1
|
Marx C, Qing X, Gong Y, Kirkpatrick J, Siniuk K, Beznoussenko GV, Kidiyoor GR, Kirtay M, Buder K, Koch P, Westermann M, Bruhn C, Brown EJ, Xu X, Foiani M, Wang ZQ. DNA damage response regulator ATR licenses PINK1-mediated mitophagy. Nucleic Acids Res 2025; 53:gkaf178. [PMID: 40105243 PMCID: PMC11920799 DOI: 10.1093/nar/gkaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Defective DNA damage response (DDR) and mitochondrial dysfunction are a major etiology of tissue impairment and aging. Mitochondrial autophagy (mitophagy) is a mitochondrial quality control (MQC) mechanism to selectively eliminate dysfunctional mitochondria. ATR (ataxia-telangiectasia and Rad3-related) is a key DDR regulator playing a pivotal role in DNA replication stress response and genomic stability. Paradoxically, the human Seckel syndrome caused by ATR mutations exhibits premature aging and neuropathies, suggesting a role of ATR in nonreplicating tissues. Here, we report a previously unknown yet direct role of ATR at mitochondria. We find that ATR and PINK1 (PTEN-induced kinase 1) dock at the mitochondrial translocase TOM/TIM complex, where ATR interacts directly with and thereby stabilizes PINK1. ATR deletion silences mitophagy initiation thereby altering oxidative phosphorylation functionality resulting in reactive oxygen species overproduction that attack cytosolic macromolecules, in both cells and brain tissues, prior to nuclear DNA. This study discloses ATR as an integrated component of the PINK1-mediated MQC program to ensure mitochondrial fitness. Together with its DDR function, ATR safeguards mitochondrial and genomic integrity under physiological and genotoxic conditions.
Collapse
Affiliation(s)
- Christian Marx
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul Ehrlich Institute (PEI), Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Xiaobing Qing
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Yamin Gong
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Joanna Kirkpatrick
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kanstantsin Siniuk
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | | | | | - Murat Kirtay
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Katrin Buder
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Philipp Koch
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Christopher Bruhn
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Eric J Brown
- Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, United States
| | - Xingzhi Xu
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Zhao-Qi Wang
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstraße 18k, 07743 Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
2
|
Lin L, Ding J, Liu S, Liu C, Li Q, Gao X, Niu Y, Tong WM. Protein Phosphatase 2ACα Regulates ATR-Mediated Endogenous DNA Damage Response Against Microcephaly. Mol Neurobiol 2025; 62:1266-1281. [PMID: 38976130 DOI: 10.1007/s12035-024-04301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric holoenzyme in eukaryotic cells coordinating with specific kinases to regulate spatial-temporal protein dephosphorylation in various biological processes. However, the function of PP2A in cortical neurogenesis remains largely unknown. Here, we report that neuronal-specific deletion of Pp2acα in mice displayed microcephaly, with significantly smaller brains and defective learning and memory ability. Mechanistically, neuronal Pp2acα deficiency resulted in elevated endogenous DNA damage and activation of ATR/CHK1 signaling. It was further induced by the loss of direct interaction between PP2AC and ATR as well as the function of PP2AC to dephosphorylate ATR. Importantly, ATR/CHK1 signaling dysregulation altered both the expression and activity of several critical downstream factors including P53, P21, Bcl2, and Bax, which led to decreased proliferation of cortical progenitor cells and increased apoptosis in developing cortical neurons. Taken together, our results indicate an essential function of PP2ACα in endogenous DNA damage response-mediated ATR signaling during neurogenesis, and defective PP2ACα in neurons contributes to microcephaly.
