1
|
Rimoldi M, Lucchiari S, Pagliarani S, Meola G, Comi GP, Abati E. Myotonic dystrophies: an update on clinical features, molecular mechanisms, management, and gene therapy. Neurol Sci 2025; 46:1599-1616. [PMID: 39643839 PMCID: PMC11919957 DOI: 10.1007/s10072-024-07826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
Myotonic dystrophies (DM) encompass a group of complex genetic disorders characterized by progressive muscle weakness with myotonia and multisystemic involvement. The aim of our paper is to synthesize key findings and advancements in the understanding of DM, and to underline the multidisciplinary approach to DM, emphasizing the importance of genetic counseling, comprehensive clinical care, and symptom management. We discuss the genetic basis of DM, emphasizing the role of repeat expansions in disease pathogenesis, as well as cellular and animal models utilized for studying DM mechanisms and testing potential therapies. Diagnostic challenges, such as determining the size of disease expansions and assessing mosaicism, are elucidated alongside emerging genetic testing methods. Therapeutic strategies, mainly for DM1, are also explored, encompassing small molecules, nucleic acid-based therapies (NATs), and genome/transcriptome engineering. The challenges of such a therapeutic delivery and immunogenic response and the importance of innovative strategies, including viral vectors and AAV serotypes, are highlighted within the text. While no curative treatments have been approved, supportive and palliative care remains essential, with a focus on addressing multisystemic complications and maintaining functional independence. Continued exploration of these therapeutic advancements offers hope for comprehensive disease management and potentially curative therapies for DM1 and related disorders.
Collapse
Affiliation(s)
- Martina Rimoldi
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Medical Genetic Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Lucchiari
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Serena Pagliarani
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Department of Neurorehabilitation Sciences, University of Milan, Casa di Cura Igea, Fondazione Malattie Miotoniche -FMM, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Elena Abati
- Neurology Unit, IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Usdin K. 3A or not 3A: Cytidine deaminases in the etiology of the CAG-repeat expansion diseases. Proc Natl Acad Sci U S A 2025; 122:e2426776122. [PMID: 39993205 DOI: 10.1073/pnas.2426776122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Affiliation(s)
- Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
3
|
Doss RM, Lopez-Ignacio S, Dischler A, Hiatt L, Dashnow H, Breuss MW, Dias CM. Mosaicism in Short Tandem Repeat Disorders: A Clinical Perspective. Genes (Basel) 2025; 16:216. [PMID: 40004546 PMCID: PMC11855715 DOI: 10.3390/genes16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Fragile X, Huntington disease, and myotonic dystrophy type 1 are prototypical examples of human disorders caused by short tandem repeat variation, repetitive nucleotide stretches that are highly mutable both in the germline and somatic tissue. As short tandem repeats are unstable, they can expand, contract, and acquire and lose epigenetic marks in somatic tissue. This means within an individual, the genotype and epigenetic state at these loci can vary considerably from cell to cell. This somatic mosaicism may play a key role in clinical pathogenesis, and yet, our understanding of mosaicism in driving clinical phenotypes in short tandem repeat disorders is only just emerging. This review focuses on these three relatively well-studied examples where, given the advent of new technologies and bioinformatic approaches, a critical role for mosaicism is coming into focus both with respect to cellular physiology and clinical phenotypes.
Collapse
Affiliation(s)
- Rose M. Doss
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Susana Lopez-Ignacio
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anna Dischler
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel Hiatt
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Harriet Dashnow
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Martin W. Breuss
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Caroline M. Dias
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Bunting EL, Donaldson J, Cumming SA, Olive J, Broom E, Miclăuș M, Hamilton J, Tegtmeyer M, Zhao HT, Brenton J, Lee WS, Handsaker RE, Li S, Ford B, Ryten M, McCarroll SA, Kordasiewicz HB, Monckton DG, Balmus G, Flower M, Tabrizi SJ. Antisense oligonucleotide-mediated MSH3 suppression reduces somatic CAG repeat expansion in Huntington's disease iPSC-derived striatal neurons. Sci Transl Med 2025; 17:eadn4600. [PMID: 39937881 DOI: 10.1126/scitranslmed.adn4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Expanded CAG alleles in the huntingtin (HTT) gene that cause the neurodegenerative disorder Huntington's disease (HD) are genetically unstable and continue to expand somatically throughout life, driving HD onset and progression. MSH3, a DNA mismatch repair protein, modifies HD onset and progression by driving this somatic CAG repeat expansion process. MSH3 is relatively tolerant of loss-of-function variation in humans, making it a potential therapeutic target. Here, we show that an MSH3-targeting antisense oligonucleotide (ASO) effectively engaged with its RNA target in induced pluripotent stem cell (iPSC)-derived striatal neurons obtained from a patient with HD carrying 125 HTT CAG repeats (the 125 CAG iPSC line). ASO treatment led to a dose-dependent reduction of MSH3 and subsequent stalling of CAG repeat expansion in these striatal neurons. Bulk RNA sequencing revealed a safe profile for MSH3 reduction, even when reduced by >95%. Maximal knockdown of MSH3 also effectively slowed CAG repeat expansion in striatal neurons with an otherwise accelerated expansion rate, derived from the 125 CAG iPSC line where FAN1 was knocked out by CRISPR-Cas9 editing. Last, we created a knock-in mouse model expressing the human MSH3 gene and demonstrated effective in vivo reduction in human MSH3 after ASO treatment. Our study shows that ASO-mediated MSH3 reduction can prevent HTT CAG repeat expansion in HD 125 CAG iPSC-derived striatal neurons, highlighting the therapeutic potential of this approach.
Collapse
Affiliation(s)
- Emma L Bunting
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Jasmine Donaldson
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Sarah A Cumming
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jessica Olive
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Elizabeth Broom
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Mihai Miclăuș
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191 Cluj-Napoca, Romania
| | - Joseph Hamilton
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan Brenton
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, London, UK
| | - Won-Seok Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Susan Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, London, UK
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, 400191 Cluj-Napoca, Romania
| | - Michael Flower
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and UK Dementia Research Institute, UCL, London, UK
| |
Collapse
|
5
|
Handsaker RE, Kashin S, Reed NM, Tan S, Lee WS, McDonald TM, Morris K, Kamitaki N, Mullally CD, Morakabati NR, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K, Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 2025; 188:623-639.e19. [PMID: 39824182 DOI: 10.1016/j.cell.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025]
Abstract
In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG)n in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs. Somatic expansion from 40 to 150 CAGs had no apparent cell-autonomous effect, but SPNs with 150-500+ CAGs lost positive and then negative features of neuronal identity, de-repressed senescence/apoptosis genes, and were lost. Our results suggest that somatic repeat expansion beyond 150 CAGs causes SPNs to degenerate quickly and asynchronously. We conclude that in HD, at any one time, most neurons have an innocuous but unstable HTT gene and that HD pathogenesis is a DNA process for almost all of a neuron's life.
