1
|
Magenis ML, de Oliveira Monteiro I, Damiani AP, Dagostin LS, Possamai OL, Medeiros EB, Budni J, Bittencourt JVS, Mendes C, Silveira PCL, Garcia ALH, da Silva J, de Feveri W, Langie SAS, Godschalk R, de Andrade VM. Maternal exercise before and during pregnancy protects against genotoxicity and promotes offspring hippocampal health in mice prenatally exposed to high fructose. Mutagenesis 2025; 40:145-463. [PMID: 39803898 DOI: 10.1093/mutage/geaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 04/26/2025] Open
Abstract
The fetal brain is susceptible to programming effects during pregnancy, potentially leading to long-term consequences for offspring's cognitive health. Fructose (FRU) intake is thought to adversely affect fetal brain development, whereas physical exercise before and during pregnancy may be protective. Therefore, this study aimed to assess biochemical and genotoxic changes in maternal hippocampi and behavioral, genotoxic, and biochemical alterations in offspring hippocampi. Seventy female mice were exposed to FRU (20%/L) and/or voluntary physical exercise (VPE) pre-pregnancy for eight weeks, and then mated and exposure was continued until weaning. Offspring were evaluated at 60 days old using behavioral test, genotoxic, and biochemical markers. FRU-induced long-term memory impairment in male offspring, which was alleviated by VPE. VPE mitigated DNA damage from maternal FRU consumption in both maternal and offspring hippocampi in female offspring, VPE increased levels of apurine/apyrimidinic endonuclease 1, erythroid nuclear factor 2, and cAMP response element binding proteins, whereas in males, 8-oxoguanine DNA glycosylase-1 levels upregulate. FRU consumption led to oxidative stress and antioxidant defense alterations in offspring, while VPE mitigated these effects. Telomere shortening was observed in male offspring from mothers who consumed FRU during pregnancy. Our findings suggest that exposure to FRU during (pre)pregnancy and lactation has adverse effects on offspring's hippocampi later in life, and VPE has a protective effect. Overall, the study underscores the significance of maternal dietary and physical habits on long-term offspring health, with an emphasis on implications for adult cognitive function.
Collapse
Affiliation(s)
- Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Isadora de Oliveira Monteiro
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Ligia Salvan Dagostin
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Otávio Lúcio Possamai
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Eduarda Behenck Medeiros
- Laboratory of Experimental Neurology, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Josiane Budni
- Laboratory of Experimental Neurology, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - João Vitor Silvano Bittencourt
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Carolini Mendes
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Ana Letícia Hilario Garcia
- Laboratory of Toxicological Genetics, Universidad Unilasalle, Canoas, CEP 92010-000, Rio Grande do Sul, Brazil
| | - Juliana da Silva
- Laboratory of Toxicological Genetics, Universidad Unilasalle, Canoas, CEP 92010-000, Rio Grande do Sul, Brazil
| | - Wanessa de Feveri
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| | - Sabine A S Langie
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, Limburg 6229 ER, University, Maastricht, The Netherlands
| | - Roger Godschalk
- Department of Pharmacology and Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, Limburg 6229 ER, University, Maastricht, The Netherlands
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, CEP:88806000, Santa Catarina, Brazil
| |
Collapse
|
2
|
Zhou Y, Zeng X, Zhang L, Yin X, Ma X, Li K, Qiu P, Lou X, Jin L, Wang Y, Yang Y, Shen T. Biallelic variants in the NDUFAF6 cause mitochondrial respiratory complex assembly defects associated with Leigh syndrome in probands. Mol Genet Metab Rep 2024; 41:101168. [PMID: 39720739 PMCID: PMC11667041 DOI: 10.1016/j.ymgmr.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Background Variants in NDUFAF6 have been reported to be associated with Leigh syndrome. However, further expansion of the NDUFAF6-phenotype and variants spectrum of NDUFAF6-related Leigh syndrome are still required. Methods Two patients diagnosed with Leigh syndrome were recruited, and whole-exome sequencing was performed to identify the genetic variants responsible for the abnormal gait, dystonia, and bilateral basal ganglia lesions, followed by validation using Sanger sequencing. Detailed medical records of the patients were collected and reviewed. Patient-derived immortalized B lymphocytes were generalized for functional assays. The clinical manifestations of the patients in this study and previously reported studies are summarized. Results Two patients developed gait dystonia followed by rapid progression to generalized dystonia and psychomotor regression. Brain magnetic resonance images showed lesions in bilateral symmetric basal ganglia. We identified that patient 1 and patient 2 had two missense changes (NM_152416 c.371 T > C, c.923 T > C and c.371 T > C, c.920 A > T) in NDUFAF6, respectively. The deficiency of mature super complex of complex I was confirmed in patient-derived immortalized B lymphocytes. Meanwhile, cellular ATP production was decreased, and mitochondrial ROS was increased. A literature review of 18 patients carrying variants in NDUFAF6 was conducted, focusing on neurological presentation. Conclusions NDUFAF6-related Leigh syndrome is a relevant cause of initial symptoms with abnormal gait, dystonia, and bilateral basal ganglia lesions. Two novel genetic variants, c.923 T > C and c.920 A > T were reported, which expands NDUFAF6-related Leigh syndrome and is advantageous for genetic counseling.
Collapse
Affiliation(s)
- Yuwei Zhou
- Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luyi Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojie Yin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Keyi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peijing Qiu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoting Lou
- Laboratory Medicine Center, Department of Genetic and Genomic Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Scientific Research, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ting Shen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
4
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
5
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
7
|
Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer's disease. FRONTIERS IN AGING 2023; 4:1164057. [PMID: 37323535 PMCID: PMC10267416 DOI: 10.3389/fragi.2023.1164057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Aging is a prominent risk factor for many neurodegenerative disorders, such as Alzheimer's disease (AD). Alzheimer's disease is characterized by progressive cognitive decline, memory loss, and neuropsychiatric and behavioral symptoms, accounting for most of the reported dementia cases. This disease is now becoming a major challenge and burden on modern society, especially with the aging population. Over the last few decades, a significant understanding of the pathophysiology of AD has been gained by studying amyloid deposition, hyperphosphorylated tau, synaptic dysfunction, oxidative stress, calcium dysregulation, and neuroinflammation. This review focuses on the role of non-canonical secondary structures of DNA/RNA G-quadruplexes (G4s, G4-DNA, and G4-RNA), G4-binding proteins (G4BPs), and helicases, and their roles in aging and AD. Being critically important for cellular function, G4s are involved in the regulation of DNA and RNA processes, such as replication, transcription, translation, RNA localization, and degradation. Recent studies have also highlighted G4-DNA's roles in inducing DNA double-strand breaks that cause genomic instability and G4-RNA's participation in regulating stress granule formation. This review emphasizes the significance of G4s in aging processes and how their homeostatic imbalance may contribute to the pathophysiology of AD.