Collapse
Affiliation(s)
- Lin Lin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing Ding
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Simeng Liu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Pathology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chunying Liu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiang Gao
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Ribeiro JH, Altinisik N, Rajan N, Verslegers M, Baatout S, Gopalakrishnan J, Quintens R. DNA damage and repair: underlying mechanisms leading to microcephaly. Front Cell Dev Biol 2023; 11:1268565. [PMID: 37881689 PMCID: PMC10597653 DOI: 10.3389/fcell.2023.1268565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
DNA-damaging agents and endogenous DNA damage constantly harm genome integrity. Under genotoxic stress conditions, the DNA damage response (DDR) machinery is crucial in repairing lesions and preventing mutations in the basic structure of the DNA. Different repair pathways are implicated in the resolution of such lesions. For instance, the non-homologous DNA end joining and homologous recombination pathways are central cellular mechanisms by which eukaryotic cells maintain genome integrity. However, defects in these pathways are often associated with neurological disorders, indicating the pivotal role of DDR in normal brain development. Moreover, the brain is the most sensitive organ affected by DNA-damaging agents compared to other tissues during the prenatal period. The accumulation of lesions is believed to induce cell death, reduce proliferation and premature differentiation of neural stem and progenitor cells, and reduce brain size (microcephaly). Microcephaly is mainly caused by genetic mutations, especially genes encoding proteins involved in centrosomes and DNA repair pathways. However, it can also be induced by exposure to ionizing radiation and intrauterine infections such as the Zika virus. This review explains mammalian cortical development and the major DNA repair pathways that may lead to microcephaly when impaired. Next, we discuss the mechanisms and possible exposures leading to DNA damage and p53 hyperactivation culminating in microcephaly.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Nazlican Altinisik
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Nicholas Rajan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jay Gopalakrishnan
- Laboratory for Centrosome and Cytoskeleton Biology, Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
4
|
Martins S, Erichsen L, Datsi A, Wruck W, Goering W, Chatzantonaki E, de Amorim VCM, Rossi A, Chrzanowska KH, Adjaye J. Impaired p53-Mediated DNA Damage Response Contributes to Microcephaly in Nijmegen Breakage Syndrome Patient-Derived Cerebral Organoids. Cells 2022; 11:cells11050802. [PMID: 35269426 PMCID: PMC8909307 DOI: 10.3390/cells11050802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder caused by mutations within nibrin (NBN), a DNA damage repair protein. Hallmarks of NBS include chromosomal instability and clinical manifestations such as growth retardation, immunodeficiency, and progressive microcephaly. We employed induced pluripotent stem cell-derived cerebral organoids from two NBS patients to study the etiology of microcephaly. We show that NBS organoids carrying the homozygous 657del5 NBN mutation are significantly smaller with disrupted cyto-architecture. The organoids exhibit premature differentiation, and Neuronatin (NNAT) over-expression. Furthermore, pathways related to DNA damage response and cell cycle are differentially regulated compared to controls. After exposure to bleomycin, NBS organoids undergo delayed p53-mediated DNA damage response and aberrant trans-synaptic signaling, which ultimately leads to neuronal apoptosis. Our data provide insights into how mutations within NBN alters neurogenesis in NBS patients, thus providing a proof of concept that cerebral organoids are a valuable tool for studying DNA damage-related disorders.
Collapse
Affiliation(s)
- Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Wolfgang Goering
- Institute for Pathology, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Eleftheria Chatzantonaki
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Vanessa Cristina Meira de Amorim
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
| | - Andrea Rossi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
| | - Krystyna H. Chrzanowska
- Department of Medical Genetics, Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany; (S.M.); (L.E.); (W.W.); (E.C.); (V.C.M.d.A.)