Collapse
Affiliation(s)
- Robert E Handsaker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Seva Kashin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Nora M Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Won-Seok Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tara M McDonald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nolan Kamitaki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D Mullally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Melissa Goldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel Lind
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rhea Kohli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marina Hogan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Steven A McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Seifert BA, Reddi HV, Kang BE, Bean LJH, Shealy A, Rose NC. Myotonic dystrophy type 1 testing, 2024 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024; 26:101145. [PMID: 38836869 PMCID: PMC11298302 DOI: 10.1016/j.gim.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a form of muscular dystrophy causing progressive muscle loss and weakness. Although clinical features can manifest at any age, it is the most common form of muscular dystrophy with onset in adulthood. DM1 is an autosomal dominant condition, resulting from an unstable CTG expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. The age of onset and the severity of the phenotype are roughly correlated with the size of the CTG expansion. Multiple methodologies can be used to diagnose affected individuals with DM1, including polymerase chain reaction, Southern blot, and triplet repeat-primed polymerase chain reaction. Recently, triplet repeat interruptions have been described, which may affect clinical outcomes of a fully-variable allele in DMPK. This document supersedes the Technical Standards and Guidelines for Myotonic Dystrophy originally published in 2009 and reaffirmed in 2015. It is designed for genetic testing professionals who are already familiar with the disease and the methods of analysis.
Collapse
Affiliation(s)
- Bryce A Seifert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Honey V Reddi
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Benjamin E Kang
- Department of Pathology and Pediatrics, University of Michigan Medical School, Ann Arbor, MI; Vanderbilt University Medical Center, Nashville, TN
| | | | - Amy Shealy
- Cleveland Clinic Center for Personalized Genetic Healthcare, Cleveland, OH
| | - Nancy C Rose
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT
| |
Collapse
|
7
|
Pengo M, Squitieri F. Beyond CAG Repeats: The Multifaceted Role of Genetics in Huntington Disease. Genes (Basel) 2024; 15:807. [PMID: 38927742 PMCID: PMC11203031 DOI: 10.3390/genes15060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Ferdinando Squitieri
- Centre for Neurological Rare Diseases (CMNR), Fondazione Lega Italiana Ricerca Huntington (LIRH), 00161 Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Hong EP, Ramos EM, Aziz NA, Massey TH, McAllister B, Lobanov S, Jones L, Holmans P, Kwak S, Orth M, Ciosi M, Lomeikaite V, Monckton DG, Long JD, Lucente D, Wheeler VC, Gillis T, MacDonald ME, Sequeiros J, Gusella JF, Lee JM. Modification of Huntington's disease by short tandem repeats. Brain Commun 2024; 6:fcae016. [PMID: 38449714 PMCID: PMC10917446 DOI: 10.1093/braincomms/fcae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Eliana Marisa Ramos
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - N Ahmad Aziz
- Population & Clinical Neuroepidemiology, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn D-53113, Germany
| | - Thomas H Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Branduff McAllister
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sergey Lobanov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Lesley Jones
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Seung Kwak
- Molecular System Biology, CHDI Foundation, Princeton, NJ 08540, USA
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000 Bern 60, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vilija Lomeikaite
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine and Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Jorge Sequeiros
- UnIGENe, IBMC—Institute for Molecular and Cell Biology, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 420-135, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto 420-135, Portugal
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Rajagopal S, Donaldson J, Flower M, Hensman Moss DJ, Tabrizi SJ. Genetic modifiers of repeat expansion disorders. Emerg Top Life Sci 2023; 7:325-337. [PMID: 37861103 PMCID: PMC10754329 DOI: 10.1042/etls20230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.
Collapse
Affiliation(s)
- Sangeerthana Rajagopal
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Jasmine Donaldson
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Michael Flower
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Davina J Hensman Moss
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
- St George's University of London, London SW17 0RE, U.K
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| |
Collapse
|
10
|
Morales F, Corrales E, Vásquez M, Zhang B, Fernández H, Alvarado F, Cortés S, Santamaría-Ulloa C, Initiative-Mmdbdi MMDBD, Krahe R, Monckton DG. Individual-specific levels of CTG•CAG somatic instability are shared across multiple tissues in myotonic dystrophy type 1. Hum Mol Genet 2023; 32:621-631. [PMID: 36099027 DOI: 10.1093/hmg/ddac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 is a complex disease caused by a genetically unstable CTG repeat expansion in the 3'-untranslated region of the DMPK gene. Age-dependent, tissue-specific somatic instability has confounded genotype-phenotype associations, but growing evidence suggests that it also contributes directly toward disease progression. Using a well-characterized clinical cohort of DM1 patients from Costa Rica, we quantified somatic instability in blood, buccal cells, skin and skeletal muscle. Whilst skeletal muscle showed the largest expansions, modal allele lengths in skin were also very large and frequently exceeded 2000 CTG repeats. Similarly, the degree of somatic expansion in blood, muscle and skin were associated with each other. Notably, we found that the degree of somatic expansion in skin was highly predictive of that in skeletal muscle. More importantly, we established that individuals whose repeat expanded more rapidly than expected in one tissue (after correction for progenitor allele length and age) also expanded more rapidly than expected in other tissues. We also provide evidence suggesting that individuals in whom the repeat expanded more rapidly than expected in skeletal muscle have an earlier age at onset than expected (after correction for the progenitor allele length). Pyrosequencing analyses of the genomic DNA flanking the CTG repeat revealed that the degree of methylation in muscle was well predicted by the muscle modal allele length and age, but that neither methylation of the flanking DNA nor levels of DMPK sense and anti-sense transcripts could obviously explain individual- or tissue-specific patterns of somatic instability.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Huberth Fernández
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Fernando Alvarado
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | - Sergio Cortés
- Hospital Calderón Guardia/Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica
| | | | | | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-Read Sequencing. J Mol Diagn 2022; 24:1143-1154. [PMID: 36084803 DOI: 10.1016/j.jmoldx.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are simultaneously and accurately determined due to the limitations of gold standard methods used in clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-molecule real-time sequencing was recently developed to accurately analyze expanded alleles. However, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a promising method that can overcome research and diagnosis shortcomings, with translational implications for clinical and genetic counseling in DM1.
Collapse
|
12
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
13
|
Hwang YH, Hayward BE, Zafarullah M, Kumar J, Durbin Johnson B, Holmans P, Usdin K, Tassone F. Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Sci Rep 2022; 12:10419. [PMID: 35729184 PMCID: PMC9213438 DOI: 10.1038/s41598-022-14183-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.
Collapse
Affiliation(s)
- Ye Hyun Hwang
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Eliot Hayward
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jay Kumar
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Blythe Durbin Johnson
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, UK
| | - Karen Usdin
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA. .,MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
14
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
15
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
16
|
Soltanzadeh P. Myotonic Dystrophies: A Genetic Overview. Genes (Basel) 2022; 13:367. [PMID: 35205411 PMCID: PMC8872148 DOI: 10.3390/genes13020367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophies (DM) are the most common muscular dystrophies in adults, which can affect other non-skeletal muscle organs such as the heart, brain and gastrointestinal system. There are two genetically distinct types of myotonic dystrophy: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), both dominantly inherited with significant overlap in clinical manifestations. DM1 results from CTG repeat expansions in the 3'-untranslated region (3'UTR) of the DMPK (dystrophia myotonica protein kinase) gene on chromosome 19, while DM2 is caused by CCTG repeat expansions in intron 1 of the CNBP (cellular nucleic acid-binding protein) gene on chromosome 3. Recent advances in genetics and molecular biology, especially in the field of RNA biology, have allowed better understanding of the potential pathomechanisms involved in DM. In this review article, core clinical features and genetics of DM are presented followed by a discussion on the current postulated pathomechanisms and therapeutic approaches used in DM, including the ones currently in human clinical trial phase.