Collapse
Affiliation(s)
- M. J. Vijay Kumar
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
| | - Rodrigo Morales
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Andrey S. Tsvetkov
- The Department of Neurology, The University of Texas McGovern Medical School at Houston, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
8
|
Roy R. Simultaneous Short- and Long-Patch Base Excision Repair (BER) Assay in Live Mammalian Cells. Methods Mol Biol 2023; 2701:3-19. [PMID: 37574472 PMCID: PMC11998044 DOI: 10.1007/978-1-0716-3373-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The base excision repair (BER) pathway repairs small, non-bulky DNA lesions, including oxidized, alkylated, and deaminated bases, and is responsible for the removal of at least 20,000 DNA lesions per cell per day. BER is initiated by DNA damage-specific DNA glycosylases that excise the damaged base and generates an abasic (AP) site or single-strand breaks, which are subsequently repaired in mammalian cells either by single-nucleotide (SN) or multiple-nucleotide incorporation via the SN-BER or long-patch BER (LP-BER) pathway, respectively. This chapter describes a plaque-based host cell reactivation (PL-HCR) assay system for measuring BER mechanisms in live mammalian cells using a plasmid-based assay. After transfection of a phagemid (M13mp18) containing a single modified base (representative BER DNA substrates) within a restriction site into human cells, restriction digestions detect the presence or absence (complete repair) of the adduct by the transformation of the digestion products into E. coli and counting the transformants as plaques. To monitor the patch size, different plasmids are constructed containing C:A mismatches within different restriction sites (inhibiting digestion) at various distances on both sides (5' or 3') of the modified base-containing restriction sites. Using this assay, the percentage of repair events that occur via 5' and 3' patch formation can be quantified.
Collapse
Affiliation(s)
- Rabindra Roy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
9
|
Qin N, Geng A, Xue R. Activated or Impaired: An Overview of DNA Repair in Neurodegenerative Diseases. Aging Dis 2022; 13:987-1004. [PMID: 35855336 PMCID: PMC9286913 DOI: 10.14336/ad.2021.1212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022] Open
Abstract
As the population ages, age-related neurodegenerative diseases have become a major challenge in health science. Currently, the pathology of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, is still not fully understood. Remarkably, emerging evidence indicates a role of genomic DNA damage and repair in various neurodegenerative disorders. Here, we summarized the current understanding of the function of DNA damage repair, especially base excision repair and double strand break repair pathways, in a variety of neurodegenerative diseases. We concluded that exacerbation of DNA lesions is found in almost all types of neurodegenerative diseases, whereas the activities of different DNA repair pathways demonstrate distinct trends, depending on disease type and even brain region. Specifically, key enzymes involved in base excision repair are likely impaired in Alzheimer's disease and amyotrophic lateral sclerosis but activated in Parkinson's disease, while nonhomologous end joining is likely downregulated in most types of neurodegenerative diseases. Hence, impairment of nonhomologous end joining is likely a common etiology for most neurodegenerative diseases, while defects in base excision repair are likely involved in the pathology of Alzheimer's disease and amyotrophic lateral sclerosis but are Parkinson's disease, based on current findings. Although there are still discrepancies and further studies are required to completely elucidate the exact roles of DNA repair in neurodegeneration, the current studies summarized here provide crucial insights into the pathology of neurodegenerative diseases and may reveal novel drug targets for corresponding neurodegenerative diseases.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Trapped topoisomerase-DNA covalent complexes in the mitochondria and their role in human diseases. Mitochondrion 2021; 60:234-244. [PMID: 34500116 DOI: 10.1016/j.mito.2021.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
Topoisomerases regulate DNA topology, organization of the intracellular DNA, the transmission of genetic materials, and gene expressions. Other than the nuclear genome, mitochondria also harbor the small, circular DNA (mtDNA) that encodes a critical subset of proteins for the production of cellular ATP; however, mitochondria are solely dependent on the nucleus for all the mitochondrial proteins necessary for mtDNA replication, repair, and maintenance. Mitochondrial genome compiles topological stress from bidirectional transcription and replication, therefore imports four nuclear encoded topoisomerases (Top1mt, Top2α, Top2β, and Top3α) in the mitochondria to relax mtDNA supercoiling generated during these processes. Trapping of topoisomerase on DNA results in the formation of protein-linked DNA adducts (PDAs), which are widely exploited by topoisomerase-targeting anticancer drugs. Intriguingly mtDNA is potentially exposed to DNA damage that has been attributed to a variety of human diseases, including neurodegeneration, cancer, and premature aging. In this review, we focus on the role of different topoisomerases in the mitochondria and our current understanding of the mitochondrial DNA damage through trapped protein-DNA complexes, and the progress in the molecular mechanisms of the repair for trapped topoisomerase covalent complexes (Topcc). Finally, we have discussed how the pathological DNA lesions that cause mtDNA damage,trigger mitochondrial fission and mitophagy, which serve as quality control events for clearing damaged mtDNA.
Collapse
|
11
|
Tiwari V, Baptiste BA, Okur MN, Bohr VA. Current and emerging roles of Cockayne syndrome group B (CSB) protein. Nucleic Acids Res 2021; 49:2418-2434. [PMID: 33590097 DOI: 10.1093/nar/gkab085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cockayne syndrome (CS) is a segmental premature aging syndrome caused primarily by defects in the CSA or CSB genes. In addition to premature aging, CS patients typically exhibit microcephaly, progressive mental and sensorial retardation and cutaneous photosensitivity. Defects in the CSB gene were initially thought to primarily impair transcription-coupled nucleotide excision repair (TC-NER), predicting a relatively consistent phenotype among CS patients. In contrast, the phenotypes of CS patients are pleiotropic and variable. The latter is consistent with recent work that implicates CSB in multiple cellular systems and pathways, including DNA base excision repair, interstrand cross-link repair, transcription, chromatin remodeling, RNAPII processing, nucleolin regulation, rDNA transcription, redox homeostasis, and mitochondrial function. The discovery of additional functions for CSB could potentially explain the many clinical phenotypes of CSB patients. This review focuses on the diverse roles played by CSB in cellular pathways that enhance genome stability, providing insight into the molecular features of this complex premature aging disease.
