1
|
Wu JF, Liu Y, Gong SN, Zi XD, Tan YG. Effects of vascular endothelial growth factor (VEGF) on the viability, apoptosis and steroidogenesis of yak (Bos grunniens) granulosa cells. Theriogenology 2023; 207:1-10. [PMID: 37245256 DOI: 10.1016/j.theriogenology.2023.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Vascular endothelial growth factor (VEGF) is crucial for follicle development through the regulation of granulosa cell (GC) function in some mammals, but its mechanism is unclear in yak (Bos grunniens). Therefore, the objectives of this study were to investigate the effects of VEGF on the viability, apoptosis and steroidogenesis of yak GCs. First, we investigated the localization of VEGF and its receptor (VEGFR2) in yak ovaries by immunohistochemistry analysis and evaluated the effect of culture medium containing different VEGF concentrations and culture times on the viability of yak GCs by Cell Counting Kit-8. Then, optimal treatment with 20 ng/mL VEGF for 24 h was selected to analyze the effects of this compound on intracellular reactive oxygen species levels by DCFH-DA kit, cell cycle and apoptosis by flow cytometry, steroidogenesis by ELISA kit and the expression of the related genes by RT‒qPCR. The results showed that VEGF and VEGFR2 were highly coexpressed in GCs and theca cells. GCs cultured in medium containing 20 ng/mL VEGF for 24 h significantly improved cell viability, decreased ROS production, promoted the transition from G1 phase to S phase (P < 0.05), increased the expression of the CCND1 (P < 0.05), CCNE1, CDK2, CDK4, and PCNA genes (P < 0.01) and decreased the expression of the P53 gene (P < 0.05). This treatment significantly reduced GC apoptosis (P < 0.05) by promoting the expression of BCL2 and GDF9 (P < 0.01) and inhibiting the expression of BAX and CASPASE3 (P < 0.05). VEGF promoted progesterone secretion (P < 0.05) accompanied by increased expression of HSD3B, StAR and CYP11A1 (P < 0.05). Taken together, our findings highlight the beneficial influence exerted by VEGF in improving GC viability and reducing ROS production and the apoptosis rate through the modulation of related gene expression.
Collapse
Affiliation(s)
- Jian-Fei Wu
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, PR China; Zigong Psychiatric Research Center, Zigong, 643020, PR China
| | - Yu Liu
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, PR China
| | - San-Ni Gong
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, PR China
| | - Xiang-Dong Zi
- The Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu, 610041, PR China.
| | - You-Guo Tan
- Zigong Psychiatric Research Center, Zigong, 643020, PR China
| |
Collapse
|
2
|
Arjoune A, Sirard MA. The genomic response of human granulosa cells (KGN) to melatonin and specific agonists/antagonists to the melatonin receptors. Sci Rep 2022; 12:17539. [PMID: 36266374 PMCID: PMC9584952 DOI: 10.1038/s41598-022-21162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Melatonin is a known modulator of follicle development; it acts through several molecular cascades via binding to its two specific receptors MT1 and MT2. Even though it is believed that melatonin can modulate granulosa cell (GC) functions, there is still limited knowledge of how it can act in human GC through MT1 and MT2 and which one is more implicated in the effects of melatonin on the metabolic processes in the dominant follicle. To better characterize the roles of these receptors on the effects of melatonin on follicular development, human granulosa-like tumor cells (KGN) were treated with specific melatonin receptor agonists and antagonists, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05) for each treatment, lists of the principal differentially expressed genes (DEGs) are generated. Analysis of major upstream regulators suggested that the MT1 receptor may be involved in the melatonin antiproliferative effect by reprogramming the metabolism of human GC by activating the PKB signaling pathway. Our data suggest that melatonin may act complementary through both MT1 and MT2 receptors to modulate human GC steroidogenesis, proliferation, and differentiation. However, MT2 receptors may be the ones implicated in transducing the effects of melatonin on the prevention of GC luteinization and follicle atresia at the antral follicular stage through stimulating the PKA pathway.