Collapse
Affiliation(s)
- Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Harder A. Do non-pathogenic variants of DNA mismatch repair genes modify neurofibroma load in neurofibromatosis type 1? Childs Nerv Syst 2022; 38:705-713. [PMID: 34997843 PMCID: PMC8940751 DOI: 10.1007/s00381-021-05436-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023]
Abstract
Non-pathogenic mismatch repair (MMR) gene variants can be associated with decreased MMR capacity in several settings. Due to an increased mutation rate, reduced MMR capacity leads to accumulation of somatic sequence changes in tumour suppressor genes such as in the neurofibromatosis type 1 (NF1) gene. Patients with autosomal dominant NF1 typically develop neurofibromas ranging from single to thousands. Concerning the number of neurofibromas NF1 patients face a situation that is still not predictable. A few studies suggested that germline non-pathogenic MMR gene variants modify the number of neurofibromas in NF1 and by this mechanism may promote the extent of neurofibroma manifestation. This review represents first evidence that specific non-pathogenic single nucleotide variants of MMR genes act as a modifier of neurofibroma manifestation in NF1, highlighting MSH2 re4987188 as the best analysed non-pathogenic variant so far. In summary, besides MSH2 promotor methylation, specific non-pathogenic germline MSH2 variants are associated with the extent of neurofibroma manifestation. Those variants can serve as a biomarker to facilitate better mentoring of NF1 patients at risk.
Collapse
Affiliation(s)
- Anja Harder
- Institute of Pathology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), 06120, Germany.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
- Faculty of Health Sciences, Joint Faculty, Potsdam, Germany.
| |
Collapse
|
18
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
19
|
Characterisation of Non-Pathogenic Premutation-Range Myotonic Dystrophy Type 2 Alleles. J Clin Med 2021; 10:jcm10173934. [PMID: 34501382 PMCID: PMC8432210 DOI: 10.3390/jcm10173934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022] Open
Abstract
Myotonic dystrophy type 2 (DM2) is caused by expansion of a (CCTG)n repeat in the cellular retroviral nucleic acid-binding protein (CNBP) gene. The sequence of the repeat is most commonly interrupted and is stably inherited in the general population. Although expanded alleles, premutation range and, in rare cases, also non-disease associated alleles containing uninterrupted CCTG tracts have been described, the threshold between these categories is poorly characterised. Here, we describe four families with members reporting neuromuscular complaints, in whom we identified altogether nine ambiguous CNBP alleles containing uninterrupted CCTG repeats in the range between 32 and 42 repeats. While these grey-zone alleles are most likely not pathogenic themselves, since other pathogenic mutations were identified and particular family structures did not support their pathogenic role, they were found to be unstable during intergenerational transmission. On the other hand, there was no observable general microsatellite instability in the genome of the carriers of these alleles. Our results further refine the division of CNBP CCTG repeat alleles into two major groups, i.e., interrupted and uninterrupted alleles. Both interrupted and uninterrupted alleles with up to approximately 30 CCTG repeats were shown to be generally stable during intergenerational transmission, while intergenerational as well as somatic instability seems to gradually increase in uninterrupted alleles with tract length growing above this threshold.
Collapse
|
20
|
Morales F, Vásquez M, Corrales E, Vindas-Smith R, Santamaría-Ulloa C, Zhang B, Sirito M, Estecio MR, Krahe R, Monckton DG. Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Hum Mol Genet 2021; 29:2496-2507. [PMID: 32601694 DOI: 10.1093/hmg/ddaa123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), somatic mosaicism of the (CTG)n repeat expansion is age-dependent, tissue-specific and expansion-biased. These features contribute toward variation in disease severity and confound genotype-to-phenotype analyses. To investigate how the (CTG)n repeat expansion changes over time, we collected three longitudinal blood DNA samples separated by 8-15 years and used small pool and single-molecule PCR in 43 DM1 patients. We used the lower boundary of the allele length distribution as the best estimate for the inherited progenitor allele length (ePAL), which is itself the best predictor of disease severity. Although in most patients the lower boundary of the allele length distribution was conserved over time, in many this estimate also increased with age, suggesting samples for research studies and clinical trials should be obtained as early as possible. As expected, the modal allele length increased over time, driven primarily by ePAL, age-at-sampling and the time interval. As expected, small expansions <100 repeats did not expand as rapidly as larger alleles. However, the rate of expansion of very large alleles was not obviously proportionally higher. This may, at least in part, be a result of the allele length-dependent increase in large contractions that we also observed. We also determined that individual-specific variation in the increase of modal allele length over time not accounted for by ePAL, age-at-sampling and time was inversely associated with individual-specific variation in age-at-onset not accounted for by ePAL, further highlighting somatic expansion as a therapeutic target in DM1.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | | | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
22
|
Morales F, Corrales E, Zhang B, Vásquez M, Santamaría-Ulloa C, Quesada H, Sirito M, Estecio MR, Monckton DG, Krahe R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum Mol Genet 2021; 31:262-274. [PMID: 34432028 DOI: 10.1093/hmg/ddab243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex disease with a wide spectrum of symptoms. The exact relationship between mutant CTG repeat expansion size and clinical outcome remains unclear. DM1 congenital patients (CDM) inherit the largest expanded alleles, which are associated with abnormal and increased DNA methylation flanking the CTG repeat. However, DNA methylation at the DMPK locus remains understudied. Its relationship to DM1 clinical subtypes, expansion size and age-at-onset is not yet completely understood. Using pyrosequencing-based methylation analysis on 225 blood DNA samples from Costa Rican DM1 patients, we determined that the size of the estimated progenitor allele length (ePAL) is not only a good discriminator between CDM and non-CDM cases (with an estimated threshold at 653 CTG repeats), but also for all DM1 clinical subtypes. Secondly, increased methylation at both CTCF sites upstream and downstream of the expansion was almost exclusively present in CDM cases. Thirdly, levels of abnormal methylation were associated with clinical subtype, age and ePAL, with strong correlations between these variables. Fourthly, both ePAL and the intergenerational expansion size were significantly associated with methylation status. Finally, methylation status was associated with ePAL and maternal inheritance, with almost exclusively maternal transmission of CDM. In conclusion, increased DNA methylation at the CTCF sites flanking the DM1 expansion could be linked to ePAL, and both increased methylation and the ePAL could be considered biomarkers for the CDM phenotype.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Eyleen Corrales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Baili Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Carolina Santamaría-Ulloa
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Hazel Quesada
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Mario Sirito
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Marcos R Estecio
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ralf Krahe
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, Texas, 77030-4009, USA
| |
Collapse
|
23
|
Hong EP, Chao MJ, Massey T, McAllister B, Lobanov S, Jones L, Holmans P, Kwak S, Orth M, Ciosi M, Monckton DG, Long JD, Lucente D, Wheeler VC, MacDonald ME, Gusella JF, Lee JM. Association Analysis of Chromosome X to Identify Genetic Modifiers of Huntington's Disease. J Huntingtons Dis 2021; 10:367-375. [PMID: 34180418 DOI: 10.3233/jhd-210485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Huntington's disease (HD) is caused by an expanded (>35) CAG trinucleotide repeat in huntingtin (HTT). Age-at-onset of motor symptoms is inversely correlated with the size of the inherited CAG repeat, which expands further in brain regions due to somatic repeat instability. Our recent genetic investigation focusing on autosomal SNPs revealed that age-at-onset is also influenced by genetic variation at many loci, the majority of which encode genes involved in DNA maintenance/repair processes and repeat instability. OBJECTIVE We performed a complementary association analysis to determine whether variants in the X chromosome modify HD. METHODS We imputed SNPs on chromosome X for ∼9,000 HD subjects of European ancestry and performed an X chromosome-wide association study (XWAS) to test for association with age-at-onset corrected for inherited CAG repeat length. RESULTS In a mixed effects model XWAS analysis of all subjects (males and females), assuming random X-inactivation in females, no genome-wide significant onset modification signal was found. However, suggestive significant association signals were detected at Xq12 (top SNP, rs59098970; p-value, 1.4E-6), near moesin (MSN), in a region devoid of DNA maintenance genes. Additional suggestive signals not involving DNA repair genes were observed in male- and female-only analyses at other locations. CONCLUSION Although not genome-wide significant, potentially due to small effect size compared to the power of the current study, our data leave open the possibility of modification of HD by a non-DNA repair process. Our XWAS results are publicly available at the updated GEM EURO 9K website hosted at https://www.hdinhd.org/ for browsing, pathway analysis, and data download.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Michael J Chao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Thomas Massey
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sergey Lobanov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Michael Orth
- Department of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine and Department of Biostatistics, College of Public Health, and Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| |
Collapse
|
24
|
Richard GF. The Startling Role of Mismatch Repair in Trinucleotide Repeat Expansions. Cells 2021; 10:cells10051019. [PMID: 33925919 PMCID: PMC8145212 DOI: 10.3390/cells10051019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
Trinucleotide repeats are a peculiar class of microsatellites whose expansions are responsible for approximately 30 human neurological or developmental disorders. The molecular mechanisms responsible for these expansions in humans are not totally understood, but experiments in model systems such as yeast, transgenic mice, and human cells have brought evidence that the mismatch repair machinery is involved in generating these expansions. The present review summarizes, in the first part, the role of mismatch repair in detecting and fixing the DNA strand slippage occurring during microsatellite replication. In the second part, key molecular differences between normal microsatellites and those that show a bias toward expansions are extensively presented. The effect of mismatch repair mutants on microsatellite expansions is detailed in model systems, and in vitro experiments on mismatched DNA substrates are described. Finally, a model presenting the possible roles of the mismatch repair machinery in microsatellite expansions is proposed.