- Correspondence:
| |
Collapse
|
5
|
Ding M, Qing X, Zhang G, Baade-Büttner C, Gruber R, Lu H, Ferguson DO, Geis C, Wang ZQ, Zhou ZW. The Essential DNA Damage Response Complex MRN Is Dispensable for the Survival and Function of Purkinje Neurons. Front Aging Neurosci 2022; 13:786199. [PMID: 35153719 PMCID: PMC8831373 DOI: 10.3389/fnagi.2021.786199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
MRE11, RAD50, and NBS1 form the MRN complex in response to DNA damage to activate ATM, a gene responsible for Ataxia-Telangiectasia (A-T). Loss of any components of the MRN complex compromises cell life. Mutations in MRE11, RAD50, and NBS1 cause human genomic instability syndromes Ataxia-Telangiectasia-like disorder (A-TLD), NBS-like disorder (NBSLD), and Nijmegen Breakage Syndrome (NBS), respectively. Among other pathologies, neuronal deficits, including microcephaly, intellectual disabilities, and progressive cerebellar degeneration, are common in these disorders. Nbs1 deletion in neural stem cells of mouse models resulted in cerebellar atrophy and ataxia, mimicking the A-T syndrome suggesting an etiological function of MRN-mediated DDR in neuronal homeostasis and neuropathology. Here we show that deletion of Nbs1 or Mre11 specifically in Purkinje neurons of mouse models (Nbs1-PCΔ and Mre11-PCΔ, respectively) is compatible with cerebellar development. Deleting Nbs1 in Purkinje cells disrupts the cellular localization pattern of MRE11 or RAD50 without inducing apparent DNA damage, albeit impaired DNA damage response (judged by 53BP1 focus formation) to ionizing radiation (IR). However, neither survival nor morphology of Purkinje cells and thus locomotor capabilities is affected by Nbs1 deletion under physiological conditions. Similarly, deletion of Mre11 in Purkinje cells does not affect the numbers or morphology of Purkinje cells and causes no accumulation of DNA damage. Mre11-deleted Purkinje cells have regular intrinsic neuronal activity. Taken together, these data indicate that the MRN complex is not essential for the survival and functionality of postmitotic neurons such as Purkinje cells. Thus, cerebellar deficits in MRN defect-related disorders and mouse models are unlikely to be a direct consequence of loss of these factors compromising DDR in postmitotic neurons such as Purkinje cells.
Collapse
Affiliation(s)
- Mingmei Ding
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaobing Qing
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Guangyu Zhang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Carolin Baade-Büttner
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ralph Gruber
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Haizhen Lu
- Department of Pathology and Resident Training Base, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - David O. Ferguson
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Jena, Germany
- *Correspondence: Zhao-Qi Wang,
| | - Zhong-Wei Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
- Zhong-Wei Zhou,
| |
Collapse
|
6
|
Akagawa R, Nabeshima YI, Kawauchi T. Alternative Functions of Cell Cycle-Related and DNA Repair Proteins in Post-mitotic Neurons. Front Cell Dev Biol 2021; 9:753175. [PMID: 34746147 PMCID: PMC8564117 DOI: 10.3389/fcell.2021.753175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Proper regulation of neuronal morphological changes is essential for neuronal migration, maturation, synapse formation, and high-order function. Many cytoplasmic proteins involved in the regulation of neuronal microtubules and the actin cytoskeleton have been identified. In addition, some nuclear proteins have alternative functions in neurons. While cell cycle-related proteins basically control the progression of the cell cycle in the nucleus, some of them have an extra-cell cycle-regulatory function (EXCERF), such as regulating cytoskeletal organization, after exit from the cell cycle. Our expression analyses showed that not only cell cycle regulators, including cyclin A1, cyclin D2, Cdk4/6, p21cip1, p27kip1, Ink4 family, and RAD21, but also DNA repair proteins, including BRCA2, p53, ATM, ATR, RAD17, MRE11, RAD9, and Hus1, were expressed after neurogenesis, suggesting that these proteins have alternative functions in post-mitotic neurons. In this perspective paper, we discuss the alternative functions of the nuclear proteins in neuronal development, focusing on possible cytoplasmic roles.
Collapse
Affiliation(s)
- Remi Akagawa
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Yo-ichi Nabeshima
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
| | - Takeshi Kawauchi
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe (FBRI), Kobe, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
ATR regulates neuronal activity by modulating presynaptic firing. Nat Commun 2021; 12:4067. [PMID: 34210973 PMCID: PMC8249387 DOI: 10.1038/s41467-021-24217-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Ataxia Telangiectasia and Rad3-related (ATR) protein, as a key DNA damage response (DDR) regulator, plays an essential function in response to replication stress and controls cell viability. Hypomorphic mutations of ATR cause the human ATR-Seckel syndrome, characterized by microcephaly and intellectual disability, which however suggests a yet unknown role for ATR in non-dividing cells. Here we show that ATR deletion in postmitotic neurons does not compromise brain development and formation; rather it enhances intrinsic neuronal activity resulting in aberrant firing and an increased epileptiform activity, which increases the susceptibility of ataxia and epilepsy in mice. ATR deleted neurons exhibit hyper-excitability, associated with changes in action potential conformation and presynaptic vesicle accumulation, independent of DDR signaling. Mechanistically, ATR interacts with synaptotagmin 2 (SYT2) and, without ATR, SYT2 is highly upregulated and aberrantly translocated to excitatory neurons in the hippocampus, thereby conferring a hyper-excitability. This study identifies a physiological function of ATR, beyond its DDR role, in regulating neuronal activity.
