatment.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Cell Culture Techniques
- Cell Cycle/radiation effects
- Cell Line, Tumor
- Cell Survival/radiation effects
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/radiation effects
- Mice
- Mice, Inbred C3H
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/radiotherapy
- Radiation Dosage
- Radiation, Ionizing
- Time Factors
- Tumor Suppressor Protein p53/analysis
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- John A Cook
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|