Collapse
Affiliation(s)
- Guy-Franck Richard
- Institut Pasteur, CNRS UMR3525, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
25
|
Bakhtiari M, Park J, Ding YC, Shleizer-Burko S, Neuhausen SL, Halldórsson BV, Stefánsson K, Gymrek M, Bafna V. Variable number tandem repeats mediate the expression of proximal genes. Nat Commun 2021; 12:2075. [PMID: 33824302 PMCID: PMC8024321 DOI: 10.1038/s41467-021-22206-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Variable number tandem repeats (VNTRs) account for significant genetic variation in many organisms. In humans, VNTRs have been implicated in both Mendelian and complex disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping and the computational expense. We describe adVNTR-NN, a method that uses shallow neural networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating VNTR length with gene expression in 46 tissues, we identify 163 "eVNTRs". Of the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in terms of significance and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes are involved in diseases including Alzheimer's, obesity and familial cancers, highlighting the importance of VNTRs for understanding the genetic basis of complex diseases.
Collapse
Affiliation(s)
- Mehrdad Bakhtiari
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Jonghun Park
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yuan-Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | | | - Melissa Gymrek
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vineet Bafna
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Mangin A, de Pontual L, Tsai YC, Monteil L, Nizon M, Boisseau P, Mercier S, Ziegle J, Harting J, Heiner C, Gourdon G, Tomé S. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:2616. [PMID: 33807660 PMCID: PMC7962047 DOI: 10.3390/ijms22052616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.
Collapse
Affiliation(s)
- Antoine Mangin
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
- Dementia Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Laure de Pontual
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Yu-Chih Tsai
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Laetitia Monteil
- Genetics Department of the Hospital of Toulouse, F-31059 Toulouse, France;
| | - Mathilde Nizon
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Pierre Boisseau
- CHU de Nantes, Service de Génétique Médicale, Laboratoire de Génétique Moléculaire, F-44000 Nantes, France; (M.N.); (P.B.)
| | - Sandra Mercier
- CHU Nantes, Service de Génétique Médicale, Centre de Référence des Maladies Neuromusculaires AOC, F-44000 Nantes, France;
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - John Harting
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Cheryl Heiner
- Pacific Biosciences, Menlo Park, CA 94025, USA; (Y.-C.T.); (J.Z.); (J.H.); (C.H.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| | - Stéphanie Tomé
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, F-75013 Paris, France; (A.M.); (L.d.P.); (G.G.)
| |
Collapse
|
27
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
28
|
Gomes-Pereira M, Monckton DG. Chronic Exposure to Cadmium and Antioxidants Does Not Affect the Dynamics of Expanded CAG•CTG Trinucleotide Repeats in a Mouse Cell Culture System of Unstable DNA. Front Cell Neurosci 2021; 14:606331. [PMID: 33603644 PMCID: PMC7884634 DOI: 10.3389/fncel.2020.606331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
More than 30 human disorders are caused by the expansion of simple sequence DNA repeats, among which triplet repeats remain the most frequent. Most trinucleotide repeat expansion disorders affect primarily the nervous system, through mechanisms of neurodysfunction and/or neurodegeneration. While trinucleotide repeat tracts are short and stably transmitted in unaffected individuals, disease-associated expansions are highly dynamic in the germline and in somatic cells, with a tendency toward further expansion. Since longer repeats are associated with increasing disease severity and earlier onset of symptoms, intergenerational repeat size gains account for the phenomenon of anticipation. In turn, higher levels of age-dependent somatic expansion have been linked with increased disease severity and earlier age of onset, implicating somatic instability in the onset and progression of disease symptoms. Hence, tackling the root cause of symptoms through the control of repeat dynamics may provide therapeutic modulation of clinical manifestations. DNA repair pathways have been firmly implicated in the molecular mechanism of repeat length mutation. The demonstration that repeat expansion depends on functional DNA mismatch repair (MMR) proteins, points to MMR as a potential therapeutic target. Similarly, a role of DNA base excision repair (BER) in repeat expansion has also been suggested, particularly during the removal of oxidative lesions. Using a well-characterized mouse cell model system of an unstable CAG•CTG trinucleotide repeat, we tested if expanded repeat tracts can be stabilized by small molecules with reported roles in both pathways: cadmium (an inhibitor of MMR activity) and a variety of antioxidants (capable of neutralizing oxidative species). We found that chronic exposure to sublethal doses of cadmium and antioxidants did not result in significant reduction of the rate of trinucleotide repeat expansion. Surprisingly, manganese yielded a significant stabilization of the triplet repeat tract. We conclude that treatment with cadmium and antioxidants, at doses that do not interfere with cell survival and cell culture dynamics, is not sufficient to modify trinucleotide repeat dynamics in cell culture.
Collapse
Affiliation(s)
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
29
|
Monckton DG. The Contribution of Somatic Expansion of the CAG Repeat to Symptomatic Development in Huntington's Disease: A Historical Perspective. J Huntingtons Dis 2021; 10:7-33. [PMID: 33579863 PMCID: PMC7990401 DOI: 10.3233/jhd-200429] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery in the early 1990s of the expansion of unstable simple sequence repeats as the causative mutation for a number of inherited human disorders, including Huntington's disease (HD), opened up a new era of human genetics and provided explanations for some old problems. In particular, an inverse association between the number of repeats inherited and age at onset, and unprecedented levels of germline instability, biased toward further expansion, provided an explanation for the wide symptomatic variability and anticipation observed in HD and many of these disorders. The repeats were also revealed to be somatically unstable in a process that is expansion-biased, age-dependent and tissue-specific, features that are now increasingly recognised as contributory to the age-dependence, progressive nature and tissue specificity of the symptoms of HD, and at least some related disorders. With much of the data deriving from affected individuals, and model systems, somatic expansions have been revealed to arise in a cell division-independent manner in critical target tissues via a mechanism involving key components of the DNA mismatch repair pathway. These insights have opened new approaches to thinking about how the disease could be treated by suppressing somatic expansion and revealed novel protein targets for intervention. Exciting times lie ahead in turning these insights into novel therapies for HD and related disorders.