Collapse
|
8
|
Zhou ZW, Kirtay M, Schneble N, Yakoub G, Ding M, Rüdiger T, Siniuk K, Lu R, Jiang YN, Li TL, Kaether C, Barzilai A, Wang ZQ. NBS1 interacts with Notch signaling in neuronal homeostasis. Nucleic Acids Res 2020; 48:10924-10939. [PMID: 33010171 PMCID: PMC7641754 DOI: 10.1093/nar/gkaa716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
NBS1 is a critical component of the MRN (MRE11/RAD50/NBS1) complex, which regulates ATM- and ATR-mediated DNA damage response (DDR) pathways. Mutations in NBS1 cause the human genomic instability syndrome Nijmegen Breakage Syndrome (NBS), of which neuronal deficits, including microcephaly and intellectual disability, are classical hallmarks. Given its function in the DDR to ensure proper proliferation and prevent death of replicating cells, NBS1 is essential for life. Here we show that, unexpectedly, Nbs1 deletion is dispensable for postmitotic neurons, but compromises their arborization and migration due to dysregulated Notch signaling. We find that Nbs1 interacts with NICD-RBPJ, the effector of Notch signaling, and inhibits Notch activity. Genetic ablation or pharmaceutical inhibition of Notch signaling rescues the maturation and migration defects of Nbs1-deficient neurons in vitro and in vivo. Upregulation of Notch by Nbs1 deletion is independent of the key DDR downstream effector p53 and inactivation of each MRN component produces a different pattern of Notch activity and distinct neuronal defects. These data indicate that neuronal defects and aberrant Notch activity in Nbs1-deficient cells are unlikely to be a direct consequence of loss of MRN-mediated DDR function. This study discloses a novel function of NBS1 in crosstalk with the Notch pathway in neuron development.
Collapse
Affiliation(s)
- Zhong-Wei Zhou
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
- School of Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Murat Kirtay
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadine Schneble
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - George Yakoub
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Mingmei Ding
- School of Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Tina Rüdiger
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Kanstantsin Siniuk
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ruiqing Lu
- School of Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Yi-Nan Jiang
- School of Medicine (Shenzhen), Sun Yat-Sen University, Guangzhou, China
| | - Tang-Liang Li
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Christoph Kaether
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
9
|
Kidiyoor GR, Li Q, Bastianello G, Bruhn C, Giovannetti I, Mohamood A, Beznoussenko GV, Mironov A, Raab M, Piel M, Restuccia U, Matafora V, Bachi A, Barozzi S, Parazzoli D, Frittoli E, Palamidessi A, Panciera T, Piccolo S, Scita G, Maiuri P, Havas KM, Zhou ZW, Kumar A, Bartek J, Wang ZQ, Foiani M. ATR is essential for preservation of cell mechanics and nuclear integrity during interstitial migration. Nat Commun 2020; 11:4828. [PMID: 32973141 PMCID: PMC7518249 DOI: 10.1038/s41467-020-18580-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response. The nucleus is a mechanically stiff organelle of the cell and the DNA damage response protein ATR can localize to the nuclear envelope upon mechanical stress. Here, the authors show that ATR may contribute to the integrity of the nuclear envelope and may play a role in cell migration.
Collapse
Affiliation(s)
| | - Qingsen Li
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | - Adhil Mohamood
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | | | | | - Angela Bachi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | | | | | | | - Stefano Piccolo
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.,University of Padova, Padova, Italy
| | - Giorgio Scita
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.,University of Milan, Milan, Italy
| | - Paolo Maiuri
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Zhong-Wei Zhou
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Amit Kumar
- Genome and Cell Integrity Lab, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Jiri Bartek
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Karolinska Institute, Stockholm, Sweden
| | - Zhao-Qi Wang
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.,Friedrich-Schiller University, Jena, Germany
| | - Marco Foiani
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy. .,University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR, McKinnon PJ. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis. J Neurosci 2017; 37:893-905. [PMID: 28123024 PMCID: PMC5296783 DOI: 10.1523/jneurosci.4213-15.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/14/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G2/M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. SIGNIFICANCE STATEMENT The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system.