Collapse
Affiliation(s)
- Asma Arjoune
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada ,grid.419508.10000 0001 2295 3249Department of Animal Production, National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, 1082 Mahrajène, Tunisia
| | - Marc-André Sirard
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada
| |
Collapse
|
3
|
Delta-9-tetrahydrocannabinol increases vascular endothelial growth factor (VEGF) secretion through a cyclooxygenase-dependent mechanism in rat granulosa cells. Reprod Toxicol 2022; 111:59-67. [PMID: 35588954 DOI: 10.1016/j.reprotox.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24hours. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.
Collapse
|
4
|
A review on inflammation and angiogenesis as key mechanisms involved in the pathogenesis of bovine cystic ovarian disease. Theriogenology 2022; 186:70-85. [DOI: 10.1016/j.theriogenology.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
5
|
In vitro maturation on a soft agarose matrix enhances the developmental ability of pig oocytes derived from small antral follicles. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Melatonin Signaling Pathways Implicated in Metabolic Processes in Human Granulosa Cells (KGN). Int J Mol Sci 2022; 23:ijms23062988. [PMID: 35328408 PMCID: PMC8950389 DOI: 10.3390/ijms23062988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Female reproduction depends on the metabolic status, especially during the period of folliculogenesis. Even though it is believed that melatonin can improve oocyte competence, there is still limited knowledge of how it can modulate metabolic processes during folliculogenesis and which signaling pathways are involved in regulating gene expression. To investigate the effects of melatonin on metabolic signals during the antral stage of follicular development, human granulosa-like tumor cells (KGN) were treated with melatonin or forskolin, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05), 1009 and 922 genes were identified as differentially expressed in response to melatonin and forskolin, respectively. Analysis of major upstream regulators suggested that melatonin may activate PKB/mTOR signaling pathways to program the metabolism of KGN cells to support slower growth and differentiation and to prevent follicular atresia. Similarly, PKA activation through stimulation of cAMP synthesis with FSK seemed to exert the same effects as melatonin in reducing follicular growth and regulating differentiation. This study suggests that melatonin may act through PKA and PKB simultaneously in human granulosa cells to prevent follicular atresia and early luteinization at the antral stage.
Collapse
|
7
|
Santos LC, Dos Anjos Cordeiro JM, Santana LDS, Barbosa EM, Santos BR, da Silva TQM, de Souza SS, Corrêa JMX, Lavor MSL, da Silva EB, Silva JF. Expression profile of the Kisspeptin/Kiss1r system and angiogenic and immunological mediators in the ovary of cyclic and pregnant cats. Domest Anim Endocrinol 2022; 78:106650. [PMID: 34399365 DOI: 10.1016/j.domaniend.2021.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/03/2022]
Abstract
The Kisspeptin/Kiss1r system has been studied in mammalian ovaries. However, there are still no studies on the modulation of this system and its relationship with angiogenic and immunological mediators in the ovary of domestic cats, especially during pregnancy. We evaluated the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators during folliculogenesis, luteogenesis and luteal regression of cyclic and pregnant cats. The ovary exhibited moderate to intense expression for Kiss1, VEGF, Flk-1, INFγ and MIF in oocytes and the follicular wall, while Kiss1r expression was low in granulosa cells. In these cells, there was also a greater expression of Kiss1, INFγ and MIF, mainly in secondary follicles, while tertiary and preovulatory follicles exhibited greater expression of VEGF and Flk-1 in this layer. In luteogenesis, Kiss1 immunostaining was higher in mature corpora lutea (MCL) of pregnant cats compared to vacuolated CL (VCL) and corpus albicans (CA). Pregnancy also increased the luteal gene expression of Kiss1 as well as Kiss1, Kiss1r, Flk-1, and MIF immunostaining in MCL, while reduced the area of VEGF expression in VCL and luteal mRNA expression of Mif when compared to non-pregnant animals. In addition, positive gene correlation between Kiss1r and Mif was observed in the CL. Kiss1, Kiss1r, Vegf and Mif expression were lower in the CA of cats in anestrus. These findings reveal that the expression of Kisspeptin/Kiss1r and angiogenic and immunological mediators, in the ovary of domestic cats, depend on the follicular and luteal stage, and the luteal expression of these mediators is influenced by pregnancy.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | | | - Larissa da Silva Santana
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Erikles Macêdo Barbosa
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Bianca Reis Santos
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Thayná Queiroz Menezes da Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Mário Sergio Lima Lavor
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Elisângela Barboza da Silva
- Department of Agricultural Sciences, Hospital Veterinario, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, Centro de Microscopia Eletronica, Universidade Estadual de Santa Cruz, 45662-900, Ilheus, Brazil.