Collapse
Affiliation(s)
- Darren G. Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
30
|
Micronuclei Formation upon Radioiodine Therapy for Well-Differentiated Thyroid Cancer: The Influence of DNA Repair Genes Variants. Genes (Basel) 2020; 11:genes11091083. [PMID: 32957448 PMCID: PMC7565468 DOI: 10.3390/genes11091083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Radioiodine therapy with 131I remains the mainstay of standard treatment for well-differentiated thyroid cancer (DTC). Prognosis is good but concern exists that 131I-emitted ionizing radiation may induce double-strand breaks in extra-thyroidal tissues, increasing the risk of secondary malignancies. We, therefore, sought to evaluate the induction and 2-year persistence of micronuclei (MN) in lymphocytes from 26 131I-treated DTC patients and the potential impact of nine homologous recombination (HR), non-homologous end-joining (NHEJ), and mismatch repair (MMR) polymorphisms on MN levels. MN frequency was determined by the cytokinesis-blocked micronucleus assay while genotyping was performed through pre-designed TaqMan® Assays or conventional PCR-restriction fragment length polymorphism (RFLP). MN levels increased significantly one month after therapy and remained persistently higher than baseline for 2 years. A marked reduction in lymphocyte proliferation capacity was also apparent 2 years after therapy. MLH1 rs1799977 was associated with MN frequency (absolute or net variation) one month after therapy, in two independent groups. Significant associations were also observed for MSH3 rs26279, MSH4 rs5745325, NBN rs1805794, and tumor histotype. Overall, our results suggest that 131I therapy may pose a long-term challenge to cells other than thyrocytes and that the individual genetic profile may influence 131I sensitivity, hence its risk-benefit ratio. Further studies are warranted to confirm the potential utility of these single nucleotide polymorphisms (SNPs) as radiogenomic biomarkers in the personalization of radioiodine therapy.
Collapse
|
31
|
HDAC3 deacetylates the DNA mismatch repair factor MutSβ to stimulate triplet repeat expansions. Proc Natl Acad Sci U S A 2020; 117:23597-23605. [PMID: 32900932 PMCID: PMC7519323 DOI: 10.1073/pnas.2013223117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions cause nearly 20 severe human neurological diseases which are currently untreatable. For some of these diseases, ongoing somatic expansions accelerate disease progression and may influence age of onset. This new knowledge emphasizes the importance of understanding the protein factors that drive expansions. Recent genetic evidence indicates that the mismatch repair factor MutSβ (Msh2-Msh3 complex) and the histone deacetylase HDAC3 function in the same pathway to drive triplet repeat expansions. Here we tested the hypothesis that HDAC3 deacetylates MutSβ and thereby activates it to drive expansions. The HDAC3-selective inhibitor RGFP966 was used to examine its biological and biochemical consequences in human tissue culture cells. HDAC3 inhibition efficiently suppresses repeat expansion without impeding canonical mismatch repair activity. Five key lysine residues in Msh3 are direct targets of HDAC3 deacetylation. In cells expressing Msh3 in which these lysine residues are mutated to arginine, the inhibitory effect of RGFP966 on expansions is largely bypassed, consistent with the direct deacetylation hypothesis. RGFP966 treatment does not alter MutSβ subunit abundance or complex formation but does partially control its subcellular localization. Deacetylation sites in Msh3 overlap a nuclear localization signal, and we show that localization of MutSβ is partially dependent on HDAC3 activity. Together, these results indicate that MutSβ is a key target of HDAC3 deacetylation and provide insights into an innovative regulatory mechanism for triplet repeat expansions. The results suggest expansion activity may be druggable and support HDAC3-selective inhibition as an attractive therapy in some triplet repeat expansion diseases.
Collapse
|
32
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
33
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
34
|
Gazy I, Miller CJ, Kim GY, Usdin K. CGG Repeat Expansion, and Elevated Fmr1 Transcription and Mitochondrial Copy Number in a New Fragile X PM Mouse Embryonic Stem Cell Model. Front Cell Dev Biol 2020; 8:482. [PMID: 32695777 PMCID: PMC7338602 DOI: 10.3389/fcell.2020.00482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The Fragile-X related disorders (FXDs) are Repeat Expansion Diseases (REDs) that result from expansion of a CGG-repeat tract located at the 5′ end of the FMR1 gene. While expansion affects transmission risk and can also affect disease risk and severity, the underlying molecular mechanism responsible is unknown. Despite the fact that expanded alleles can be seen both in humans and mouse models in vivo, existing patient-derived cells do not show significant repeat expansions even after extended periods in culture. In order to develop a good tissue culture model for studying expansions we tested whether mouse embryonic stem cells (mESCs) carrying an expanded CGG repeat tract in the endogenous Fmr1 gene are permissive for expansion. We show here that these mESCs have a very high frequency of expansion that allows changes in the repeat number to be seen within a matter of days. CRISPR-Cas9 gene editing of these cells suggests that this may be due in part to the fact that non-homologous end-joining (NHEJ), which is able to protect against expansions in some cell types, is not effective in mESCs. CRISPR-Cas9 gene editing also shows that these expansions are MSH2-dependent, consistent with those seen in vivo. While comparable human Genome Wide Association (GWA) studies are not available for the FXDs, such studies have implicated MSH2 in expansion in other REDs. The shared unusual requirement for MSH2 for this type of microsatellite instability suggests that this new cell-based system is relevant for understanding the mechanism responsible for this peculiar type of mutation in humans. The high frequency of expansions and the ease of gene editing these cells should expedite the identification of factors that affect expansion risk. Additionally, we found that, as with cells from human premutation (PM) carriers, these cell lines have elevated mitochondrial copy numbers and Fmr1 hyperexpression, that we show here is O2-sensitive. Thus, this new stem cell model should facilitate studies of both repeat expansion and the consequences of expansion during early embryonic development.
Collapse
Affiliation(s)
- Inbal Gazy
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.,KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carson J Miller
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Geum-Yi Kim
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
35
|
Miller CJ, Kim GY, Zhao X, Usdin K. All three mammalian MutL complexes are required for repeat expansion in a mouse cell model of the Fragile X-related disorders. PLoS Genet 2020; 16:e1008902. [PMID: 32589669 PMCID: PMC7347238 DOI: 10.1371/journal.pgen.1008902] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/09/2020] [Accepted: 06/01/2020] [Indexed: 01/06/2023] Open
Abstract
Expansion of a CGG-repeat tract in the 5' untranslated region of the FMR1 gene causes the fragile X-related disorders (FXDs; aka the FMR1 disorders). The expansion mechanism is likely shared by the 35+ other diseases resulting from expansion of a disease-specific microsatellite, but many steps in this process are unknown. We have shown previously that expansion is dependent upon functional mismatch repair proteins, including an absolute requirement for MutLγ, one of the three MutL heterodimeric complexes found in mammalian cells. We demonstrate here that both MutLα and MutLβ, the two other MutL complexes present in mammalian cells, are also required for most, if not all, expansions in a mouse embryonic stem cell model of the FXDs. A role for MutLα and MutLβ is consistent with human GWA studies implicating these complexes as modifiers of expansion risk in other Repeat Expansion Diseases. The requirement for all three complexes suggests a novel model in which these complexes co-operate to generate expansions. It also suggests that the PMS1 subunit of MutLβ may be a reasonable therapeutic target in those diseases in which somatic expansion is an important disease modifier.