Collapse
Affiliation(s)
- Vanessa Enriquez-Rios
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Lavinia C Dumitrache
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Susanna M Downing
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Yang Li
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Eric J Brown
- Abramson Family Cancer Research Institute and the Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Helen R Russell
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105,
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| |
Collapse
|
11
|
Lacaille H, Duterte-Boucher D, Liot D, Vaudry H, Naassila M, Vaudry D. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice. J Neurochem 2015; 132:629-41. [PMID: 25556946 DOI: 10.1111/jnc.13020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking-like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge-like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short-term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity. The effects of alcohol exposure were investigated on genes involved in oxidative mechanisms. In adolescent animals, alcohol decreased the expression of genes involved in DNA repair, a potential cause of the observed decrease of neurogenesis. In contrast, in the adult brain, alcohol increased the expression of genes associated with antioxidant mechanisms. Apoptosis was increase in all groups and converged with other biochemical alterations to enhance short-term memory impairment in the adolescent brain. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.
Collapse
Affiliation(s)
- Hélène Lacaille
- INSERM U982, Neurotrophic factors and neuronal differentiation team, Mont-Saint-Aignan, France; International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
| | | | | | | | | | | |
Collapse
|
12
|
Liu B, Chen X, Wang ZQ, Tong WM. Nbn gene inactivation in the CNS of mouse inhibits the myelinating ability of the mature cortical oligodendrocytes. Glia 2014; 62:133-44. [PMID: 24272708 DOI: 10.1002/glia.22593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2013] [Accepted: 10/17/2013] [Indexed: 01/12/2023]
Abstract
Nijmegen Breakage Syndrome (NBS) is a recessive genetic disorder characterized by immunodeficiency, elevated sensitivity to ionizing radiation, chromosomal instability, microcephaly, and high predisposition to malignancies. Since the underlying molecular mechanisms of the NBS microcephaly are still obscure, thus our group previously inactivated the Nbn gene in the central nervous system (CNS) of mice by nestin-Cre targeting gene system, and generated Nbn(CNS-del) mice. Interestingly, the newborn Nbn(CNS-del) mice exhibit obvious microcephaly, which is accompanied by severe ataxia and balance deficiency. In this study presented here, we report that Nbn-deficiency induces the enhanced apoptosis of the mature oligodendrocytes at postnatal day 7, which further affects the myelination of the nerve fibers of cerebrum and corpus callosum.The distinct regulatory roles of Ataxia telangiectasia mutated (ATM) signaling and protein kinase B(Akt)/the mammalian target of Rapamycin (AKT/mTOR) signaling are responsible for the enhanced apoptosis of the Nbn-deficient oligodendrocytes. In addition, a series of transcriptional factors including histonedeacetylase (HDAC), zinc finger protein 191 (ZFP-191) and myelin sheath regulatory factor (MRF) play distinct roles in regulating the myelination of the Nbn-deficient oligodendrocytes. Based on these results, it concludes that ATM-Chk2-P53-P21 signaling pathway and the AKT/mTOR signaling pathway are both responsible for the enhanced apoptosis of the Nbn-deficient oligodendrocytes. HDAC, ZFP-191, and MRF are also involved in the pathogenesis of the hypomyelination of the Nbn-deficient oligodendrocytes.
Collapse
Affiliation(s)
- Bo Liu
- Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
13
|
Tapias A, Zhou ZW, Shi Y, Chong Z, Wang P, Groth M, Platzer M, Huttner W, Herceg Z, Yang YG, Wang ZQ. Trrap-dependent histone acetylation specifically regulates cell-cycle gene transcription to control neural progenitor fate decisions. Cell Stem Cell 2014; 14:632-43. [PMID: 24792116 DOI: 10.1016/j.stem.2014.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 01/12/2014] [Accepted: 03/31/2014] [Indexed: 12/30/2022]
Abstract
Fate decisions in neural progenitor cells are orchestrated via multiple pathways, and the role of histone acetylation in these decisions has been ascribed to a general function promoting gene activation. Here, we show that the histone acetyltransferase (HAT) cofactor transformation/transcription domain-associated protein (Trrap) specifically regulates activation of cell-cycle genes, thereby integrating discrete cell-intrinsic programs of cell-cycle progression and epigenetic regulation of gene transcription in order to control neurogenesis. Deletion of Trrap impairs recruitment of HATs and transcriptional machinery specifically to E2F cell-cycle target genes, disrupting their transcription with consequent cell-cycle lengthening specifically within cortical apical neural progenitors (APs). Consistently, Trrap conditional mutants exhibit microcephaly because of premature differentiation of APs into intermediate basal progenitors and neurons, and overexpressing cell-cycle regulators in vivo can rescue these premature differentiation defects. These results demonstrate an essential and highly specific role for Trrap-mediated histone regulation in controlling cell-cycle progression and neurogenesis.