Collapse
Affiliation(s)
- Vinod Tiwari
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Mitochondrial genome stability in human: understanding the role of DNA repair pathways. Biochem J 2021; 478:1179-1197. [DOI: 10.1042/bcj20200920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria are semiautonomous organelles in eukaryotic cells and possess their own genome that replicates independently. Mitochondria play a major role in oxidative phosphorylation due to which its genome is frequently exposed to oxidative stress. Factors including ionizing radiation, radiomimetic drugs and replication fork stalling can also result in different types of mutations in mitochondrial DNA (mtDNA) leading to genome fragility. Mitochondria from myopathies, dystonia, cancer patient samples show frequent mtDNA mutations such as point mutations, insertions and large-scale deletions that could account for mitochondria-associated disease pathogenesis. The mechanism by which such mutations arise following exposure to various DNA-damaging agents is not well understood. One of the well-studied repair pathways in mitochondria is base excision repair. Other repair pathways such as mismatch repair, homologous recombination and microhomology-mediated end joining have also been reported. Interestingly, nucleotide excision repair and classical nonhomologous DNA end joining are not detected in mitochondria. In this review, we summarize the potential causes of mitochondrial genome fragility, their implications as well as various DNA repair pathways that operate in mitochondria.
Collapse
|
13
|
Ferezin CDC, Basei FL, Melo‐Hanchuk TD, de Oliveira AL, Peres de Oliveira A, Mori MP, de Souza‐Pinto NC, Kobarg J. NEK5 interacts with LonP1 and its kinase activity is essential for the regulation of mitochondrial functions and mtDNA maintenance. FEBS Open Bio 2021; 11:546-563. [PMID: 33547867 PMCID: PMC7931231 DOI: 10.1002/2211-5463.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about Nima-related kinase (NEKs), a widely conserved family of kinases that have key roles in cell-cycle progression. Nevertheless, it is now clear that multiple NEK family members act in networks, not only to regulate specific events of mitosis, but also to regulate metabolic events independently of the cell cycle. NEK5 was shown to act in centrosome disjunction, caspase-3 regulation, myogenesis, and mitochondrial respiration. Here, we demonstrate that NEK5 interacts with LonP1, an AAA+ mitochondrial protease implicated in protein quality control and mtDNA remodeling, within the mitochondria and it might be involved in the LonP1-TFAM signaling module. Moreover, we demonstrate that NEK5 kinase activity is required for maintaining mitochondrial mass and functionality and mtDNA integrity after oxidative damage. Taken together, these results show a new role of NEK5 in the regulation of mitochondrial homeostasis and mtDNA maintenance, possibly due to its interaction with key mitochondrial proteins, such as LonP1.
Collapse
Affiliation(s)
- Camila de Castro Ferezin
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | - Fernanda Luisa Basei
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | | | - Ana Luisa de Oliveira
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | | | - Mateus P. Mori
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloBrazil
| | | | - Jörg Kobarg
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| |
Collapse
|
14
|
Damiani AP, Strapazzon G, de Oliveira Sardinha TT, Rohr P, Gajski G, de Pinho RA, de Andrade VM. Melatonin supplementation over different time periods until ageing modulates genotoxic parameters in mice. Mutagenesis 2020; 35:465-478. [PMID: 32720686 DOI: 10.1093/mutage/geaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
The ageing process is a multifactorial phenomenon, associated with decreased physiological and cellular functions and an increased propensity for various degenerative diseases. Studies on melatonin (N-acetyl-5-methoxytryptamine), a potent antioxidant, are gaining attention since melatonin production declines with advancing age. Hence, the aim of this study was to evaluate the effects of chronic melatonin consumption on genotoxic and mutagenic parameters of old Swiss mice. Herein, 3-month-old Swiss albino male mice (n = 240) were divided into eight groups and subdivided into two experiments: first (three groups): natural ageing experiment; second (five groups): animals that started water or melatonin supplementation at different ages (3, 6, 12 and 18 months) until 21 months. After 21 months, the animals from the second experiment were euthanized to perform the comet assay, micronucleus test and western blot analysis. The results demonstrated that melatonin prolonged the life span of the animals. Relative to genomic instability, melatonin was effective in reducing DNA damage caused by ageing, presenting antigenotoxic and antimutagenic activities, independently of initiation age. The group receiving melatonin for 18 months had high levels of APE1 and OGG1 repair enzymes. Conclusively, melatonin presents an efficient antioxidant mechanism aiding modulating genetic and physiological alterations due to ageing.
Collapse
Affiliation(s)
- Adriani Paganini Damiani
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Thanielly Thais de Oliveira Sardinha
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Paula Rohr
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia, Croatia
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imac. Conceição - Curitiba - PR, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
15
|
Martínez-González K, Islas-Hernández A, Martínez-Ezquerro JD, Bermúdez-Rattoni F, Garcia-delaTorre P. Telomere length and oxidative stress variations in a murine model of Alzheimer's disease progression. Eur J Neurosci 2020; 52:4863-4874. [PMID: 32594585 DOI: 10.1111/ejn.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and ageing is its major risk factor. Changes in telomere length have been associated with ageing and some degenerative diseases. Our aim was to explore some of the molecular changes caused by the progression of AD in a transgenic murine model (3xTg-AD; B6; 129-Psen1 <tm1Mpm> Tg (APPSwe, tauP301L) 1Lfa). Telomere length was assessed by qPCR in both brain tissue and peripheral blood cells and compared between three age groups: 5, 9 and 13 months. In addition, a possible effect of oxidative stress on telomere length and AD progression was explored. Shorter telomeres were found in blood cells of older transgenic mice compared to younger and wild-type mice but no changes in telomere length in the hippocampus. An increase in oxidative stress with age was found for all strains, but no correlation was found between oxidative stress and shorter telomere length for transgenic mice. Telomere length and oxidative stress are affected by AD progression in the 3xTg-AD murine model. Changes in blood cells are more noticeable than changes in brain tissue, suggesting that systemic changes can be detected early in the disease in this murine model.