| |
Collapse
|
8
|
Mauro A, Berardinelli P, Russo V, Bernabò N, Martelli A, Nardinocchi D, Di Giacinto O, Turriani M, Barboni B. Effects of P 4 Antagonist RU486 on VEGF and Its Receptors' Signaling during the In Vivo Transition from the Preovulatory to Periovulatory Phase of Ovarian Follicles. Int J Mol Sci 2021; 22:13520. [PMID: 34948315 PMCID: PMC8706603 DOI: 10.3390/ijms222413520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by the switch on of Progesterone (P4) during the periovulatory phase remains to be clarified. The present research aimed to investigate in vivo VEGF-mediated mechanisms by inducing the development of periovulatory follicles using a pharmacologically validated synchronization treatment carried out in presence or absence of P4 receptor antagonist RU486. Spatio-temporal expression profiles of VEGF, FLT1, and FLK1 receptors and the two major MAPK/ERKs and PI3K/AKT downstream pathways were analyzed on granulosa and on theca compartment. For the first time, the results demonstrated that in vivo administration of P4 antagonist RU486 inhibits follicular VEGF receptors' signaling mainly acting on the theca layer by downregulating the activation of ERKs and AKTs. Under the effect of RU486, periovulatory follicles' microarchitecture did not move towards the periovulatory stage. The present evidence provides new insights on P4 in vivo biological effects in driving vascular and tissue remodeling during the periovulatory phase.
Collapse
Affiliation(s)
- Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, A. Buzzati-Traverso Campus, Via E. Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Alessandra Martelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Delia Nardinocchi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Oriana Di Giacinto
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (P.B.); (V.R.); (N.B.); (A.M.); (D.N.); (O.D.G.); (M.T.); (B.B.)
| |
Collapse
|
9
|
Gao X, Zhang J, Pan Z, Li Q, Liu H. The distribution and expression of vascular endothelial growth factor A (VEGFA) during follicular development and atresia in the pig. Reprod Fertil Dev 2021; 32:259-266. [PMID: 31545934 DOI: 10.1071/rd18508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/19/2019] [Indexed: 11/23/2022] Open
Abstract
The involvement of vascular endothelial growth factor A (VEGFA) in ovarian physiological processes has been widely reported, but the location and role of VEGFA during follicular atresia remain unknown. This study investigated the distribution and expression of VEGFA during porcine follicular development and atresia. Pig ovaries were obtained, individual medium-sized (3-5mm in diameter) antral follicles were separated and classified into healthy, early atretic or progressively atretic groups. Immunobiology and quantitative techniques were used to investigate the varied follicular distribution of VEGFA at both the morphological and molecular level. The results indicated that VEGFA protein expression peaked in tertiary follicles, mostly distributed in the thecal and inner granulosa layers, during follicular development while VEGFA mRNA was mainly expressed in the inner granulosa layers. Additionally, healthy antral follicles showed a significantly higher expression of VEGFA than atretic follicles in both theca and granulosa cells. Knockdown of VEGFA using siRNA revealed an antiapoptosis effect of VEGFA in cultured pig granulosa cells. Our results increase the knowledge of VEGFA functions in follicles.