Collapse
Affiliation(s)
- Alicia Tapias
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhong-Wei Zhou
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Yue Shi
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, 1-7 Beichen West Road, Chaoyang District, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Zechen Chong
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, 1-7 Beichen West Road, Chaoyang District, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Pei Wang
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Wieland Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France
| | - Yun-Gui Yang
- Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, 1-7 Beichen West Road, Chaoyang District, Beijing 100101, P.R. China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P.R. China
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany; Faculty of Biology and Pharmacy, Friedrich Schiller University of Jena, Fuerstengraben 26, 07743 Jena, Germany.
| |
Collapse
|
14
|
Bruhn C, Zhou ZW, Ai H, Wang ZQ. The essential function of the MRN complex in the resolution of endogenous replication intermediates. Cell Rep 2014; 6:182-95. [PMID: 24388752 DOI: 10.1016/j.celrep.2013.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/24/2013] [Accepted: 12/12/2013] [Indexed: 01/01/2023] Open
Abstract
The MRN complex (Mre11/Rad50/Nbs1) is important in double-strand break (DSB) recognition, end resection, replication fork stabilization, and ATM and ATR activation. Complete deletion of MRN is incompatible with cell and organism life, presumably due to replication-born DSBs; however, the underlying mechanism remains unknown. We devised a noninvasive high-content assay, termed high-content microscopy-assisted cell-cycle phenotyping (hiMAC), to investigate the fate of cells lacking Nbs1. Surprisingly, deletion of Nbs1 does not kill cells during replication. The primary lesions in Nbs1-deleted cells are replication intermediates that result from defective resolution rather than fork destabilization. These lesions are converted to DSBs in the subsequent G2 phase, which subsequently activate Chk1, delay G2 progression, and lead to chromosome instability. Nbs1-deleted cells establish a DSB equilibrium that permits cell cycling but activates p53, causing G1 and G2 arrest, and cell death. Thus, we identify a physiological role of Nbs1 in the resolution of stalled replication forks.
Collapse
Affiliation(s)
- Christopher Bruhn
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Zhong-Wei Zhou
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Haiyan Ai
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena 07745, Germany
| | - Zhao-Qi Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Jena 07745, Germany; Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany.
| |
Collapse
|
15
|
Liu B, Chen X, Wang ZQ, Tong WM. DNA damage and oxidative injury are associated with hypomyelination in the corpus callosum of newborn Nbn(CNS-del) mice. J Neurosci Res 2013; 92:254-66. [PMID: 24272991 DOI: 10.1002/jnr.23313] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/10/2013] [Accepted: 09/18/2013] [Indexed: 01/16/2023]
Abstract
Nijmegen breakage syndrome (NBS), caused by mutation of the Nbn gene, is a recessive genetic disorder characterized by immunodeficiency, elevated sensitivity to ionizing radiation, chromosomal instability, microcephaly, and high predisposition to malignancies. To explore the underlying molecular mechanisms of NBS microcephaly, Frappart et al. previously inactivated Nbn gene in the central nervous system (CNS) of mice by the nestin-Cre targeting gene system and generated Nbn(CNS-del) mice. Here we first report that Nbn gene inactivation induces the defective proliferation and enhanced apoptosis of the oligodendrocyte precursor cells (OPCs), contributing to the severe hypomyelination of the nerve fibers of the corpus callosum. Under conditions of DNA damage and oxidative stress, the distinct regulatory roles of ATM-Chk2 signaling and AKT/mTOR signaling are responsible for the defective proliferation and enhanced apoptosis of the Nbn-deficient OPCs. In addition, specific HDAC isoforms may play distinctive roles in regulating the myelination of the Nbn-deficient OPCs. However, brain-derived neurotrophic factor and nerve growth factor stimulation attenuates the oxidative stress and thereby increases the proliferation of the Nbn-deficient OPCs, which is accompanied by upregulation of the AKT/mTOR/P70S6K signaling pathway. Taken together, these findings demonstrate that DNA damage and oxidative stress resulting from Nbn gene inactivation are associated with hypomyelination of the nerve fibers of corpus callosum.