Collapse
Affiliation(s)
- Katia Martínez-González
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Coyoacán, México
| | - Azul Islas-Hernández
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Coyoacán, México
| | - José Darío Martínez-Ezquerro
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, México
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Paola Garcia-delaTorre
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| |
Collapse
|
16
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
17
|
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging. DNA Cell Biol 2020; 39:1410-1420. [PMID: 32315547 DOI: 10.1089/dna.2019.5347] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in numerous processes, including energy generation, regulating ion homeostasis, and cell signaling. Mitochondria are also the main source of reactive oxygen species (ROS). Due to the oxidative environment within mitochondria, the macromolecules therein, for example, mtDNA, proteins, and lipids are more susceptible to sustaining damage. During aging, mitochondrial functions decline, partly as a result of an accumulation of mtDNA mutations, decreased mtDNA copy number and protein expression, and a reduction in oxidative capacity. The aim of this study was to summarize the knowledge on DNA oxidative damage in aging and age-related neurodegenerative diseases. It has been hypothesized that various ROS may play an important role not only in physiological senescence but also in the development of neurodegenerative diseases, for example, Alzheimer's disease and Parkinson's disease. Thus, mitochondria seem to be a potential target of novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Sodel
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Inamura A, Muraoka-Hirayama S, Sakurai K. Loss of Mitochondrial DNA by Gemcitabine Triggers Mitophagy and Cell Death. Biol Pharm Bull 2020; 42:1977-1987. [PMID: 31787713 DOI: 10.1248/bpb.b19-00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gemcitabine (2,2-difluorodeoxycytidine nucleic acid), an anticancer drug exhibiting a potent ability to kill cancer cells, is a frontline chemotherapy drug. Although some chemotherapeutic medicines are known to induce nuclear DNA damage, no investigation into mitochondrial DNA (mtDNA) damage currently exists. When we treated insulinoma pancreatic β-cells (line INS-1) with high mitochondrial activity with gemcitabine for 24 h, the mtDNA contents were decreased. Gemcitabine induced a decrease in the number of mitochondria and the average potential of mitochondrial membrane in the cell but increased the superoxide anion radical levels. We observed that treatment with gemcitabine to induce cell death accompanied by autophagy-related protein markers, Atg5 and Atg7; these were significantly prevented by the autophagy inhibitors. The localization of Atg5 co-occurred with the location of mitochondria with membranes having high potential and mitophagy in cells treated with gemcitabine. The occurrence of mitophagy was inhibited by the inhibitors of the phosphatidylinositol 3-kinase/Akt pathway. Our results led us to the conclusion that gemcitabine induced cell death through mitophagy with the loss of mtDNA. These findings may provide a rationale for the combination of mtDNA damage with mitophagy in future clinical applications for cancer cells.
Collapse
Affiliation(s)
- Akihiro Inamura
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science
| | | | - Koichi Sakurai
- Division of Life Science, Department of Pharmacy, Hokkaido University of Science
| |
Collapse
|
19
|
Urulangodi M, Mohanty A. DNA damage response and repair pathway modulation by non-histone protein methylation: implications in neurodegeneration. J Cell Commun Signal 2020; 14:31-45. [PMID: 31749026 PMCID: PMC7176765 DOI: 10.1007/s12079-019-00538-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
Protein post-translational modifications (PTMs) have emerged to be combinatorial, essential mechanisms used by eukaryotic cells to regulate local chromatin structure, diversify and extend their protein functions and dynamically coordinate complex intracellular signalling processes. Most common types of PTMs include enzymatic addition of small chemical groups resulting in phosphorylation, glycosylation, poly(ADP-ribosyl)ation, nitrosylation, methylation, acetylation or covalent attachment of complete proteins such as ubiquitin and SUMO. Protein arginine methyltransferases (PRMTs) and protein lysine methyltransferases (PKMTs) enzymes catalyse the methylation of arginine and lysine residues in target proteins, respectively. Rapid progress in quantitative proteomic analysis and functional assays have not only documented the methylation of histone proteins post-translationally but also identified their occurrence in non-histone proteins which dynamically regulate a plethora of cellular functions including DNA damage response and repair. Emerging advances have now revealed the role of both histone and non-histone methylations in the regulating the DNA damage response (DDR) proteins, thereby modulating the DNA repair pathways both in proliferating and post-mitotic neuronal cells. Defects in many cellular DNA repair processes have been found primarily manifested in neuronal tissues. Moreover, fine tuning of the dynamicity of methylation of non-histone proteins as well as the perturbations in this dynamic methylation processes have recently been implicated in neuronal genomic stability maintenance. Considering the impact of methylation on chromatin associated pathways, in this review we attempt to link the evidences in non-histone protein methylation and DDR with neurodegenerative research.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, PIN-695011, India.
| | - Abhishek Mohanty
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, PIN-110085, India.
| |
Collapse
|
20
|
Abstract
Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
21
|
Ghosh A, Bhattacharjee S, Chowdhuri SP, Mallick A, Rehman I, Basu S, Das BB. SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy. SCIENCE ADVANCES 2019; 5:eaax9778. [PMID: 31723605 PMCID: PMC6834389 DOI: 10.1126/sciadv.aax9778] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/17/2019] [Indexed: 05/03/2023]
Abstract
A homozygous mutation of human tyrosyl-DNA phosphodiesterase 1 (TDP1) causes the neurodegenerative syndrome, spinocerebellar ataxia with axonal neuropathy (SCAN1). TDP1 hydrolyzes the phosphodiester bond between DNA 3'-end and a tyrosyl moiety within trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). TDP1 is critical for mitochondrial DNA (mtDNA) repair; however, the role of mitochondria remains largely unknown for the etiology of SCAN1. We demonstrate that mitochondria in cells expressing SCAN1-TDP1 (TDP1H493R) are selectively trapped on mtDNA in the regulatory non-coding region and promoter sequences. Trapped TDP1H493R-mtDNA complexes were markedly increased in the presence of the Top1 poison (mito-SN38) when targeted selectively into mitochondria in nanoparticles. TDP1H493R-trapping accumulates mtDNA damage and triggers Drp1-mediated mitochondrial fission, which blocks mitobiogenesis. TDP1H493R prompts PTEN-induced kinase 1-dependent mitophagy to eliminate dysfunctional mitochondria. SCAN1-TDP1 in mitochondria creates a pathological state that allows neurons to turn on mitophagy to rescue fit mitochondria as a mechanism of survival.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ishita Rehman
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
- Corresponding author.
| |
Collapse
|
22
|
Mitochondrial DNA Integrity: Role in Health and Disease. Cells 2019; 8:cells8020100. [PMID: 30700008 PMCID: PMC6406942 DOI: 10.3390/cells8020100] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/06/2023] Open
Abstract
As the primary cellular location for respiration and energy production, mitochondria serve in a critical capacity to the cell. Yet, by virtue of this very function of respiration, mitochondria are subject to constant oxidative stress that can damage one of the unique features of this organelle, its distinct genome. Damage to mitochondrial DNA (mtDNA) and loss of mitochondrial genome integrity is increasingly understood to play a role in the development of both severe early-onset maladies and chronic age-related diseases. In this article, we review the processes by which mtDNA integrity is maintained, with an emphasis on the repair of oxidative DNA lesions, and the cellular consequences of diminished mitochondrial genome stability.
