1
|
Yudkina AV, Novikova AA, Stolyarenko AD, Makarova AV, Zharkov DO. Bypass of Methoxyamine-Adducted Abasic Sites by Eukaryotic Translesion DNA Polymerases. Int J Mol Sci 2025; 26:642. [PMID: 39859356 PMCID: PMC11766430 DOI: 10.3390/ijms26020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The apurinic/apyrimidinic site (AP site) is a highly mutagenic and cytotoxic DNA lesion. Normally, AP sites are removed from DNA by base excision repair (BER). Methoxyamine (MOX), a BER inhibitor currently under clinical trials as a tumor sensitizer, forms adducts with AP sites (AP-MOX) resistant to the key BER enzyme, AP endonuclease. As AP-MOX remains unrepaired, translesion DNA synthesis is expected to be the main mechanism of cellular response to this lesion. However, the mutagenic potential of AP-MOX is still unclear. Here, we compare the blocking and mutagenic properties of AP-MOX and the natural AP site for major eukaryotic DNA polymerases involved in translesion synthesis: DNA polymerases η, ι, ζ, Rev1, and primase-polymerase PrimPol. The miscoding properties of both abasic lesions remained mostly the same for each studied enzyme. In contrast, the blocking properties of AP-MOX compared to the AP site were DNA polymerase specific. Pol η and PrimPol bypassed both lesions with the same efficiency. The bypass of AP-MOX by Pol ι was 15-fold lower than that of the AP site. On the contrary, Rev1 bypassed AP-MOX 5-fold better than the AP site. Together, our data suggest that Rev1 is best suited to support synthesis across AP-MOX in human cells.
Collapse
Affiliation(s)
- Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna A. Novikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia
| | - Anastasia D. Stolyarenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Khodaverdian V, Sano T, Maggs LR, Tomarchio G, Dias A, Tran M, Clairmont C, McVey M. REV1 coordinates a multi-faceted tolerance response to DNA alkylation damage and prevents chromosome shattering in Drosophila melanogaster. PLoS Genet 2024; 20:e1011181. [PMID: 39074150 PMCID: PMC11309488 DOI: 10.1371/journal.pgen.1011181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
When replication forks encounter damaged DNA, cells utilize damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses in Drosophila melanogaster. We report that tolerance of DNA alkylation damage in rapidly dividing larval tissues depends heavily on translesion synthesis. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av (Drosophila γ-H2AX) foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Lara R. Maggs
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Gina Tomarchio
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Ana Dias
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mai Tran
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
3
|
Jawich D, Pfohl-Leszkowicz A, Lteif R, Strehaiano P. DNA adduct formation in Saccharomyces cerevisiae following exposure to environmental pollutants, as in vivo model for molecular toxicity studies. World J Microbiol Biotechnol 2024; 40:180. [PMID: 38668960 DOI: 10.1007/s11274-024-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.
Collapse
Affiliation(s)
- Dalal Jawich
- Fanar Laboratory, Lebanese Agricultural Research Institute (LARI), Beirut, Lebanon.
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France.
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon.
- Faculty of Agricultural Sciences, Department of Basic Sciences, Lebanese University, Dekwaneh, Beirut, Lebanon.
| | - Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| | - Roger Lteif
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon
| | - Pierre Strehaiano
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| |
Collapse
|
4
|
Khodaverdian V, Sano T, Maggs L, Tomarchio G, Dias A, Clairmont C, Tran M, McVey M. REV1 Coordinates a Multi-Faceted Tolerance Response to DNA Alkylation Damage and Prevents Chromosome Shattering in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580051. [PMID: 38405884 PMCID: PMC10888836 DOI: 10.1101/2024.02.13.580051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage in Drosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.
Collapse
Affiliation(s)
- Varandt Khodaverdian
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Yarrow Biotechnology, New York, NY
| | - Tokio Sano
- Department of Biology, Tufts University, Medford, MA 02155
| | - Lara Maggs
- Department of Biology, Tufts University, Medford, MA 02155
| | - Gina Tomarchio
- Current address: Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ana Dias
- Department of Biology, Tufts University, Medford, MA 02155
| | - Connor Clairmont
- Department of Biology, Tufts University, Medford, MA 02155
- Current address: Vertex Pharmaceuticals, Boston, MA
| | - Mai Tran
- Department of Biology, Tufts University, Medford, MA 02155
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA 02155
| |
Collapse
|
5
|
Stalling of Eukaryotic Translesion DNA Polymerases at DNA-Protein Cross-Links. Genes (Basel) 2022; 13:genes13020166. [PMID: 35205211 PMCID: PMC8872012 DOI: 10.3390/genes13020166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/05/2023] Open
Abstract
DNA-protein cross-links (DPCs) are extremely bulky adducts that interfere with replication. In human cells, they are processed by SPRTN, a protease activated by DNA polymerases stuck at DPCs. We have recently proposed the mechanism of the interaction of DNA polymerases with DPCs, involving a clash of protein surfaces followed by the distortion of the cross-linked protein. Here, we used a model DPC, located in the single-stranded template, the template strand of double-stranded DNA, or the displaced strand, to study the eukaryotic translesion DNA polymerases ζ (POLζ), ι (POLι) and η (POLη). POLι demonstrated poor synthesis on the DPC-containing substrates. POLζ and POLη paused at sites dictated by the footprints of the polymerase and the cross-linked protein. Beyond that, POLζ was able to elongate the primer to the cross-link site when a DPC was in the template. Surprisingly, POLη was not only able to reach the cross-link site but also incorporated 1–2 nucleotides past it, which makes POLη the most efficient DNA polymerase on DPC-containing substrates. However, a DPC in the displaced strand was an insurmountable obstacle for all polymerases, which stalled several nucleotides before the cross-link site. Overall, the behavior of translesion polymerases agrees with the model of protein clash and distortion described above.