Collapse
Affiliation(s)
- Carson J. Miller
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geum-Yi Kim
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaonan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
36
|
Wansink DG, Gourdon G, van Engelen BGM, Schoser B. 248th ENMC International Workshop: Myotonic dystrophies: Molecular approaches for clinical purposes, framing a European molecular research network, Hoofddorp, the Netherlands, 11-13 October 2019. Neuromuscul Disord 2020; 30:521-531. [PMID: 32417002 DOI: 10.1016/j.nmd.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Derick G Wansink
- Radboud Institute for Molecular Life Sciences, Department of Cell Biology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Geneviève Gourdon
- Inserm UMR 974, Sorbonne Université, Centre de Recherche en Myologie, Association Institut de Myologie, 75013 Paris, France
| | - Baziel G M van Engelen
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, 6525 GC Nijmegen, the Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
37
|
Overend G, Légaré C, Mathieu J, Bouchard L, Gagnon C, Monckton DG. Allele length of the DMPK CTG repeat is a predictor of progressive myotonic dystrophy type 1 phenotypes. Hum Mol Genet 2020; 28:2245-2254. [PMID: 31220271 DOI: 10.1093/hmg/ddz055] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant inherited disorder caused by expansion of a germline and somatically unstable CTG repeat in the DMPK gene. Previously, CTG repeat length at birth has been correlated to patient age at symptom onset. Attempts to correlate CTG repeat length with progressive DM1 phenotypes, such as muscle power, have proven difficult. To better correlate genotype with progressive phenotypes, we have measured CTG repeat tract length and screened for interrupting variant repeats in 192 study participants from a well-characterized Canadian cohort. We have assessed genotype-phenotype correlations with nine progressive measures of skeletal muscle power and respiratory function. We have built statistical models that include confounding factors such as sex, age, height and weight to further explain variation in muscle power. Our analysis reveals a strong correlation between DM1 genotype and respiratory function and skeletal muscle power, as part of a complex model that includes additional modulators such as sex, age, height, weight and the presence or absence of interrupting variant repeats. Distal skeletal muscle measurements, such as hand pinch and grip strength, show the strongest correlation with disease genotype. Detailed analysis of CTG repeat length, and incorporation of confounding factors, greatly improves the predictive ability of these models. They reveal a greater genetic influence on individual progressive phenotypes than on age at symptom onset and for clinical trials will help optimize stratification and explain patient variability. They will also help practitioners prioritize assessment of the muscular power measurements that correlate best with disease severity.
Collapse
Affiliation(s)
- Gayle Overend
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Cécilia Légaré
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,ECOGENE Biocluster, Chicoutimi, Québec, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, rue de l'Hôpital, Saguenay, Québec, Canada
| | - Jean Mathieu
- École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, rue de l'Hôpital, Saguenay, Québec, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada.,ECOGENE Biocluster, Chicoutimi, Québec, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, rue de l'Hôpital, Saguenay, Québec, Canada
| | - Cynthia Gagnon
- École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada.,Groupe de recherche interdisciplinaire sur les maladies neuromusculaires, Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-St-Jean, rue de l'Hôpital, Saguenay, Québec, Canada
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
39
|
Nakamori M, Panigrahi GB, Lanni S, Gall-Duncan T, Hayakawa H, Tanaka H, Luo J, Otabe T, Li J, Sakata A, Caron MC, Joshi N, Prasolava T, Chiang K, Masson JY, Wold MS, Wang X, Lee MYWT, Huddleston J, Munson KM, Davidson S, Layeghifard M, Edward LM, Gallon R, Santibanez-Koref M, Murata A, Takahashi MP, Eichler EE, Shlien A, Nakatani K, Mochizuki H, Pearson CE. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Genet 2020; 52:146-159. [PMID: 32060489 PMCID: PMC7043212 DOI: 10.1038/s41588-019-0575-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
In many repeat diseases, such as Huntington's disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound, naphthyridine-azaquinolone (NA), that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as en masse contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independently of DNA replication, require transcription across the coding CTG strand and arise by blocking repair of CAG slip-outs. NA-induced contractions depend on active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat-structure-specific DNA ligands are a novel avenue to contract expanded repeats.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gagan B Panigrahi
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Stella Lanni
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Terence Gall-Duncan
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hideki Hayakawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hana Tanaka
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jennifer Luo
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Takahiro Otabe
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Jinxing Li
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Akihiro Sakata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Marie-Christine Caron
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Niraj Joshi
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Tanya Prasolava
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Karen Chiang
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Quebec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec, Quebec, Canada
| | - Marc S Wold
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott Davidson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Mehdi Layeghifard
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Lisa-Monique Edward
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Richard Gallon
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam Shlien
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Christopher E Pearson
- Program of Genetics & Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada.
- Program of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Tomé S, Gourdon G. DM1 Phenotype Variability and Triplet Repeat Instability: Challenges in the Development of New Therapies. Int J Mol Sci 2020; 21:ijms21020457. [PMID: 31936870 PMCID: PMC7014087 DOI: 10.3390/ijms21020457] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease caused by an unstable cytosine thymine guanine (CTG) repeat expansion in the DMPK gene. This disease is characterized by high clinical and genetic variability, leading to some difficulties in the diagnosis and prognosis of DM1. Better understanding the origin of this variability is important for developing new challenging therapies and, in particular, for progressing on the path of personalized treatments. Here, we reviewed CTG triplet repeat instability and its modifiers as an important source of phenotypic variability in patients with DM1.
Collapse
|
41
|
Williams GM, Petrides AK, Balakrishnan L, Surtees JA. Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. Methods Mol Biol 2020; 2056:25-68. [PMID: 31586340 DOI: 10.1007/978-1-4939-9784-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trinucleotide repeat (TNR) tracts are inherently unstable during DNA replication, leading to repeat expansions and/or contractions. Expanded tracts are the cause of over 40 neurodegenerative and neuromuscular diseases. In this chapter, we focus on the (CAG)n and (CTG)n repeat sequences that, when expanded, lead to Huntington's disease (HD) and myotonic dystrophy type 1 (DM1), respectively, as well as a number of other neurodegenerative diseases. TNR tracts in most individuals are relatively small and stable in terms of length. However, TNR tracts become increasingly prone to expansion as tract length increases, eventually leading to very long tracts that disrupt coding (e.g. HD) or noncoding (e.g., DM1) regions of the genome. It is important to understand the early stages in TNR expansions, that is, the transition from small, stable lengths to susceptible threshold lengths. We describe PCR-based in vivo assays, using the model system Saccharomyces cerevisiae, to determine and characterize the dynamic behavior of TNR tracts in the stable and threshold ranges. We also describe a simple in vitro system to assess tract dynamics during 5' single-stranded DNA (ssDNA) flap processing and to assess the role of different DNA metabolism proteins in these dynamics. These assays can ultimately be used to determine factors that influence the early stages of TNR tract expansion.