Collapse
|
23
|
Prendecki M, Florczak-Wyspianska J, Kowalska M, Ilkowski J, Grzelak T, Bialas K, Wiszniewska M, Kozubski W, Dorszewska J. Biothiols and oxidative stress markers and polymorphisms of TOMM40 and APOC1 genes in Alzheimer's disease patients. Oncotarget 2018; 9:35207-35225. [PMID: 30443289 PMCID: PMC6219666 DOI: 10.18632/oncotarget.26184] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/01/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive disease, with frequently observed improper biothiols turnover, homocysteine (Hcy) and glutathione (GSH). GSH protects cells from oxidative stress and may be determined by 8-oxo-2’-deoxyguanosine (8-oxo2dG) level and its repair enzyme 8-oxoguanine DNA glycosylase (OGG1). The presence of unfavorable alleles, e.g., in APOE cluster, TOMM40 or APOC1 is known to facilitate the dementia onset under oxidative stress. The aim of the study was to analyze rs1052452, rs2075650 TOMM40 polymorphisms, rs4420638 APOC1, and their correlation with Hcy, GSH, 8-oxo2dG, OGG1 levels in plasma of AD patients and controls. We recruited 230 individuals: 88 AD, 80 controls without (UC), 62 controls with (RC) positive family history of AD. The TOMM40 genotype was determined by HRM and capillary electrophoresis, while APOC1 by HRM. The concentrations of OGG1, 8-oxo2dG were determined by ELISA, whereas Hcy, GSH by HPLC/EC. We showed that over 60% of AD patients had increased Hcy levels (p<0.01 vs. UC, p<0.001 vs. RC), while GSH (p<0.01 vs. UC), 8-oxo2dG (p<0.01 vs. UC, p<0.001 vs. RC) were reduced. Minor variants: rs10524523-L, rs4420638-G, rs2075650-G were significantly overrepresented in AD. For rs4420638-G, rs2075650-G variants, the association remained significant in APOE E4 non-carriers. The misbalance of analyzed biothiols, and 8-oxo2dG, OGG1 were more pronounced in carriers of major variants: rs10524523-S/VL, rs4420638-A, rs2075650-A. We showed, for the first time, that APOC1 and TOMM40 rs2075650 polymorphisms may be independent risk factors of developing AD, whose major variants are accompanied by disruption of biothiols metabolism and inefficient removal of DNA oxidation.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Ilkowski
- Department of Emergency Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Teresa Grzelak
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Bialas
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Malgorzata Wiszniewska
- Faculty of Health Care, Stanislaw Staszic University of Applied Sciences in Pila, Pila, Poland.,Department of Neurology, Specialistic Hospital in Pila, Pila, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
24
|
Vilela TC, Effting PS, Dos Santos Pedroso G, Farias H, Paganini L, Rebelo Sorato H, Nesi RT, de Andrade VM, de Pinho RA. Aerobic and strength training induce changes in oxidative stress parameters and elicit modifications of various cellular components in skeletal muscle of aged rats. Exp Gerontol 2018; 106:21-27. [PMID: 29471131 DOI: 10.1016/j.exger.2018.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Abstract
Skeletal muscle aging is associated with loss of mass, function, and strength-a condition known as sarcopenia. It has been reported that sarcopenia can be attenuated by physical exercise. Therefore, we investigated whether 2 different physical exercise protocols could modulate and induce changes in oxidative and inflammatory parameters, as well as in BDNF and DNA repair enzyme levels in skeletal muscle tissue of aged rats. Aging Wistar rats performed treadmill or strength training for 50 min 3 to 4 times a week for 8 weeks. Strength training decreased 2',7'-dichlorofluorescein (DCFH) oxidation (P = 0.0062); however, nitric oxide, protein deglycase DJ-1, and tumor necrosis factor alpha (TNF-α) levels increased after aerobic training (P = 0.04, P = 0.027 and P = 0.009, respectively). Both exercise protocols increased superoxide dismutase (SOD) and catalase (CAT) activity (P = 0.0017 and P = 0.0326) whereas the activity of glutathione (GSH) (P = 0.0001) was decreased. Brain-derived neurotropic factor (BDNF) levels were not affected by exercise, but 8-oxoguanine glycosylase (OGG1) decreased after strength training (P = 0.0007). In conclusion, oxidative parameters showed that skeletal muscle adapt to increased ROS levels, reducing the risk of free radical damage to the tissue after both exercise protocols. These results show that the effects of physical exercise on skeletal muscle are mediated in an exercise type-dependent manner.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil.
| | - Pauline Souza Effting
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Giulia Dos Santos Pedroso
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Hemelin Farias
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Lara Paganini
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Helen Rebelo Sorato
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Renata Tiescoski Nesi
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Molecular and Cellular Biology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry and Physiology, Graduate Program in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
25
|
Stoll EA, Karapavlovic N, Rosa H, Woodmass M, Rygiel K, White K, Turnbull DM, Faulkes CG. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age. Aging (Albany NY) 2017; 8:3468-3485. [PMID: 27997359 PMCID: PMC5270680 DOI: 10.18632/aging.101140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/02/2016] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades.
Collapse
Affiliation(s)
- Elizabeth A Stoll
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nevena Karapavlovic
- Undergraduate Programme in Biomedical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Hannah Rosa
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Michael Woodmass
- Undergraduate Programme in Biomedical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karolina Rygiel
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Kathryn White
- Electron Microscopy Research Services, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Douglass M Turnbull
- LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Ageing and Health, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Institute for Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Chris G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
26
|
Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 2017; 18:595-609. [PMID: 28792007 DOI: 10.1038/nrm.2017.68] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is the predominant risk factor for many common diseases. Human premature ageing diseases are powerful model systems to identify and characterize cellular mechanisms that underpin physiological ageing. Their study also leads to a better understanding of the causes, drivers and potential therapeutic strategies of common diseases associated with ageing, including neurological disorders, diabetes, cardiovascular diseases and cancer. Using the rare premature ageing disorder Hutchinson-Gilford progeria syndrome as a paradigm, we discuss here the shared mechanisms between premature ageing and ageing-associated diseases, including defects in genetic, epigenetic and metabolic pathways; mitochondrial and protein homeostasis; cell cycle; and stem cell-regenerative capacity.
Collapse
Affiliation(s)
- Nard Kubben
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
27
|
Oxidative DNA damage stalls the human mitochondrial replisome. Sci Rep 2016; 6:28942. [PMID: 27364318 PMCID: PMC4929447 DOI: 10.1038/srep28942] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress is capable of causing damage to various cellular constituents, including DNA. There is however limited knowledge on how oxidative stress influences mitochondrial DNA and its replication. Here, we have used purified mtDNA replication proteins, i.e. DNA polymerase γ holoenzyme, the mitochondrial single-stranded DNA binding protein mtSSB, the replicative helicase Twinkle and the proposed mitochondrial translesion synthesis polymerase PrimPol to study lesion bypass synthesis on oxidative damage-containing DNA templates. Our studies were carried out at dNTP levels representative of those prevailing either in cycling or in non-dividing cells. At dNTP concentrations that mimic those in cycling cells, the replication machinery showed substantial stalling at sites of damage, and these problems were further exacerbated at the lower dNTP concentrations present in resting cells. PrimPol, the translesion synthesis polymerase identified inside mammalian mitochondria, did not promote mtDNA replication fork bypass of the damage. This argues against a conventional role for PrimPol as a mitochondrial translesion synthesis DNA polymerase for oxidative DNA damage; however, we show that Twinkle, the mtDNA replicative helicase, is able to stimulate PrimPol DNA synthesis in vitro, suggestive of an as yet unidentified role of PrimPol in mtDNA metabolism.