Collapse
Affiliation(s)
- Xiaomeng Gao
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, P. R. China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, P. R. China; and Corresponding authors. Emails: ;
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, P. R. China; and National Experimental Teaching Demonstration Center of Animal Science, Nanjing 210095, P. R. China; and Corresponding authors. Emails: ;
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, P. R. China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210095, P. R. China
| |
Collapse
|
10
|
Liu Q, Jiang J, Shi Y, Mo Z, Li M. Apelin/Apelin receptor: A new therapeutic target in Polycystic Ovary Syndrome. Life Sci 2020; 260:118310. [PMID: 32835696 DOI: 10.1016/j.lfs.2020.118310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy, and it accounts for 75% of non-ovulatory infertile in women of childbearing age. It is clear that obesity, insulin resistance, dyslipidaemia coexist in PCOS. Apelin, as an endogenous ligand of the previously orphan receptor, is an adipokine that secreted by adipose tissue. Apelin and apelin receptors are expressed in many tissues and organ to regulate their physiological functions. Studies have shown that Apelin/apelin-receptor also expressed in ovary such as follicles, granulosa cells. Furthermore, Apelin/apelin-receptor play roles in vascular establishment and hormone metabolism in ovary. These indicate that the Apelin/apelin-receptor play an important role in the development of follicle. Apelin/apelin-receptor are increased in ovary of PCOS, which are associated with abnormal ovarian hormones and function. These are important causes of menstrual cycle disorders and anovulation. Moreover, apelin now appears clearly as a new player in energy metabolism. Apelin can regulate glucose and lipid metabolism but also modulate insulin secretion. And plasma apelin concentrations are elevated in obesity and type 2 diabetes patients. Interestedly, obesity and type 2 diabetes are also companied with polycystic ovary syndrome patients. We speculate apelin/apelin-receptor may play a vital role in pathogenesis of polycystic ovary syndrome, but the underlying mechanisms remain under exploration. Here, we review apelin/apelin-receptor, as a new therapeutic target, have effects on ovarian function and energy metabolism in polycystic ovary syndrome.
Collapse
Affiliation(s)
- Qi Liu
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Jin Jiang
- Guangzhou Blood Center, Guangzhou 510095, Guangdong, China
| | - Yulan Shi
- Department of Pediatrics in The Second Affiliated Hospital of Shaoyang University, Shanoyang 422000, Hunan, China
| | - Zhongcheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
11
|
Expression profiling of primary cultured buffalo granulosa cells from different follicular size in comparison with their in vivo counterpart. ZYGOTE 2020; 28:233-240. [PMID: 32151301 DOI: 10.1017/s0967199420000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aimed to: (i) characterize cultured granulosa cells (GCs) from different follicle sizes morphologically and molecularly; and (ii) select a suitable model according to follicular size that maintained GC function during culture. Buffalo ovaries were collected from a slaughterhouse and follicles were classified morphologically into: first group ≤ 4 mm, second group 5-8 mm, third group 9-15 mm and fourth group 16-20 mm diameter. GC pellets were divided into two portions. The first portion served as the control fresh pellet, and the secondwas used for 1 week for GC culture. Total RNA was isolated, and qRT-PCR was performed to test for follicle-stimulating hormone receptor (FSHR), cytochrome P450 19 (CYP19), luteinizing hormone/choriogonadotropin receptor (LHCGR), proliferating cell nuclear antigen (PCNA), apoptosis-related cysteine peptidase (CASP3), anti-Müllerian hormone (AMH), and phospholipase A2 group III (PLA2G3) mRNAs. Estradiol (E2) and progesterone (P4) levels in the culture supernatant and in follicular fluids were measured using enzyme-linked immunosorbent assay (ELISA). Basic DMEM-F12 medium maintained the morphological appearance of cultured GCs. The relative abundance of FSHR, CYP19, and LHCGR mRNAs was 0.001 ≤ P ≤ 0.01 and decreased at the end of culture compared with the fresh pellet. There was a fine balance between expression patterns of the proliferation marker gene (PCNA) and the proapoptotic marker gene (CASP3). AMH mRNA was significantly increased (P < 0.001) in cultured GCs from small follicles, while cultured GCs from other three categories (5-8 mm, 9-15 mm and 16-20 mm) showed a clear reduction (P < 0.001). Interestingly, the relative abundance of PLA2G3 mRNA was significantly (P < 0.001) increased in all cultured GCs. E2 and P4 concentrations were significantly (P < 0.001) decreased in all cultured groups. Primary cultured GCs from small follicles could be a good model for better understanding follicular development in Egyptian buffaloes.