Collapse
Affiliation(s)
- Gregory M Williams
- Centre for Chromosome Biology, National University of Ireland, Galway, Galway, Ireland
- Galway Neuroscience Centre, National Universityof Ireland, Galway, Galway, Ireland
| | | | - Lata Balakrishnan
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jennifer A Surtees
- Department of Biochemistry, JacobsSchool of Medicine and BiomedicalSciences, State University of New York atBuffalo, Buffalo, NY, USA.
- Genetics, Genomics and Bioinformatics Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
42
|
Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R. DNA Damage Repair in Huntington's Disease and Other Neurodegenerative Diseases. Neurotherapeutics 2019; 16:948-956. [PMID: 31364066 PMCID: PMC6985310 DOI: 10.1007/s13311-019-00768-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent genome-wide association studies of Huntington's disease (HD) primarily highlighted genes involved in DNA damage repair mechanisms as modifiers of age at onset and disease severity, consistent with evidence that more DNA repair genes are being implicated in late age-onset neurodegenerative diseases. This provides an exciting opportunity to advance therapeutic development in HD, as these pathways have already been under intense investigation in cancer research. Also emerging are the roles of other polyglutamine disease proteins in DNA damage repair mechanisms. A potential universal trigger of oxidative DNA damage shared in these late age-onset diseases is the increase of reactive oxygen species (ROS) in human aging, defining an age-related mechanism that has defied other hypotheses of neurodegeneration. We discuss the potential commonality of DNA damage repair pathways in HD and other neurodegenerative diseases. Potential targets for therapy that may prove beneficial across many of these diseases are also identified, defining nodes in the ataxia telangiectasia-mutated (ATM) complex, mismatch repair, and poly ADP-ribose polymerases (PARPs).
Collapse
Affiliation(s)
- T Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C E Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C L K Hung
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - K J Graham
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - C A Barba Bazan
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada
| | - R Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, HSC 4N54, 1200 Main Street West, Hamilton, Ontario, L8N3Z5, Canada.
| |
Collapse
|
43
|
Cumming SA, Jimenez-Moreno C, Okkersen K, Wenninger S, Daidj F, Hogarth F, Littleford R, Gorman G, Bassez G, Schoser B, Lochmüller H, van Engelen BGM, Monckton DG. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology 2019; 93:e995-e1009. [PMID: 31395669 PMCID: PMC6745735 DOI: 10.1212/wnl.0000000000008056] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 04/10/2019] [Indexed: 01/11/2023] Open
Abstract
Objective To evaluate the role of genetic variation at the DMPK locus on symptomatic diversity in 250 adult, ambulant patients with myotonic dystrophy type 1 (DM1) recruited to the Observational Prolonged Trial in Myotonic Dystrophy Type 1 to Improve Quality of Life—Standards, a Target Identification Collaboration (OPTIMISTIC) clinical trial. Methods We used small pool PCR to correct age at sampling biases and estimate the progenitor allele CTG repeat length and somatic mutational dynamics, and AciI digests and repeat primed PCR to test for the presence of variant repeats. Results We confirmed disease severity is driven by progenitor allele length, is further modified by age, and, in some cases, sex, and that patients in whom the CTG repeat expands more rapidly in the soma develop symptoms earlier than predicted. We revealed a key role for variant repeats in reducing disease severity and quantified their role in delaying age at onset by approximately 13.2 years (95% confidence interval 5.7–20.7, 2-tailed t test t = −3.7, p = 0.0019). Conclusions Careful characterization of the DMPK CTG repeat to define progenitor allele length and presence of variant repeats has increased utility in understanding clinical variability in a trial cohort and provides a genetic route for defining disease-specific outcome measures, and the basis of treatment response and stratification in DM1 trials.
Collapse
Affiliation(s)
- Sarah A Cumming
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Cecilia Jimenez-Moreno
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Kees Okkersen
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Stephan Wenninger
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Ferroudja Daidj
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Fiona Hogarth
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Roberta Littleford
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Gráinne Gorman
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Guillaume Bassez
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Benedikt Schoser
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Hanns Lochmüller
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Baziel G M van Engelen
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK
| | - Darren G Monckton
- From the Institute of Molecular, Cell and Systems Biology (S.A.C., D.G.M.), University of Glasgow; Institute of Genetic Medicine (C.J.-M., H.L.) and Institute of Neurosciences (G.G.), Newcastle University, Newcastle upon Tyne, UK; Department of Neurology (K.O., B.G.M.v.E.), Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (S.W., B.S.), Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany; Neuromuscular Reference Centre (F.D., G.B.), Assistance Publique-Hôpitaux de Paris, France; and Tayside Clinical Trials Unit (F.H., R.L.), The University of Dundee, UK.
| | | |
Collapse
|
44
|
Lee JM, Correia K, Loupe J, Kim KH, Barker D, Hong EP, Chao MJ, Long JD, Lucente D, Vonsattel JPG, Pinto RM, Abu Elneel K, Ramos EM, Mysore JS, Gillis T, Wheeler VC, MacDonald ME, Gusella JF, McAllister B, Massey T, Medway C, Stone TC, Hall L, Jones L, Holmans P, Kwak S, Ehrhardt AG, Sampaio C, Ciosi M, Maxwell A, Chatzi A, Monckton DG, Orth M, Landwehrmeyer GB, Paulsen JS, Dorsey ER, Shoulson I, Myers RH. CAG Repeat Not Polyglutamine Length Determines Timing of Huntington's Disease Onset. Cell 2019; 178:887-900.e14. [PMID: 31398342 PMCID: PMC6700281 DOI: 10.1016/j.cell.2019.06.036] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/08/2019] [Accepted: 06/27/2019] [Indexed: 01/27/2023]
Abstract
Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin's polyglutamine segment, dictates the rate at which Huntington's disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the "polyglutamine disorders."
Collapse
|
45
|
Flower M, Lomeikaite V, Ciosi M, Cumming S, Morales F, Lo K, Hensman Moss D, Jones L, Holmans P, Monckton DG, Tabrizi SJ. MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1. Brain 2019; 142:awz115. [PMID: 31216018 PMCID: PMC6598626 DOI: 10.1093/brain/awz115] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/31/2019] [Accepted: 02/27/2019] [Indexed: 12/22/2022] Open
Abstract
The mismatch repair gene MSH3 has been implicated as a genetic modifier of the CAG·CTG repeat expansion disorders Huntington's disease and myotonic dystrophy type 1. A recent Huntington's disease genome-wide association study found rs557874766, an imputed single nucleotide polymorphism located within a polymorphic 9 bp tandem repeat in MSH3/DHFR, as the variant most significantly associated with progression in Huntington's disease. Using Illumina sequencing in Huntington's disease and myotonic dystrophy type 1 subjects, we show that rs557874766 is an alignment artefact, the minor allele for which corresponds to a three-repeat allele in MSH3 exon 1 that is associated with a reduced rate of somatic CAG·CTG expansion (P = 0.004) and delayed disease onset (P = 0.003) in both Huntington's disease and myotonic dystrophy type 1, and slower progression (P = 3.86 × 10-7) in Huntington's disease. RNA-Seq of whole blood in the Huntington's disease subjects found that repeat variants are associated with MSH3 and DHFR expression. A transcriptome-wide association study in the Huntington's disease cohort found increased MSH3 and DHFR expression are associated with disease progression. These results suggest that variation in the MSH3 exon 1 repeat region influences somatic expansion and disease phenotype in Huntington's disease and myotonic dystrophy type 1, and suggests a common DNA repair mechanism operates in both repeat expansion diseases.