Collapse
|
28
|
Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA. DNA Damage, DNA Repair, Aging, and Neurodegeneration. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a025130. [PMID: 26385091 DOI: 10.1101/cshperspect.a025130] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.
Collapse
Affiliation(s)
- Scott Maynard
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
29
|
Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev Diabet Stud 2015; 12:134-56. [PMID: 26676666 DOI: 10.1900/rds.2015.12.134] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease is one of the major microvascular complications of both type 1 and type 2 diabetes mellitus. Approximately 30% of patients with diabetes experience renal complications. Current clinical therapies can only mitigate the symptoms and delay the progression to end-stage renal disease, but not prevent or reverse it. Oxidative stress is an important player in the pathogenesis of diabetic nephropathy. The activity of reactive oxygen and nitrogen species (ROS/NS), which are by-products of the diabetic milieu, has been found to correlate with pathological changes observed in the diabetic kidney. However, many clinical studies have failed to establish that antioxidant therapy is renoprotective. The discovery that increased ROS/NS activity is linked to mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, cellular senescence, and cell death calls for a refined approach to antioxidant therapy. It is becoming clear that mitochondria play a key role in the generation of ROS/NS and their consequences on the cellular pathways involved in apoptotic cell death in the diabetic kidney. Oxidative stress has also been associated with necrosis via induction of mitochondrial permeability transition. This review highlights the importance of mitochondria in regulating redox balance, modulating cellular responses to oxidative stress, and influencing cell death pathways in diabetic kidney disease. ROS/NS-mediated cellular dysfunction corresponds with progressive disease in the diabetic kidney, and consequently represents an important clinical target. Based on this consideration, this review also examines current therapeutic interventions to prevent ROS/NS-derived injury in the diabetic kidney. These interventions, mainly aimed at reducing or preventing mitochondrial-generated oxidative stress, improving mitochondrial antioxidant defense, and maintaining mitochondrial integrity, may deliver alternative approaches to halt or prevent diabetic kidney disease.
Collapse
Affiliation(s)
- Runa Lindblom
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gavin Higgins
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Melinda Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Judy B de Haan
- Oxidative Stress Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Li X, Zhao Q, Zhou W, Xu L, Wang Y. Effects of chronic exposure to microcystin-LR on hepatocyte mitochondrial DNA replication in mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4665-4672. [PMID: 25723732 DOI: 10.1021/es5059132] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microcystins (MCs) are produced by cyanobacterial blooms, and microcystin-LR (MC-LR) is the most toxic among the 80 MC variants. Data have shown that the liver is one of the specific target organs for MC-LR, which can cause mitochondrial DNA (mtDNA) damage, resulting in mitochondrial dysfunction. However, the underlying mechanism is still unclear. In the present study, we evaluated the genetic toxicity of MC-LR in mice drinking water at different concentrations (1, 5, 10, 20, and 40 μg/L) for 12 months. Our results showed that long-term and persistent exposure to MC-LR increased the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels of DNA in liver cells, damaged the integrity of mtDNA and nuclear DNA (nDNA), and altered the mtDNA content. Notably, MC-LR exposure can change the expression of mitochondrial genes and nuclear genes that are critical for regulating mtDNA replication and repairing oxidized DNA. They also further impaired the function of mitochondria and liver cells.
Collapse
Affiliation(s)
- Xinxiu Li
- †Department of Medical Genetics, and ‡Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Qingya Zhao
- †Department of Medical Genetics, and ‡Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Wei Zhou
- †Department of Medical Genetics, and ‡Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Lizhi Xu
- †Department of Medical Genetics, and ‡Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yaping Wang
- †Department of Medical Genetics, and ‡Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
31
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
32
|
Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:834502. [PMID: 25538817 PMCID: PMC4236906 DOI: 10.1155/2014/834502] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/10/2014] [Indexed: 01/01/2023]
Abstract
Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ) load and to modify the progression of Alzheimer's disease (AD). However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1) level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg) mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration.
Collapse
|
33
|
Perales-Clemente E, Folmes CDL, Terzic A. Metabolic regulation of redox status in stem cells. Antioxid Redox Signal 2014; 21:1648-59. [PMID: 24949895 PMCID: PMC4174422 DOI: 10.1089/ars.2014.6000] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Metabolism-dependent generation of reactive oxygen species (ROS) and associated oxidative damage have been traditionally linked to impaired homeostasis and cellular death. Beyond the adverse effects of ROS accumulation, increasing evidence implicates redox status as a regulator of vital cellular processes. RECENT ADVANCES Emerging studies on the molecular mechanisms guiding stem cell fate decisions indicate a role for energy metabolism in regulating the fundamental ability of maintaining stemness versus undergoing lineage-specific differentiation. Stem cells have evolved protective metabolic phenotypes to minimize reactive oxygen generation through oxidative metabolism and support antioxidant scavenging through glycolysis and the pentose phosphate pathway. CRITICAL ISSUES While the dynamics in ROS generation has been correlated with stem cell function, the intimate mechanisms by which energy metabolism regulates ROS to impact cellular fate remain to be deciphered. FUTURE DIRECTIONS Decoding the linkage between nutrient sensing, energy metabolism, and ROS in regulating cell fate decisions would offer a redox-dependent strategy to regulate stemness and lineage specification.
Collapse
|
34
|
Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair (Amst) 2014; 16:44-53. [PMID: 24674627 DOI: 10.1016/j.dnarep.2014.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 01/06/2023]
Abstract
Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy.
Collapse
|
35
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
36
|
McKinnon PJ. Maintaining genome stability in the nervous system. Nat Neurosci 2013; 16:1523-9. [PMID: 24165679 PMCID: PMC4112580 DOI: 10.1038/nn.3537] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023]
Abstract
Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions, such as oxidative damage, do not affect neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles that are required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function.