Collapse
|
6
|
Gallagher DN, Haber JE. Single-strand template repair: key insights to increase the efficiency of gene editing. Curr Genet 2021; 67:747-753. [PMID: 33881574 DOI: 10.1007/s00294-021-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
DNA double-strand breaks (DSBs) pose a serious hazard for the stability of the genome. CRISPR-Cas9-mediated gene editing intentionally creates a site-specific DSB to modify the genomic sequence, typically from an introduced single-stranded DNA donor. However, unlike typical forms of homologous recombination, single-strand template repair (SSTR) is Rad51-independent. Moreover, this pathway is distinct from other previously characterized Rad51-independent processes. Here, we briefly review the work characterizing this pathway, and how these findings can be used to guide and improve current gene editing strategies.
Collapse
Affiliation(s)
- Danielle N Gallagher
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02154, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, 02154, USA.
| |
Collapse
|
7
|
HMCES Maintains Replication Fork Progression and Prevents Double-Strand Breaks in Response to APOBEC Deamination and Abasic Site Formation. Cell Rep 2021; 31:107705. [PMID: 32492421 PMCID: PMC7313144 DOI: 10.1016/j.celrep.2020.107705] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023] Open
Abstract
5-Hydroxymethylcytosine (5hmC) binding, ES-cell-specific (HMCES) crosslinks to apurinic or apyrimidinic (AP, abasic) sites in single-strand DNA (ssDNA). To determine whether HMCES responds to the ssDNA abasic site in cells, we exploited the activity of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3A (APOBEC3A). APOBEC3A preferentially deaminates cytosines to uracils in ssDNA, which are then converted to abasic sites by uracil DNA glycosylase. We find that HMCES-deficient cells are hypersensitive to nuclear APOBEC3A localization. HMCES relocalizes to chromatin in response to nuclear APOBEC3A and protects abasic sites from processing into double-strand breaks (DSBs). Abasic sites induced by APOBEC3A slow both leading and lagging strand synthesis, and HMCES prevents further slowing of the replication fork by translesion synthesis (TLS) polymerases zeta (Polζ) and kappa (Polκ). Thus, our study provides direct evidence that HMCES responds to ssDNA abasic sites in cells to prevent DNA cleavage and balance the engagement of TLS polymerases. Mehta et al. use APOBEC3A to demonstrate that HMCES responds to ssDNA abasic sites in cells and prevents replication fork collapse. APOBEC3A-induced abasic sites slow both leading and lagging strand polymerization, and HMCES engagement prevents further fork slowing because of the action of TLS polymerases zeta (Polζ) and kappa (Polκ).
Collapse
|
8
|
Suzuki T, Sassa A, Grúz P, Gupta RC, Johnson F, Adachi N, Nohmi T. Error-prone bypass patch by a low-fidelity variant of DNA polymerase zeta in human cells. DNA Repair (Amst) 2021; 100:103052. [PMID: 33607474 DOI: 10.1016/j.dnarep.2021.103052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022]
Abstract
DNA polymerase ζ (Pol ζ) is a specialized Pol that is involved in translesion DNA synthesis (TLS), in particular, in the extension of primer DNA after bypassing DNA lesions. Previously, we established human cells that express a variant form of Pol ζ with an amino acid change of leucine 2618 to methionine (L2618M) in the catalytic subunit REV3L (DNA Repair, 45, 34-43, 2016). This amino acid change made the cells more sensitive to the mutagenicity of benzo[a]pyrene diol epoxide (BPDE). In this study, we embedded BPDE-N2-guanine at a defined position in the supF gene on the shuttle plasmid and introduced it to REV3 L2618M cells or the wild-type (WT) cells to examine how far Pol ζ L2618M extends the primer DNA after bypassing the lesion. The adduct induced primarily G to T and G to C at the adducted site in both cell lines, but generated additional sequence changes such as base substitutions, deletions and additions in the extension patch much more often in REV3 L2618M cells than in the WT cells. Mutations in the extension patch in REV3 L2618M cells occurred most often within 10 bps from the adducted site. Then, the number of mutations gradually decreased and no mutations were observed between 30 and 40 bps from the lesion. We concluded that human Pol ζ L2618M and perhaps WT Pol ζ extend the primer DNA up to approximately 30 bps from the lesion in vivo. The possibility of involvement of Pol ζ L2618M in the insertion step of TLS is discussed.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Akira Sassa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Ramesh C Gupta
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794-3400, NY, United States
| | - Francis Johnson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, 11794-3400, NY, United States
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
9
|
Zhang H. Mechanisms of mutagenesis induced by DNA lesions: multiple factors affect mutations in translesion DNA synthesis. Crit Rev Biochem Mol Biol 2020; 55:219-251. [PMID: 32448001 DOI: 10.1080/10409238.2020.1768205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental mutagens lead to mutagenesis. However, the mechanisms are very complicated and not fully understood. Environmental mutagens produce various DNA lesions, including base-damaged or sugar-modified DNA lesions, as well as epigenetically modified DNA. DNA polymerases produce mutation spectra in translesion DNA synthesis (TLS) through misincorporation of incorrect nucleotides, frameshift deletions, blockage of DNA replication, imbalance of leading- and lagging-strand DNA synthesis, and genome instability. Motif or subunit in DNA polymerases further affects the mutations in TLS. Moreover, protein interactions and accessory proteins in DNA replisome also alter mutations in TLS, demonstrated by several representative DNA replisomes. Finally, in cells, multiple DNA polymerases or cellular proteins collaborate in TLS and reduce in vivo mutagenesis. Summaries and perspectives were listed. This review shows mechanisms of mutagenesis induced by DNA lesions and the effects of multiple factors on mutations in TLS in vitro and in vivo.