Collapse
Affiliation(s)
- Michael Flower
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Vilija Lomeikaite
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Sarah Cumming
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Fernando Morales
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Kitty Lo
- School of Mathematics and Statistics, University of Sydney, Australia
| | - Davina Hensman Moss
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| |
Collapse
|
46
|
Analysis of mutational dynamics at the DMPK (CTG)n locus identifies saliva as a suitable DNA sample source for genetic analysis in myotonic dystrophy type 1. PLoS One 2019; 14:e0216407. [PMID: 31048891 PMCID: PMC6497304 DOI: 10.1371/journal.pone.0216407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/21/2019] [Indexed: 12/12/2022] Open
Abstract
Genotype-to-phenotype correlation studies in myotonic dystrophy type 1 (DM1) have been confounded by the age-dependent, tissue-specific and expansion-biased features of somatic mosaicism of the expanded CTG repeat. Previously, we showed that by controlling for the confounding effects of somatic instability to estimate the progenitor allele CTG length in blood DNA, age at onset correlations could be significantly improved. To determine the suitability of saliva DNA as a source for genotyping, we used small pool-PCR to perform a detailed quantitative study of the somatic mutational dynamics of the CTG repeat in saliva and blood DNA from 40 DM1 patients. Notably, the modal allele length in saliva was only moderately higher in saliva and not as large as previously observed in most other tissues. The lower boundary of the allele distribution was also slightly higher in saliva than it was in blood DNA. However, the progenitor allele length estimated in blood explained more of the variation in age at onset than that estimated from saliva. Interestingly, although the modal allele length was slightly higher in saliva, the overall degree of somatic variation was typically lower than in blood DNA, revealing new insights into the tissue-specific dynamics of somatic mosaicism. These data indicate that saliva constitutes an accessible, non-invasive and suitable DNA sample source for performing genetic studies in DM1.
Collapse
|
47
|
Repeat Instability in the Fragile X-Related Disorders: Lessons from a Mouse Model. Brain Sci 2019; 9:brainsci9030052. [PMID: 30832215 PMCID: PMC6468611 DOI: 10.3390/brainsci9030052] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022] Open
Abstract
The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.
Collapse
|
48
|
Abu Diab M, Eiges R. The Contribution of Pluripotent Stem Cell (PSC)-Based Models to the Study of Fragile X Syndrome (FXS). Brain Sci 2019; 9:brainsci9020042. [PMID: 30769941 PMCID: PMC6406836 DOI: 10.3390/brainsci9020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from a deficiency in the fragile X mental retardation protein (FMRP) due to a CGG repeat expansion in the 5′-UTR of the X-linked FMR1 gene. When CGGs expand beyond 200 copies, they lead to epigenetic gene silencing of the gene. In addition, the greater the allele size, the more likely it will become unstable and exhibit mosaicism for expansion size between and within tissues in affected individuals. The timing and mechanisms of FMR1 epigenetic gene silencing and repeat instability are far from being understood given the lack of appropriate cellular and animal models that can fully recapitulate the molecular features characteristic of the disease pathogenesis in humans. This review summarizes the data collected to date from mutant human embryonic stem cells, induced pluripotent stem cells, and hybrid fusions, and discusses their contribution to the investigation of FXS, their key limitations, and future prospects.
Collapse
Affiliation(s)
- Manar Abu Diab
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel.
- School of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 91031, Israel.
- School of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
49
|
Pešović J, Perić S, Brkušanin M, Brajušković G, Rakočević-Stojanović V, Savić-Pavićević D. Repeat Interruptions Modify Age at Onset in Myotonic Dystrophy Type 1 by Stabilizing DMPK Expansions in Somatic Cells. Front Genet 2018; 9:601. [PMID: 30546383 PMCID: PMC6278776 DOI: 10.3389/fgene.2018.00601] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
CTG expansions in DMPK gene, causing myotonic dystrophy type 1 (DM1), are characterized by pronounced somatic instability. A large proportion of variability of somatic instability is explained by expansion size and patient's age at sampling, while individual-specific differences are attributed to additional factors. The age at onset is extremely variable in DM1, and inversely correlates with the expansion size and individual-specific differences in somatic instability. Three to five percent of DM1 patients carry repeat interruptions and some appear with later age at onset than expected for corresponding expansion size. Herein, we characterized somatic instability of interrupted DMPK expansions and the effect on age at onset in our previously described patients. Repeat-primed PCR showed stable structures of different types and patterns of repeat interruptions in blood cells over time and buccal cells. Single-molecule small-pool PCR quantification of somatic instability and mathematical modeling showed that interrupted expansions were characterized by lower level of somatic instability accompanied by slower progression over time. Mathematical modeling demonstrated that individual-specific differences in somatic instability had greater influence on age at onset in patients with interrupted expansions. Therefore, repeat interruptions have clinical importance for disease course in DM1 patients due to stabilizing effect on DMPK expansions in somatic cells.
Collapse
Affiliation(s)
- Jovan Pešović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Stojan Perić
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Miloš Brkušanin
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vidosava Rakočević-Stojanović
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
50
|
Cumming SA, Hamilton MJ, Robb Y, Gregory H, McWilliam C, Cooper A, Adam B, McGhie J, Hamilton G, Herzyk P, Tschannen MR, Worthey E, Petty R, Ballantyne B, Warner J, Farrugia ME, Longman C, Monckton DG. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet 2018; 26:1635-1647. [PMID: 29967337 PMCID: PMC6189127 DOI: 10.1038/s41431-018-0156-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3'-untranslated region of the DMPK gene. The repeat expansion is somatically unstable and tends to increase in length with time, contributing to disease progression. In some individuals, the repeat array is interrupted by variant repeats such as CCG and CGG, stabilising the expansion and often leading to milder symptoms. We have characterised three families, each including one person with variant repeats that had arisen de novo on paternal transmission of the repeat expansion. Two individuals were identified for screening due to an unusual result in the laboratory diagnostic test, and the third due to exceptionally mild symptoms. The presence of variant repeats in all three expanded alleles was confirmed by restriction digestion of small pool PCR products, and allele structures were determined by PacBio sequencing. Each was different, but all contained CCG repeats close to the 3'-end of the repeat expansion. All other family members had inherited pure CTG repeats. The variant repeat-containing alleles were more stable in the blood than pure alleles of similar length, which may in part account for the mild symptoms observed in all three individuals. This emphasises the importance of somatic instability as a disease mechanism in DM1. Further, since patients with variant repeats may have unusually mild symptoms, identification of these individuals has important implications for genetic counselling and for patient stratification in DM1 clinical trials.
Collapse
Affiliation(s)
- Sarah A Cumming
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mark J Hamilton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK.
| | - Yvonne Robb
- Clinical Genetics Service, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Helen Gregory
- Department of Clinical Genetics, Aberdeen Royal Hospital, Aberdeen, AB25 2ZA, UK
| | | | - Anneli Cooper
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Berit Adam
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Josephine McGhie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Graham Hamilton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Pawel Herzyk
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Michael R Tschannen
- Human and Molecular Genetics Center, Medical College Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Elizabeth Worthey
- Human and Molecular Genetics Center, Medical College Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Hudson Alpha Institute for Biotechnology, 601 Genome Way, NW, Huntsville, AL, 35806, USA
| | - Richard Petty
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Bob Ballantyne
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Jon Warner
- Molecular Genetics Service, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Maria Elena Farrugia
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Cheryl Longman
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|