Collapse
|
12
|
Morrell BC, Zhang L, Schütz LF, Perego MC, Maylem ERS, Spicer LJ. Regulation of the transcription factor E2F8 gene expression in bovine ovarian cells. Mol Cell Endocrinol 2019; 498:110572. [PMID: 31493442 DOI: 10.1016/j.mce.2019.110572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Abstract
Overexpression of the transcription factor, E2F8, has been associated with ovarian cancer. Objectives of this study were to determine: 1) if E2F8 gene expression in granulosa cells (GC) and theca cells (TC) change with follicular development, and 2) if E2F8 mRNA abundance in TC and GC is hormonally regulated. Using real-time PCR, E2F8 mRNA abundance in GC and TC was greater (P < 0.05) in small than large follicles. FGF9 induced an increase (P < 0.05) in E2F8 mRNA abundance by 1.6- to 7-fold in large-follicle (8-20 mm) TC and GC as well as in small-follicle (1-5 mm) GC. Abundance of E2F8 mRNA in TC was increased (P < 0.05) with FGF2, FGF9 or VEGFA treatments alone in vitro, and concomitant treatment of VEGFA with FGF9 increased (P < 0.05) abundance of E2F8 mRNA above any of the singular treatments; BMP4, WNT3A and LH were without effect. IGF1 amplified the stimulatory effect of FGF9 on E2F8 mRNA abundance by 2.7-fold. Collectively, our studies show for the first time that follicular E2F8 is developmentally and hormonally regulated indicating that E2F8 may be involved in follicular development.
Collapse
Affiliation(s)
- Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Lingna Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - M Chiara Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
13
|
Contribution of the VEGF system to the follicular persistence associated with bovine cystic ovaries. Theriogenology 2019; 138:52-65. [DOI: 10.1016/j.theriogenology.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 01/09/2023]
|
14
|
Kakuta H, Iguchi T, Sato T. The Involvement of Granulosa Cells in the Regulation by Gonadotropins of Cyp17a1 in Theca Cells. In Vivo 2019; 32:1387-1401. [PMID: 30348693 DOI: 10.21873/invivo.11391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Theca cells produce androgen by 17α-hydroxylase-17,20-lyase encoded by Cyp17a1, and conversion of androgen to estrogen in granulosa cells is regulated by gonadotropins. Women with polycystic ovarian syndrome (PCOS) exhibit elevated levels of androgens due to high Cyp17a1 expression and alterations in gene expression in granulosa cells. The aim of this study was to examine the interaction between theca and granulosa cells in PCOS-model mice. MATERIALS AND METHODS To produce PCOS-model mice, neonatal mice were injected with 1 μg TP for 3 days from the day of birth. Gonadotropins were injected according to the superovulation protocol to 3-month-old control mice and PCOS-model mice. Histological changes and expression of genes involved in steroidogenesis, ovulation and luteinization were investigated by immunohistochemistry and real-time RT-PCR, respectively. RESULTS Pregnant mare serum gonadotropin (PMSG) induced the expression of genes involved in steroidogenesis in control prepubertal mice, whereas human chorionic gonadotropin (hCG) reduced Cyp17a1 expression and induced phospho-ERK1/2 in granulosa cells. Cyp17a1 was reduced in PMSG-primed PCOS-model mice regardless of hCG injection, and PMSG induced phosphorylation of ERK1/2 in granulosa cells. CONCLUSION Phospho-ERK1/2 in granulosa cells can be correlated with reduced Cyp17a1 expression in theca cells, and the interaction between granulosa and theca cells may be impaired in PCOS-model mice.
Collapse
Affiliation(s)
- Hanako Kakuta
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
15
|
Zayed Y, Qi X, Peng C. Identification of Novel MicroRNAs and Characterization of MicroRNA Expression Profiles in Zebrafish Ovarian Follicular Cells. Front Endocrinol (Lausanne) 2019; 10:518. [PMID: 31417497 PMCID: PMC6684945 DOI: 10.3389/fendo.2019.00518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional levels and thereby play important roles in regulating many physiological and developmental processes. Oocyte maturation in fish is induced by hormones produced from the hypothalamus, pituitary, and ovary. Gonadotropin-releasing hormone (GnRH) stimulates the secretion of luteinizing hormone (LH), which in turn, induces the secretion of maturation-inducing hormone (MIH) from the ovary. It is documented that small early vitellogenic (or stage IIIa) follicles are unable to undergo oocyte maturation whereas oocytes in mid- to late vitellogenic (stage IIIb) follicles can be induced by LH and MIH to become mature. To determine whether miRNAs may be involved in the growth and acquisition of maturational competency of ovarian follicles, we determined the miRNA expression profiles in follicular cells collected from stage IIIa and IIIb follicles using next-generation sequencing. It was found that miRNAs are abundantly expressed in the follicular cells from both stages IIIa and IIIb follicles. Furthermore, bioinformatics analysis revealed the presence of 214 known, 31 conserved novel and 44 novel miRNAs in zebrafish vitellogenic ovarian follicular cells. Most mature miRNAs in follicular cells were found to be in the length of 22 nucleotides. Differential expression analysis revealed that 11 miRNAs were significantly up-regulated, and 13 miRNAs were significantly down-regulated in the stage IIIb follicular cells as compared with stage IIIa follicular cells. The expression of four of the significantly regulated miRNAs, dre-miR-22a-3p, dre-miR-16a, dre-miR-181a-3p, and dre-miR-29a, was validated by real-time PCR. Finally, gene enrichment and pathway analyses of the predicted targets of the significantly regulated miRNAs supported the involvement of several key signaling pathways in regulating ovarian function, including oocyte maturation. Taken together, this study identifies novel zebrafish miRNAs and characterizes miRNA expression profiles in somatic cells within the zebrafish ovarian follicles. The differential expression of miRNAs between stage IIIa and IIIb follicular cells suggests that these miRNAs are important regulators of zebrafish ovarian follicle development and/or oocyte maturation.