Collapse
Affiliation(s)
- Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Long LJ, Lee PH, Small EM, Hillyer C, Guo Y, Osley MA. Regulation of UV damage repair in quiescent yeast cells. DNA Repair (Amst) 2020; 90:102861. [PMID: 32403026 DOI: 10.1016/j.dnarep.2020.102861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022]
Abstract
Non-growing quiescent cells face special challenges when repairing lesions produced by exogenous DNA damaging agents. These challenges include the global repression of transcription and translation and a compacted chromatin structure. We investigated how quiescent yeast cells regulated the repair of DNA lesions produced by UV irradiation. We found that UV lesions were excised and repaired in quiescent cells before their re-entry into S phase, and that lesion repair was correlated with high levels of Rad7, a recognition factor in the global genome repair sub-pathway of nucleotide excision repair (GGR-NER). UV exposure led to an increased frequency of mutations that included C->T transitions and T > A transversions. Mutagenesis was dependent on the error-prone translesion synthesis (TLS) DNA polymerase, Pol zeta, which was the only DNA polymerase present in detectable levels in quiescent cells. Across the genome of quiescent cells, UV-induced mutations showed an association with exons that contained H3K36 or H3K79 trimethylation but not with those bound by RNA polymerase II. Together, the data suggest that the distinct physiological state and chromatin structure of quiescent cells contribute to its regulation of UV damage repair.
Collapse
Affiliation(s)
- Lindsey J Long
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Po-Hsuen Lee
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Eric M Small
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Cory Hillyer
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Yan Guo
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
11
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
12
|
Zou Z, Chen Z, Cai Y, Yang H, Du K, Li B, Jiang Y, Zhang H. Consecutive ribonucleoside monophosphates on template inhibit DNA replication by T7 DNA polymerase or by T7 polymerase and helicase complex. Biochimie 2018; 151:128-138. [DOI: 10.1016/j.biochi.2018.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/31/2018] [Indexed: 12/19/2022]
|
13
|
Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PMJ, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017; 45:1200-1218. [PMID: 28180291 PMCID: PMC5388397 DOI: 10.1093/nar/gkw1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
In yeast, dNTP pools expand drastically during DNA damage response. We show that similar dNTP elevation occurs in strains, in which intrinsic replisome defects promote the participation of error-prone DNA polymerase ζ (Polζ) in replication of undamaged DNA. To understand the significance of dNTP pools increase for Polζ function, we studied the activity and fidelity of four-subunit Polζ (Polζ4) and Polζ4-Rev1 (Polζ5) complexes in vitro at ‘normal S-phase’ and ‘damage-response’ dNTP concentrations. The presence of Rev1 inhibited the activity of Polζ and greatly increased the rate of all three ‘X-dCTP’ mispairs, which Polζ4 alone made extremely inefficiently. Both Polζ4 and Polζ5 were most promiscuous at G nucleotides and frequently generated multiple closely spaced sequence changes. Surprisingly, the shift from ‘S-phase’ to ‘damage-response’ dNTP levels only minimally affected the activity, fidelity and error specificity of Polζ complexes. Moreover, Polζ-dependent mutagenesis triggered by replisome defects or UV irradiation in vivo was not decreased when dNTP synthesis was suppressed by hydroxyurea, indicating that Polζ function does not require high dNTP levels. The results support a model wherein dNTP elevation is needed to facilitate non-mutagenic tolerance pathways, while Polζ synthesis represents a unique mechanism of rescuing stalled replication when dNTP supply is low.