Collapse
Affiliation(s)
- B Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
16
|
Liu B, Chen X. The distinct signaling regulatory roles in the cortical atrophy and cerebellar apoptosis of newborn Nbn-deficient mice. Cell Mol Neurobiol 2013; 33:1043-53. [PMID: 23934213 PMCID: PMC11497966 DOI: 10.1007/s10571-013-9971-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022]
Abstract
Human Nijmegen breakage syndrome, caused by the hypomorphic mutation of Nbn gene, is a hereditary instability disease, characterized by chromosomal instability, immunodeficiency, radiosensitivity, cancer predisposition and microcephaly. To study the roles of Nbn protein in microcephaly, Nbn gene was specifically deleted in the central nervous system of mice by nestin-Cre targeting gene system (Frappart et al. in Nat Med 11:538-544, 2005). Strikingly, newborn Nbn-deficient mice exhibit the evident microcephalic cerebellum, which contributes to severe ataxia and balance deficiency. In this study, we first report that PI3K/AKT/mTOR signaling pathway that performs neurotrophic-protecting role in neuronal growth is significantly inhibited in newborn Nbn-deficient cortex and cerebellum. In addition, JNK signaling and ATR signaling are likely to converge to regulate the cerebellar apoptosis of newborn Nbn-deficient mice.
Collapse
Affiliation(s)
- Bo Liu
- The Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 DongDan SanTiao, Beijing, 100005, China,
| | | |
Collapse
|
17
|
|
18
|
Rodrigues PMG, Grigaravicius P, Remus M, Cavalheiro GR, Gomes AL, Martins MR, Frappart L, Reuss D, McKinnon PJ, von Deimling A, Martins RAP, Frappart PO. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye. PLoS One 2013; 8:e69209. [PMID: 23935957 PMCID: PMC3728324 DOI: 10.1371/journal.pone.0069209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Paulo M. G. Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulius Grigaravicius
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Remus
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriel R. Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anielle L. Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R. Martins
- Programa de Pós Graduação em Biofísica, IBCCF, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lucien Frappart
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Peter J. McKinnon
- Department of Genetics, St.Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (POF); (RAPM)
| | - Pierre-Olivier Frappart
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (POF); (RAPM)
| |
Collapse
|
19
|
Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:461-78. [PMID: 24014418 PMCID: PMC3767923 DOI: 10.1002/wdev.89] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of human developmental microcephaly is providing important insights into brain development. It has become clear that developmental microcephalies are associated with abnormalities in cellular production, and that the pathophysiology of microcephaly provides remarkable insights into how the brain generates the proper number of neurons that determine brain size. Most of the genetic causes of 'primary' developmental microcephaly (i.e., not associated with other syndromic features) are associated with centrosomal abnormalities. In addition to other functions, centrosomal proteins control the mitotic spindle, which is essential for normal cell proliferation during mitosis. However, the brain is often uniquely affected when microcephaly genes are mutated implying special centrosomal-related functions in neuronal production. Although models explaining how this could occur have some compelling data, they are not without controversy. Interestingly, some of the microcephaly genes show evidence that they were targets of evolutionary selection in primates and human ancestors, suggesting potential evolutionary roles in controlling neuronal number and brain volume across species. Mutations in DNA repair pathway genes also lead to microcephaly. Double-stranded DNA breaks appear to be a prominent type of damage that needs to be repaired during brain development, yet why defects in DNA repair affect the brain preferentially and if DNA repair relates to centrosome function, are not clearly understood.
Collapse
Affiliation(s)
- Edward C Gilmore
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
20
|
Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14:197-210. [DOI: 10.1038/nrm3546] [Citation(s) in RCA: 1213] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|