Collapse
Affiliation(s)
- Peter J. McKinnon
- Department of Genetics, St Jude Children’s Research Hospital, Memphis TN, USA
| |
Collapse
|
37
|
Gupta S, De S, Srivastava V, Hussain M, Kumari J, Muniyappa K, Sengupta S. RECQL4 and p53 potentiate the activity of polymerase γ and maintain the integrity of the human mitochondrial genome. Carcinogenesis 2013; 35:34-45. [PMID: 24067899 DOI: 10.1093/carcin/bgt315] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (PolγA/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of PolγA. Kinetic constants for interactions between PolγA-RECQL4, PolγA-p53 and PolγB-p53 indicate that RECQL4 and p53 are accessory factors for PolγA-PolγB and PolγA-DNA interactions. RECQL4 enhances the binding of PolγA to DNA, thereby potentiating the exonuclease and polymerization activities of PolγA/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. SUMMARY The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.
Collapse
Affiliation(s)
- Shruti Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India and
| | | | | | | | | | | | | |
Collapse
|
38
|
Guo W, Zheng B, Cai Z, Xu L, Guo D, Cao L, Wang Y. The polymorphic AluYb8 insertion in the MUTYH gene is associated with reduced type 1 protein expression and reduced mitochondrial DNA content. PLoS One 2013; 8:e70718. [PMID: 23936466 PMCID: PMC3735632 DOI: 10.1371/journal.pone.0070718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 06/26/2013] [Indexed: 12/13/2022] Open
Abstract
The human mutY homolog (MUTYH) participates in base excision repair (BER), which is critical for repairing oxidized DNA bases and maintaining DNA replication fidelity. The polymorphic AluYb8 insertion in the 15th intron of the MUTYH gene (AluYb8MUTYH) has been shown to associate with an aggregated 8-hydroxy-2′-deoxyguanosine (8-OH-dG) lesion in genomic DNA and to serve as a risk factor for age-related diseases. In this work, we demonstrate that this variant is associated with a significant reduction of the type 1 MUTYH protein that localizes to mitochondria. Notably, this variant affects mitochondrial DNA (mtDNA) maintenance and functional mitochondrial mass in individuals homozygous for the AluYb8MUTYH variant. These findings provide evidence for an association between the AluYb8MUTYH variant and decreased mitochondrial homeostasis and, consequently, contribute to elucidating the roles of the AluYb8MUTYH variant in impairing the mitochondrial base excision repair (mtBER) system and increasing the risk of acquiring an age-related disease.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Bixia Zheng
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Zhenming Cai
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lizhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Dong Guo
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lili Cao
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
39
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Canugovi C, Misiak M, Ferrarelli LK, Croteau DL, Bohr VA. The role of DNA repair in brain related disease pathology. DNA Repair (Amst) 2013; 12:578-87. [PMID: 23721970 DOI: 10.1016/j.dnarep.2013.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.
Collapse
Affiliation(s)
- Chandrika Canugovi
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
41
|
Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B, Sandoval H, Charng WL, David G, Haueter C, Yamamoto S, Graham BH, Bellen HJ. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J Cell Biol 2013; 200:807-820. [PMID: 23509070 PMCID: PMC3601355 DOI: 10.1083/jcb.201208033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/19/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial complex I (CI) is an essential component in energy production through oxidative phosphorylation. Most CI subunits are encoded by nuclear genes, translated in the cytoplasm, and imported into mitochondria. Upon entry, they are embedded into the mitochondrial inner membrane. How these membrane-associated proteins cope with the hydrophilic cytoplasmic environment before import is unknown. In a forward genetic screen to identify genes that cause neurodegeneration, we identified sicily, the Drosophila melanogaster homologue of human C8ORF38, the loss of which causes Leigh syndrome. We show that in the cytoplasm, Sicily preprotein interacts with cytosolic Hsp90 to chaperone the CI subunit, ND42, before mitochondrial import. Loss of Sicily leads to loss of CI proteins and preproteins in both mitochondria and cytoplasm, respectively, and causes a CI deficiency and neurodegeneration. Our data indicate that cytosolic chaperones are required for the subcellular transport of ND42.
Collapse
Affiliation(s)
- Ke Zhang
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Zhihong Li
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Manish Jaiswal
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Vafa Bayat
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Bo Xiong
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hector Sandoval
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Wu-Lin Charng
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Gabriela David
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Claire Haueter
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Shinya Yamamoto
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Brett H. Graham
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Hugo J. Bellen
- Program in Structural and Computational Biology and Molecular Biophysics, Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Medical Scientist Training Program, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
42
|
Soltys DT, Rocha CRR, Lerner LK, de Souza TA, Munford V, Cabral F, Nardo T, Stefanini M, Sarasin A, Cabral‐Neto JB, Menck CFM. Novel
XPG
(
ERCC5
) Mutations Affect
DNA
Repair and Cell Survival after Ultraviolet but not Oxidative Stress. Hum Mutat 2013; 34:481-9. [DOI: 10.1002/humu.22259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 11/30/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Daniela T. Soltys
- Department of Microbiology, Institute of Biomedical Sciences University of São Paulo São Paulo SP Brazil
| | - Clarissa R. R. Rocha
- Department of Microbiology, Institute of Biomedical Sciences University of São Paulo São Paulo SP Brazil
| | - Letícia K. Lerner
- Department of Microbiology, Institute of Biomedical Sciences University of São Paulo São Paulo SP Brazil
| | - Tiago A. de Souza
- Department of Microbiology, Institute of Biomedical Sciences University of São Paulo São Paulo SP Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences University of São Paulo São Paulo SP Brazil
| | - Fernanda Cabral
- Instituto de Biofísica Carlos Chagas Filho Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Tiziana Nardo
- Istituto di Genetica Molecolare Consiglio Nazionale delle Ricerche Pavia Italy
| | - Miria Stefanini
- Istituto di Genetica Molecolare Consiglio Nazionale delle Ricerche Pavia Italy
| | - Alain Sarasin
- Centre National de la Recherche Scientifique UMR8200 Institut Gustave Roussy, University Paris‐Sud Villejuif France
| | - Januário B. Cabral‐Neto
- Instituto de Biofísica Carlos Chagas Filho Federal University of Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical Sciences University of São Paulo São Paulo SP Brazil
| |
Collapse
|
43
|
Tang G, Gutierrez Rios P, Kuo SH, Akman HO, Rosoklija G, Tanji K, Dwork A, Schon EA, Dimauro S, Goldman J, Sulzer D. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013; 54:349-61. [PMID: 23333625 DOI: 10.1016/j.nbd.2013.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/25/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) consists of a group of complex developmental disabilities characterized by impaired social interactions, deficits in communication and repetitive behavior. Multiple lines of evidence implicate mitochondrial dysfunction in ASD. In postmortem BA21 temporal cortex, a region that exhibits synaptic pathology in ASD, we found that compared to controls, ASD patients exhibited altered protein levels of mitochondria respiratory chain protein complexes, decreased Complex I and IV activities, decreased mitochondrial antioxidant enzyme SOD2, and greater oxidative DNA damage. Mitochondrial membrane mass was higher in ASD brain, as indicated by higher protein levels of mitochondrial membrane proteins Tom20, Tim23 and porin. No differences were observed in either mitochondrial DNA or levels of the mitochondrial gene transcription factor TFAM or cofactor PGC1α, indicating that a mechanism other than alterations in mitochondrial genome or mitochondrial biogenesis underlies these mitochondrial abnormalities. We further identified higher levels of the mitochondrial fission proteins (Fis1 and Drp1) and decreased levels of the fusion proteins (Mfn1, Mfn2 and Opa1) in ASD patients, indicating altered mitochondrial dynamics in ASD brain. Many of these changes were evident in cortical pyramidal neurons, and were observed in ASD children but were less pronounced or absent in adult patients. Together, these findings provide evidence that mitochondrial function and intracellular redox status are compromised in pyramidal neurons in ASD brain and that mitochondrial dysfunction occurs during early childhood when ASD symptoms appear.