Collapse
Affiliation(s)
- Olga V Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Abstract
Life as we know it, simply would not exist without DNA replication. All living organisms utilize a complex machinery to duplicate their genomes and the central role in this machinery belongs to replicative DNA polymerases, enzymes that are specifically designed to copy DNA. "Hassle-free" DNA duplication exists only in an ideal world, while in real life, it is constantly threatened by a myriad of diverse challenges. Among the most pressing obstacles that replicative polymerases often cannot overcome by themselves are lesions that distort the structure of DNA. Despite elaborate systems that cells utilize to cleanse their genomes of damaged DNA, repair is often incomplete. The persistence of DNA lesions obstructing the cellular replicases can have deleterious consequences. One of the mechanisms allowing cells to complete replication is "Translesion DNA Synthesis (TLS)". TLS is intrinsically error-prone, but apparently, the potential downside of increased mutagenesis is a healthier outcome for the cell than incomplete replication. Although most of the currently identified eukaryotic DNA polymerases have been implicated in TLS, the best characterized are those belonging to the "Y-family" of DNA polymerases (pols η, ι, κ and Rev1), which are thought to play major roles in the TLS of persisting DNA lesions in coordination with the B-family polymerase, pol ζ. In this review, we summarize the unique features of these DNA polymerases by mainly focusing on their biochemical and structural characteristics, as well as potential protein-protein interactions with other critical factors affecting TLS regulation.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
15
|
Defect of Fe-S cluster binding by DNA polymerase δ in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase ζ - dependent spontaneous mutagenesis. DNA Repair (Amst) 2016; 49:60-69. [PMID: 28034630 DOI: 10.1016/j.dnarep.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022]
Abstract
Eukaryotic genomes are duplicated by a complex machinery, utilizing high fidelity replicative B-family DNA polymerases (pols) α, δ and ε. Specialized error-prone pol ζ, the fourth B-family member, is recruited when DNA synthesis by the accurate trio is impeded by replication stress or DNA damage. The damage tolerance mechanism dependent on pol ζ prevents DNA/genome instability and cell death at the expense of increased mutation rates. The pol switches occurring during this specialized replication are not fully understood. The loss of pol ζ results in the absence of induced mutagenesis and suppression of spontaneous mutagenesis. Disruption of the Fe-S cluster motif that abolish the interaction of the C-terminal domain (CTD) of the catalytic subunit of pol ζ with its accessory subunits, which are shared with pol δ, leads to a similar defect in induced mutagenesis. Intriguingly, the pol3-13 mutation that affects the Fe-S cluster in the CTD of the catalytic subunit of pol δ also leads to defective induced mutagenesis, suggesting the possibility that Fe-S clusters are essential for the pol switches during replication of damaged DNA. We confirmed that yeast strains with the pol3-13 mutation are UV-sensitive and defective in UV-induced mutagenesis. However, they have increased spontaneous mutation rates. We found that this increase is dependent on functional pol ζ. In the pol3-13 mutant strain with defective pol δ, there is a sharp increase in transversions and complex mutations, which require functional pol ζ, and an increase in the occurrence of large deletions, whose size is controlled by pol ζ. Therefore, the pol3-13 mutation abrogates pol ζ-dependent induced mutagenesis, but allows for pol ζ recruitment for the generation of spontaneous mutations and prevention of larger deletions. These results reveal differential control of the two major types of pol ζ-dependent mutagenesis by the Fe-S cluster present in replicative pol δ.
Collapse
|
16
|
Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses. DNA Repair (Amst) 2016; 45:34-43. [DOI: 10.1016/j.dnarep.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/13/2016] [Accepted: 06/04/2016] [Indexed: 01/22/2023]
|
17
|
Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance. Proc Natl Acad Sci U S A 2016; 113:4723-8. [PMID: 27071091 DOI: 10.1073/pnas.1519128113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Even small variations in dNTP concentrations decrease DNA replication fidelity, and this observation prompted us to analyze genomic cancer data for mutations in enzymes involved in dNTP metabolism. We found that sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), a deoxyribonucleoside triphosphate triphosphohydrolase that decreases dNTP pools, is frequently mutated in colon cancers, that these mutations negatively affect SAMHD1 activity, and that several SAMHD1 mutations are found in tumors with defective mismatch repair. We show that minor changes in dNTP pools in combination with inactivated mismatch repair dramatically increase mutation rates. Determination of dNTP pools in mouse embryos revealed that inactivation of one SAMHD1 allele is sufficient to elevate dNTP pools. These observations suggest that heterozygous cancer-associated SAMHD1 mutations increase mutation rates in cancer cells.
Collapse
|
18
|
Abstract
Mitochondrial DNA is replicated by the nuclear-encoded DNA polymerase γ (pol γ) which is composed of a single 140 kDa catalytic subunit and a dimeric 55 kDa accessory subunit. Mitochondrial DNA is vulnerable to various forms of damage, including several types of oxidative lesions, UV-induced photoproducts, chemical adducts from environmental sources, as well as alkylation and inter-strand cross-links from chemotherapy agents. Although many of these lesions block DNA replication, pol γ can bypass some lesions by nucleotide incorporation opposite a template lesion and further extension of the DNA primer past the lesion. This process of translesion synthesis (TLS) by pol γ can occur in either an error-free or an error-prone manner. Assessment of TLS requires extensive analysis of oligonucleotide substrates and replication products by denaturing polyacrylamide sequencing gels. This chapter presents protocols for the analysis of translesion DNA synthesis.