Collapse
Affiliation(s)
- Yara Zayed
- Department of Biology, York University, Toronto, ON, Canada
| | - Xin Qi
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|
16
|
Follicular fluid vascular endothelial growth factor is associated with type of infertility and interferon alpha correlates with endometrial thickness in natural cycle in vitro fertilization. Reprod Biol 2018; 18:289-294. [PMID: 29945770 DOI: 10.1016/j.repbio.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/28/2018] [Accepted: 06/16/2018] [Indexed: 11/24/2022]
Abstract
The aim of this study was to analyse the presence of vascular endothelial growth factor (VEGF) and interferon alpha (IFN-α) in the follicular fluid (FF) and their possible influence, as pro-angiogenic or anti-angiogenic factors, on in vitro fertilization outcome. The concentrations of VEGF and IFN-α were correlated with oocyte and embryo quality, concentrations of hormones in the serum, perifollicular blood flow and endometrial thickness. VEGF was detected in all FF samples (median 706.6 pg/ml, range 182.9-6638 pg/ml). IFN-α was detected in 60% of the samples (median 6.5 pg/ml, range 0-79.4 pg/ml), while in 40% of the samples its levels were below the test detection limit. VEGF and IFN-α concentrations did not correlate with the cause of infertility, concentrations of FSH, LH, E2 and prolactin, oocyte or embryo quality. Significantly higher concentrations of VEGF have been found in women with primary compared with secondary infertility (p = 0.011, Mann Whitney test). The concentrations of VEGF and IFN-α did not correlate with the resistance index (RI) on days of hCG administration, follicular aspiration and embryo transfer. However, the concentrations of IFN-α correlated with endometrial thickness on the day of embryo transfer (Spearman correlation coefficient ρ = 0.4107; P < 0.05) but not on days of hCG administration and follicular aspiration. The mechanism of VEGF association with the previous ability of having a child needs to be clarified in future studies. The results of this study indicate a possible role of IFN-α in pathways of endometrial remodelling.
Collapse
|
17
|
Effect of superstimulation on the expression of microRNAs and genes involved in steroidogenesis and ovulation in Nelore cows. Theriogenology 2018; 110:192-200. [DOI: 10.1016/j.theriogenology.2017.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/16/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022]
|
18
|
Abstract
Culture of granulosa cells has for long provided a useful tool to understand the molecular processes underlying ovarian follicle development. Among all species investigated, cattle have become an excellent model for in vitro studies on follicular biology, both because of their resemblance with humans in terms of follicular biology and the importance of reproductive failure as a cause of lost productivity in the dairy industry. In this chapter, we describe up-to-date methods for the harvesting of granulosa cells from bovine ovaries collected post-mortem, as well as procedures for both culturing granulosa cells in an undifferentiated state and inducing their luteinization in vitro, and for the efficient transfection of granulosa cells with oligonucleotide sequences for the purpose of investigating the function of specific genes in vitro.