Collapse
Affiliation(s)
- Guomei Tang
- Department of Neurology, Columbia University, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Within the last decade, multiple novel congenital human disorders have been described with genetic defects in known and/or novel components of several well-known DNA repair and damage response pathways. Examples include disorders of impaired nucleotide excision repair, DNA double-strand and single-strand break repair, as well as compromised DNA damage-induced signal transduction including phosphorylation and ubiquitination. These conditions further reinforce the importance of multiple genome stability pathways for health and development in humans. Furthermore, these conditions inform our knowledge of the biology of the mechanics of genome stability and in some cases provide potential routes to help exploit these pathways therapeutically. Here, I will review a selection of these exciting findings from the perspective of the disorders themselves, describing how they were identified, how genotype informs phenotype, and how these defects contribute to our growing understanding of genome stability pathways.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Human DNA Damage Response Disorders Group Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| |
Collapse
|
45
|
Mitochondrial DNA damage and its consequences for mitochondrial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:979-91. [PMID: 22728831 DOI: 10.1016/j.bbagrm.2012.06.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 12/11/2022]
Abstract
How mitochondria process DNA damage and whether a change in the steady-state level of mitochondrial DNA damage (mtDNA) contributes to mitochondrial dysfunction are questions that fuel burgeoning areas of research into aging and disease pathogenesis. Over the past decade, researchers have identified and measured various forms of endogenous and environmental mtDNA damage and have elucidated mtDNA repair pathways. Interestingly, mitochondria do not appear to contain the full range of DNA repair mechanisms that operate in the nucleus, although mtDNA contains types of damage that are targets of each nuclear DNA repair pathway. The reduced repair capacity may, in part, explain the high mutation frequency of the mitochondrial chromosome. Since mtDNA replication is dependent on transcription, mtDNA damage may alter mitochondrial gene expression at three levels: by causing DNA polymerase γ nucleotide incorporation errors leading to mutations, by interfering with the priming of mtDNA replication by the mitochondrial RNA polymerase, or by inducing transcriptional mutagenesis or premature transcript termination. This review summarizes our current knowledge of mtDNA damage, its repair, and its effects on mtDNA integrity and gene expression. This article is part of a special issue entitled: Mitochondrial Gene Expression.
Collapse
|
46
|
Demple B, Rao KS, Bohr VA. Indo-US workshop on base excision DNA repair, brain function and aging. Mech Ageing Dev 2012; 133:v-vi. [PMID: 22579128 DOI: 10.1016/s0047-6374(12)00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, BST 8-140, Stony Brook, NY 11790, USA
| | | | | |
Collapse
|
47
|
The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31:152-81. [DOI: 10.1016/j.preteyeres.2011.11.002] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
|
48
|
Lenaz G. Mitochondria and reactive oxygen species. Which role in physiology and pathology? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:93-136. [PMID: 22399420 DOI: 10.1007/978-94-007-2869-1_5] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress is among the major causes of toxicity due to interaction of Reactive Oxygen Species (ROS) with cellular macromolecules and structures and interference with signal transduction pathways. The mitochondrial respiratory chain, specially from Complexes I and III, is considered the main origin of ROS particularly under conditions of high membrane potential, but several other sources may be important for ROS generation, such as mitochondrial p66(Shc), monoamine oxidase, α-ketoglutarate dehydogenase, besides redox cycling of redox-active molecules. ROS are able to oxidatively modify lipids, proteins, carbohydrates and nucleic acids in mitochondria and to activate/inactivate signalling pathways by oxidative modification of redox-active factors. Cells are endowed with several defence mechanisms including repair or removal of damaged molecules, and antioxidant systems, either enzymatic or non-enzymatic. Oxidative stress is at the basis of ageing and many pathological disorders, such as ischemic diseases, neurodegenerative diseases, diabetes, and cancer, although the underlying mechanisms are not always completely understood.
Collapse
Affiliation(s)
- Giorgio Lenaz
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy.
| |
Collapse
|
49
|
Tahbaz N, Subedi S, Weinfeld M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res 2011; 40:3484-95. [PMID: 22210862 PMCID: PMC3333865 DOI: 10.1093/nar/gkr1245] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H2O2-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria.
Collapse
Affiliation(s)
- Nasser Tahbaz
- Department of Oncology, University of Alberta and Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | | | | |
Collapse
|
50
|
Daehn I, Brem R, Barkauskaite E, Karran P. 6-Thioguanine damages mitochondrial DNA and causes mitochondrial dysfunction in human cells. FEBS Lett 2011; 585:3941-6. [PMID: 22062154 DOI: 10.1016/j.febslet.2011.10.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 12/31/2022]
Abstract
The anticancer and immunosuppressant thiopurines cause 6-thioguanine (6-TG) to accumulate in nuclear DNA. We report that 6-TG is also readily incorporated into mitochondrial DNA (mtDNA) where it is rapidly oxidized. The oxidized forms of mtDNA 6-TG inhibit replication by DNA Pol-γ. Accumulation of oxidized 6-TG is associated with reduced mtDNA transcription, a decline in mitochondrial protein levels, and loss of mitochondrial function. Ultraviolet A radiation (UVA) also oxidizes mtDNA 6-TG. Cells without mtDNA are less sensitive to killing by a combination of 6-TG and UVA than their mtDNA-containing counterparts, indicating that photochemical mtDNA 6-TG oxidation contributes to 6-TG-mediated UVA photosensitization.
Collapse
Affiliation(s)
- Ilse Daehn
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK.
| | | | | | | |
Collapse
|