Collapse
|
19
|
Shriber P, Leitner-Dagan Y, Geacintov N, Paz-Elizur T, Livneh Z. DNA sequence context greatly affects the accuracy of bypass across an ultraviolet light 6-4 photoproduct in mammalian cells. Mutat Res 2015; 780:71-6. [PMID: 26302378 DOI: 10.1016/j.mrfmmm.2015.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/25/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism carried out by low-fidelity DNA polymerases that bypass DNA lesions, which overcomes replication stalling. Despite the miscoding nature of most common DNA lesions, several of them are bypassed in mammalian cells in a relatively accurate manner, which plays a key role maintaining a low mutation load. Whereas it is generally agreed that TLS across the major UV and sunlight induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), is accurate, there were conflicting reports on whether the same is true for the thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct (TT6-4PP), which represents the second most common class of UV lesions. Using a TLS assay system based on gapped plasmids carrying site-specific TT6-4PP lesions in defined sequence contexts we show that the DNA sequence context markedly affected both the extent and accuracy of TLS. The sequence exhibiting higher TLS exhibited also higher error-frequency, caused primarily by semi-targeted mutations, at the nearest nucleotides flanking the lesion. Our results resolve the discrepancy reported on TLS across TT6-4PP, and suggest that TLS is more accurate in human cells than in mouse cells.
Collapse
Affiliation(s)
- Pola Shriber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Leitner-Dagan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Tamar Paz-Elizur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Zvi Livneh
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
20
|
Berjón-Otero M, Villar L, de Vega M, Salas M, Redrejo-Rodríguez M. DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity. Proc Natl Acad Sci U S A 2015; 112:E3476-84. [PMID: 26100910 PMCID: PMC4500267 DOI: 10.1073/pnas.1510280112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
DNA polymerases (DNAPs) responsible for genome replication are highly faithful enzymes that nonetheless cannot deal with damaged DNA. In contrast, translesion synthesis (TLS) DNAPs are suitable for replicating modified template bases, although resulting in very low-fidelity products. Here we report the biochemical characterization of the temperate bacteriophage Bam35 DNA polymerase (B35DNAP), which belongs to the protein-primed subgroup of family B DNAPs, along with phage Φ29 and other viral and mobile element polymerases. B35DNAP is a highly faithful DNAP that can couple strand displacement to processive DNA synthesis. These properties allow it to perform multiple displacement amplification of plasmid DNA with a very low error rate. Despite its fidelity and proofreading activity, B35DNAP was able to successfully perform abasic site TLS without template realignment and inserting preferably an A opposite the abasic site (A rule). Moreover, deletion of the TPR2 subdomain, required for processivity, impaired primer extension beyond the abasic site. Taken together, these findings suggest that B35DNAP may perform faithful and processive genome replication in vivo and, when required, TLS of abasic sites.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Laurentino Villar
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
21
|
Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. Proc Natl Acad Sci U S A 2015; 112:E2467-76. [PMID: 25827231 DOI: 10.1073/pnas.1422934112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Defects in DNA polymerases δ (Polδ) and ε (Polε) cause hereditary colorectal cancer and have been implicated in the etiology of some sporadic colorectal and endometrial tumors. We previously reported that the yeast pol3-R696W allele mimicking a human cancer-associated variant, POLD1-R689W, causes a catastrophic increase in spontaneous mutagenesis. Here, we describe the mechanism of this extraordinary mutator effect. We found that the mutation rate increased synergistically when the R696W mutation was combined with defects in Polδ proofreading or mismatch repair, indicating that pathways correcting DNA replication errors are not compromised in pol3-R696W mutants. DNA synthesis by purified Polδ-R696W was error-prone, but not to the extent that could account for the unprecedented mutator phenotype of pol3-R696W strains. In a search for cellular factors that augment the mutagenic potential of Polδ-R696W, we discovered that pol3-R696W causes S-phase checkpoint-dependent elevation of dNTP pools. Abrogating this elevation by strategic mutations in dNTP metabolism genes eliminated the mutator effect of pol3-R696W, whereas restoration of high intracellular dNTP levels restored the mutator phenotype. Further, the use of dNTP concentrations present in pol3-R696W cells for in vitro DNA synthesis greatly decreased the fidelity of Polδ-R696W and produced a mutation spectrum strikingly similar to the spectrum observed in vivo. The results support a model in which (i) faulty synthesis by Polδ-R696W leads to a checkpoint-dependent increase in dNTP levels and (ii) this increase mediates the hypermutator effect of Polδ-R696W by facilitating the extension of mismatched primer termini it creates and by promoting further errors that continue to fuel the mutagenic pathway.
Collapse
|
22
|
Makarova AV, Burgers PM. Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 2015; 29:47-55. [PMID: 25737057 DOI: 10.1016/j.dnarep.2015.02.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/16/2022]
Abstract
This review focuses on eukaryotic DNA polymerase ζ (Pol ζ), the enzyme responsible for the bulk of mutagenesis in eukaryotic cells in response to DNA damage. Pol ζ is also responsible for a large portion of mutagenesis during normal cell growth, in response to spontaneous damage or to certain DNA structures and other blocks that stall DNA replication forks. Novel insights in mutagenesis have been derived from recent advances in the elucidation of the subunit structure of Pol ζ. The lagging strand DNA polymerase δ shares the small Pol31 and Pol32 subunits with the Rev3-Rev7 core assembly giving a four subunit Pol ζ complex that is the active form in mutagenesis. Furthermore, Pol ζ forms essential interactions with the mutasome assembly factor Rev1 and with proliferating cell nuclear antigen (PCNA). These interactions are modulated by posttranslational modifications such as ubiquitination and phosphorylation that enhance translesion synthesis (TLS) and mutagenesis.