Collapse
Affiliation(s)
- Bushra T Mohammed
- College of Veterinary Medicine, University of Duhok, Kurdistan Region, Iraq
| | - F Xavier Donadeu
- The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
19
|
Devoto L, Henríquez S, Kohen P, Strauss JF. The significance of estradiol metabolites in human corpus luteum physiology. Steroids 2017; 123:50-54. [PMID: 28502859 DOI: 10.1016/j.steroids.2017.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/21/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
The human corpus luteum (CL) is a temporary endocrine gland derived from the ovulated follicle. Its formation and limited lifespan is critical for steroid hormone production required to support menstrual cyclicity, endometrial receptivity for successful implantation, and the maintenance of early pregnancy. Endocrine and paracrine-autocrine molecular mechanisms associated with progesterone production throughout the luteal phase are critical for the development, maintenance, regression, and rescue by hCG which sustains CL function into early pregnancy. However, the signaling systems driving the regression of the primate corpus luteum in non-conception cycles are not well understood. Recently, there has been interest in the functional roles of estradiol metabolites (EMs), mostly in estrogen-producing tissues. The human CL produces a number of EMs, and it has been postulated that the EMs acting via paracrine-autocrine pathways affect angiogenesis or LH-mediated events. The present review describes advances in understanding the role of EMs in the functional lifespan and regression of the human CL in non-conception cycles.
Collapse
Affiliation(s)
- Luigi Devoto
- Institute for Maternal and Child Research (IDIMI), Chile; Department of Obstetrics and Gynecology, Faculty of Medicine, San Borja-Arriaran Clinical Hospital, University of Chile, Santiago, Chile.
| | | | - Paulina Kohen
- Institute for Maternal and Child Research (IDIMI), Chile
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
20
|
Mishra SR, Bharati J, Rajesh G, Chauhan VS, Taru Sharma G, Bag S, Maurya VP, Singh G, Sarkar M. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) synergistically promote steroidogenesis and survival of cultured buffalo granulosa cells. Anim Reprod Sci 2017; 179:88-97. [PMID: 28238531 DOI: 10.1016/j.anireprosci.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
The present study investigated the combined effect of fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGF-A) on estradiol (E2) secretion and relative abundance of mRNA for aromatase enzyme (CYP19A1), proliferating cell nuclear antigen (PCNA) and BCL-2 associated X protein (BAX) in cultured buffalo granulosa cells (GCs). Follicles were isolated and classified into four groups based on size and E2 concentration in follicular fluid (FF): Small, 4-6mm diameter, E2<0.5ng/ml; Medium, 7-9mm, E2=0.5-5ng/ml; Large, 10-13mm, E2=5-40ng/ml; Preovulatory (PFs), >14mm, E2>180ng/ml. The GCs of PF were cultured in 24 well cell culture plates and allowed to become 75-80% confluent. Then cultured GCs were treated with FGF2 (200ng/ml) and VEGF-A (100ng/ml) separately and in combination for three incubation periods (24, 48 and 72h). Estradiol secretion was greater in GCs treated with FGF2+VEGF-A compared to FGF2 or VEGF-A at all incubation periods and was greatest (P<0.05) at 72h of incubation. The relative abundance of CYP19A1 and PCNA mRNA were relatively consistent with the amount E2 secretion. In contrast, the relative abundance of Bax mRNA was less in GCs treated with the combination of FGF2 and VEGF-A as compared to either FGF2 or VEGF-A alone and the least concentration (P<0.05) was at 72h of incubation. Findings with use of immunocytochemistry of cells treated with these factors were consistent to the relative abundance of mRNA transcript for the factor. The present findings indicate that FGF2 and VEGF-A may function in a synergistic manner to promote steroidogenesis and survival of cultured buffalo GCs.