Collapse
Affiliation(s)
- Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute of Molecular Genetics, Russian Academy of Sciences (IMG RAS), Kurchatov Sq. 2, Moscow 123182, Russia
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol 2015; 91:254-64. [PMID: 25534312 DOI: 10.1111/php.12406] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | | |
Collapse
|
24
|
Siebler HM, Lada AG, Baranovskiy AG, Tahirov TH, Pavlov YI. A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 24:138-149. [PMID: 24819597 DOI: 10.1016/j.dnarep.2014.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Unrepaired DNA lesions often stall replicative DNA polymerases and are bypassed by translesion synthesis (TLS) to prevent replication fork collapse. Mechanisms of TLS are lesion- and species-specific, with a prominent role of specialized DNA polymerases with relaxed active sites. After nucleotide(s) are incorporated across from the altered base(s), the aberrant primer termini are typically extended by DNA polymerase ζ (pol ζ). As a result, pol ζ is responsible for most DNA damage-induced mutations. The mechanisms of sequential DNA polymerase switches in vivo remain unclear. The major replicative DNA polymerase δ (pol δ) shares two accessory subunits, called Pol31/Pol32 in yeast, with pol ζ. Inclusion of Pol31/Pol32 in the pol δ/pol ζ holoenzymes requires a [4Fe-4S] cluster in C-termini of the catalytic subunits. Disruption of this cluster in Pol ζ or deletion of POL32 attenuates induced mutagenesis. Here we describe a novel mutation affecting the catalytic subunit of pol ζ, rev3ΔC, which provides insight into the regulation of pol switches. Strains with Rev3ΔC, lacking the entire C-terminal domain and therefore the platform for Pol31/Pol32 binding, are partially proficient in Pol32-dependent UV-induced mutagenesis. This suggests an additional role of Pol32 in TLS, beyond being a pol ζ subunit, related to pol δ. In search for members of this regulatory pathway, we examined the effects of Maintenance of Genome Stability 1 (Mgs1) protein on mutagenesis in the absence of Rev3-Pol31/Pol32 interaction. Mgs1 may compete with Pol32 for binding to PCNA. Mgs1 overproduction suppresses induced mutagenesis, but had no effect on UV-mutagenesis in the rev3ΔC strain, suggesting that Mgs1 exerts its inhibitory effect by acting specifically on Pol32 bound to pol ζ. The evidence for differential regulation of Pol32 in pol δ and pol ζ emphasizes the complexity of polymerase switches.
Collapse
Affiliation(s)
- Hollie M Siebler
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | - Artem G Lada
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
25
|
Abstract
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage.
Collapse
|
26
|
Golden J, Motea E, Zhang X, Choi JS, Feng Y, Xu Y, Lee I, Berdis AJ. Development and characterization of a non-natural nucleoside that displays anticancer activity against solid tumors. ACS Chem Biol 2013; 8:2452-65. [PMID: 23992753 DOI: 10.1021/cb400350h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleoside analogs are an important class of anticancer agent that historically show better efficacy against hematological cancers versus solid tumors. This report describes the development and characterization of a new class of nucleoside analog that displays anticancer effects against both hematological and adherent cancer cell lines. These new analogs lack canonical hydrogen-bonding groups yet are effective nucleotide substrates for several high-fidelity DNA polymerases. Permutations in the position of the non-hydrogen-bonding functional group greatly influence the kinetic behavior of these nucleosides. One particular analog designated 4-nitroindolyl-2'-deoxynucleoside triphosphate (4-NITP) is unique as it is incorporated opposite C and T with high catalytic efficiencies. In addition, this analog functions as a nonobligate chain terminator of DNA synthesis, since it is poorly elongated. Consistent with this mechanism, the corresponding nucleoside, 4-nitroindolyl-2'-deoxynucleoside (4-NIdR), produces antiproliferative effects against leukemia cells. 4-NIdR also produces cytostatic and cytotoxic effects against several adherent cancer cell lines, especially those that are deficient in mismatch repair and p53. Cell death in this case appears to occur via mitotic catastrophe, a specialized form of apoptosis. Mass spectroscopy experiments performed on nucleic acid isolated from cells treated with 4-NIdR validate that the non-natural nucleoside is stably incorporated into DNA. Xenograft mouse studies demonstrate that administration of 4-NIdR delays tumor growth without producing adverse side effects such as anemia and thrombocytopenia. Collectively, the results of in vitro, cell-based, and animal studies provide evidence for the development of a novel nucleoside analog that shows enhanced effectiveness against solid tumors.
Collapse
Affiliation(s)
- Jackelyn Golden
- Departments of Pharmacology and ‡Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chan K, Resnick MA, Gordenin DA. The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst) 2013; 12:878-89. [PMID: 23988736 DOI: 10.1016/j.dnarep.2013.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
Abasic sites in genomic DNA can be a significant source of mutagenesis in biological systems, including human cancers. Such mutagenesis requires translesion DNA synthesis (TLS) bypass of the abasic site by specialized DNA polymerases. The abasic site bypass specificity of TLS proteins had been studied by multiple means in vivo and in vitro, although the generality of the conclusions reached have been uncertain. Here, we introduce a set of yeast reporter strains for investigating the in vivo specificity of abasic site bypass at numerous random positions within chromosomal DNA. When shifted to 37°C, these strains underwent telomere uncapping and resection that exposed reporter genes within a long 3' ssDNA overhang. Human APOBEC3G cytosine deaminase was expressed to create uracils in ssDNA, which were excised by uracil-DNA N-glycosylase. During repair synthesis, error-prone TLS bypassed the resulting abasic sites. Because of APOBEC3G's strict motif specificity and the restriction of abasic site formation to only one DNA strand, this system provides complete information about the location of abasic sites that led to mutations. We recapitulated previous findings on the roles of REV1 and REV3. Further, we found that sequence context can strongly influence the relative frequency of A or C insertion. We also found that deletion of Pol32, a non-essential common subunit of Pols δ and ζ, resulted in residual low-frequency C insertion dependent on Rev1 catalysis. We summarize our results in a detailed model of the interplay between TLS components leading to error-prone bypass of abasic sites. Our results underscore the utility of this system for studying TLS bypass of many types of lesions within genomic DNA.
Collapse
Affiliation(s)
- Kin Chan
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
28
|
Kasiviswanathan R, Minko IG, Lloyd RS, Copeland WC. Translesion synthesis past acrolein-derived DNA adducts by human mitochondrial DNA polymerase γ. J Biol Chem 2013; 288:14247-14255. [PMID: 23543747 DOI: 10.1074/jbc.m113.458802] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acrolein, a mutagenic aldehyde, is produced endogenously by lipid peroxidation and exogenously by combustion of organic materials, including tobacco products. Acrolein reacts with DNA bases forming exocyclic DNA adducts, such as γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine (γ-HOPdG) and γ-hydroxy-1,N(6)-propano-2'-deoxyadenosine (γ-HOPdA). The bulky γ-HOPdG adduct blocks DNA synthesis by replicative polymerases but can be bypassed by translesion synthesis polymerases in the nucleus. Although acrolein-induced adducts are likely to be formed and persist in mitochondrial DNA, animal cell mitochondria lack specialized translesion DNA synthesis polymerases to tolerate these lesions. Thus, it is important to understand how pol γ, the sole mitochondrial DNA polymerase in human cells, acts on acrolein-adducted DNA. To address this question, we investigated the ability of pol γ to bypass the minor groove γ-HOPdG and major groove γ-HOPdA adducts using single nucleotide incorporation and primer extension analyses. The efficiency of pol γ-catalyzed bypass of γ-HOPdG was low, and surprisingly, pol γ preferred to incorporate purine nucleotides opposite the adduct. Pol γ also exhibited ∼2-fold lower rates of excision of the misincorporated purine nucleotides opposite γ-HOPdG compared with the corresponding nucleotides opposite dG. Extension of primers from the termini opposite γ-HOPdG was accomplished only following error-prone purine nucleotide incorporation. However, pol γ preferentially incorporated dT opposite the γ-HOPdA adduct and efficiently extended primers from the correctly paired terminus, indicating that γ-HOPdA is probably nonmutagenic. In summary, our data suggest that acrolein-induced exocyclic DNA lesions can be bypassed by mitochondrial DNA polymerase but, in the case of the minor groove γ-HOPdG adduct, at the cost of unprecedented high mutation rates.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Irina G Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239
| | - R Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97239; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - William C Copeland
- Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
29
|
Varga Á, Marcus AP, Himoto M, Iwai S, Szüts D. Analysis of CPD ultraviolet lesion bypass in chicken DT40 cells: polymerase η and PCNA ubiquitylation play identical roles. PLoS One 2012; 7:e52472. [PMID: 23272247 PMCID: PMC3525536 DOI: 10.1371/journal.pone.0052472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/13/2012] [Indexed: 01/21/2023] Open
Abstract
Translesion synthesis (TLS) provides a mechanism of copying damaged templates during DNA replication. This potentially mutagenic process may operate either at the replication fork or at post-replicative gaps. We used the example of T-T cyclobutane pyrimidine dimer (CPD) bypass to determine the influence of polymerase recruitment via PCNA ubiquitylation versus the REV1 protein on the efficiency and mutagenic outcome of TLS. Using mutant chicken DT40 cell lines we show that, on this numerically most important UV lesion, defects in polymerase η or in PCNA ubiquitylation similarly result in the long-term failure of lesion bypass with persistent strand gaps opposite the lesion, and the elevation of mutations amongst successful TLS events. Our data suggest that PCNA ubiquitylation promotes CPD bypass mainly by recruiting polymerase η, resulting in the majority of CPD lesions bypassed in an error-free manner. In contrast, we find that polymerase ζ is responsible for the majority of CPD-dependent mutations, but has no essential function in the completion of bypass. These findings point to a hierarchy of access of the different TLS polymerases to the lesion, suggesting a temporal order of their recruitment. The similarity of REV1 and REV3 mutant phenotypes confirms that the involvement of polymerase ζ in TLS is largely determined by its recruitment to DNA by REV1. Our data demonstrate the influence of the TLS polymerase recruitment mechanism on the success and accuracy of bypass.
Collapse
Affiliation(s)
- Ágnes Varga
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Adam P. Marcus
- Division of Biomedical Sciences, St George's, University of London, London, United Kingdom
| | - Masayuki Himoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
30
|
Stone JE, Lujan SA, Kunkel TA. DNA polymerase zeta generates clustered mutations during bypass of endogenous DNA lesions in Saccharomyces cerevisiae. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:777-786. [PMID: 22965922 PMCID: PMC3678557 DOI: 10.1002/em.21728] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/15/2012] [Accepted: 07/25/2012] [Indexed: 06/01/2023]
Abstract
Multiple sequence changes that are simultaneously introduced in a single DNA transaction have a higher probability of altering gene function than do single base substitutions. DNA polymerase zeta (Pol ζ) has been shown to introduce such clustered mutations under specific selective and/or DNA damage-producing conditions. In this study, a forward mutation assay was used to determine the specificity of spontaneous mutations generated in Saccharomyces cerevisiae when either wild-type Pol ζ or a mutator Pol ζ variant (rev3-L979F) bypasses endogenous lesions. Mutagenesis in strains proficient for nucleotide excision repair (NER) was compared to mutagenesis in NER-deficient strains that retain unrepaired endogenous DNA lesions in the genome. Compared to NER-proficient strains, NER-deficient rad14Δ strains have elevated mutation rates that depend on Pol ζ. Rates are most strongly elevated for tandem base pair substitutions and clusters of multiple, closely spaced mutations. Both types of mutations depend on Pol ζ, but not on Pol η. Rates of each are further elevated in yeast strains bearing the rev3-979F allele. The results indicate that when Pol ζ performs mutagenic bypass of endogenous, helix-distorting lesions, it catalyzes a short track of processive, error-prone synthesis. We discuss the implications of this unique catalytic property of Pol ζ to its evolutionary conservation and possibly to multistage carcinogenesis.
Collapse
Affiliation(s)
| | | | - Thomas A. Kunkel
- Correspondence to: Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709.
| |
Collapse
|
31
|
Christov PP, Yamanaka K, Choi JY, Takata KI, Wood RD, Guengerich FP, Lloyd RS, Rizzo CJ. Replication of the 2,6-diamino-4-hydroxy-N(5)-(methyl)-formamidopyrimidine (MeFapy-dGuo) adduct by eukaryotic DNA polymerases. Chem Res Toxicol 2012; 25:1652-61. [PMID: 22721435 DOI: 10.1021/tx300113e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N(6)-(2-Deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-N-methylformamidopyrimidine (MeFapy-dGuo) has been identified as a stable DNA adduct that arises from the reaction of DNA with a variety of methylating agents. Since this lesion persists in DNA and may contribute to the overall mutagenesis from electrophilic methylating agents, the MeFapy-dGuo lesion was incorporated into oligonucleotides, and its replication bypass was examined in vitro with a panel of eukaryotic high fidelity (hPols α, β, and δ/PCNA) and translesion (hPols η, κ, ι, Rev1, ν, and yPol ζ) polymerases to address its miscoding potential. The MeFapy-dGuo was found to be a strong block to the high fidelity polymerases at either the insertion or the extension step. Efficient translesion synthesis was observed for hPols η and κ, and the combined activities of hRev1 and yPol ζ. The nucleotide sequences of the extension products were determined by mass spectrometry. The error-free extension product was the most abundant product observed for each polymerase. Misreplication products, which included misinsertion of Thy, Gua, and Ade opposite the MeFapy-dGuo lesion, as well as an interesting one-nucleotide deletion product, were observed when hPols η and κ were employed; these events accounted for 8-29% of the total extension products observed. The distribution and abundance of the misreplication products were dependent on the polymerases and local sequence context of the lesion. Collectively, these data suggest that although MeFapy-dGuo adducts represent a relatively minor proportion of the total alkylated lesions, their miscoding potentials could significantly contribute to genomic instability.
Collapse
Affiliation(s)
- Plamen P Christov
- Departments of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012; 2012:530963. [PMID: 22720133 PMCID: PMC3377560 DOI: 10.1155/2012/530963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
Collapse
Affiliation(s)
- Jason M. Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
33
|
Baranovskiy AG, Lada AG, Siebler HM, Zhang Y, Pavlov YI, Tahirov TH. DNA polymerase δ and ζ switch by sharing accessory subunits of DNA polymerase δ. J Biol Chem 2012; 287:17281-17287. [PMID: 22465957 DOI: 10.1074/jbc.m112.351122] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translesion DNA synthesis is an important branch of the DNA damage tolerance pathway that assures genomic integrity of living organisms. The mechanisms of DNA polymerase (Pol) switches during lesion bypass are not known. Here, we show that the C-terminal domain of the Pol ζ catalytic subunit interacts with accessory subunits of replicative DNA Pol δ. We also show that, unlike other members of the human B-family of DNA polymerases, the highly conserved and similar C-terminal domains of Pol δ and Pol ζ contain a [4Fe-4S] cluster coordinated by four cysteines. Amino acid changes in Pol ζ that prevent the assembly of the [4Fe-4S] cluster abrogate Pol ζ function in UV mutagenesis. On the basis of these data, we propose that Pol switches at replication-blocking lesions occur by the exchange of the Pol δ and Pol ζ catalytic subunits on a preassembled complex of accessory proteins retained on DNA during translesion DNA synthesis.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Artem G Lada
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Hollie M Siebler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Yinbo Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|