Collapse
Affiliation(s)
- S R Mishra
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Jaya Bharati
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Rajesh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - V S Chauhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Taru Sharma
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - S Bag
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - V P Maurya
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - M Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
21
|
Donadeu FX, Mohammed BT, Ioannidis J. A miRNA target network putatively involved in follicular atresia. Domest Anim Endocrinol 2017; 58:76-83. [PMID: 27664382 PMCID: PMC5145806 DOI: 10.1016/j.domaniend.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/14/2023]
Abstract
In a previous microarray study, we identified a subset of micro RNAS (miRNAs), which expression was distinctly higher in atretic than healthy follicles of cattle. In the present study, we investigated the involvement of those miRNAs in granulosa and theca cells during atresia. Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) confirmed that miR-21-5p/-3p, miR-150, miR-409a, miR-142-5p, miR-378, miR-222, miR-155, and miR-199a-5p were expressed at higher levels in atretic than healthy follicles (9-17 mm, classified based on steroidogenic capacity). All miRNAs except miR-21-3p and miR-378 were expressed at higher levels in theca than granulosa cells. The expression of 13 predicted miRNA targets was determined in follicular cells by RT-qPCR, revealing downregulation of HIF1A, ETS1, JAG1, VEGFA, and MSH2 in either or both cell types during atresia. Based on increases in miRNA levels simultaneous with decreases in target levels in follicular cells, several predicted miRNA target interactions were confirmed that are putatively involved in follicular atresia, namely miR-199a-5p/miR-155-HIF1A in granulosa cells, miR-155/miR-222-ETS1 in theca cells, miR-199a-5p-JAG1 in theca cells, miR-199a-5p/miR-150/miR-378-VEGFA in granulosa and theca cells, and miR-155-MSH2 in theca cells. These results offer novel insight on the involvement of miRNAs in follicle development by identifying a miRNA target network that is putatively involved in follicle atresia.
Collapse
Affiliation(s)
- F X Donadeu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - B T Mohammed
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - J Ioannidis
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| |
Collapse
|
22
|
Shiratsuki S, Hara T, Munakata Y, Shirasuna K, Kuwayama T, Iwata H. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells. Mol Cell Endocrinol 2016; 437:75-85. [PMID: 27519633 DOI: 10.1016/j.mce.2016.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 01/04/2023]
Abstract
The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation.
Collapse
Affiliation(s)
- Shogo Shiratsuki
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Tomotaka Hara
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Yasuhisa Munakata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan.
| |
Collapse
|
23
|
Hernández-Coronado CG, Guzmán A, Rodríguez A, Mondragón JA, Romano MC, Gutiérrez CG, Rosales-Torres AM. Sphingosine-1-phosphate, regulated by FSH and VEGF, stimulates granulosa cell proliferation. Gen Comp Endocrinol 2016; 236:1-8. [PMID: 27342378 DOI: 10.1016/j.ygcen.2016.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive polar sphingolipid which stimulates proliferation, growth and survival in various cell types. In the ovary S1P has been shown protect the granulosa cells and oocytes from insults such as oxidative stress and radiotherapy, and S1P concentrations are greater in healthy than atretic large follicles. Hence, we postulate that S1P is fundamental in follicle development and that it is activated in ovarian granulosa cells in response to FSH and VEGF. To test this hypothesis we set out: i) to evaluate the effect of FSH and VEGF on S1P synthesis in cultured bovine granulosa cells and ii) to analyse the effect of S1P on proliferation and survival of bovine granulosa cells in vitro. Seventy five thousand bovine granulosa cells from healthy medium-sized (4-7mm) follicles were cultured in 96-well plates in McCoy's 5a medium containing 10ng/mL of insulin and 1ng/mL of LR-IGF-I at 37°C in a 5% CO2/air atmosphere at 37°C. Granulosa cell production of S1P was tested in response to treatment with FSH (0, 0.1, 1 and 10ng/mL) and VEGF (0, 0.01, 0.1, 1, 10 and 100ng/mL) and measured by HPLC. Granulosa cells produced S1P at 48 and 96h, with the maximum production observed with 1ng/mL of FSH. Likewise, 0.01ng/mL of VEGF stimulated S1P production at 48, but not 96h of culture. Further, the granulosa cell expression of sphingosine kinase-1 (SK1), responsible for S1P synthesis, was demonstrated by Western blot after 48h of culture. FSH increased the expression of phosphorylated SK1 (P<0.05) and the addition of a SK1 inhibitor reduced the constitutive and FSH-stimulated S1P synthesis (P<0.05). Sphingosine-1-phosphate had a biphasic effect on granulosa cell number after culture. At low concentration S1P (0.1μM) increased granulosa cell number after 48h of culture (P<0.05) and the proportion of cells in the G2 and M phase of the cell cycle (P<0.05), whereas higher concentrations decreased cell number (10μM; P<0.05) by an increase (P<0.05) in the proportion of cells in apoptosis (hypodiploid cells). In addition, treatment with SK-178 suppressed the FSH- and VEGF-stimulated rise of the granulosa cells number (P<0.05). Interestingly, the effect of 0.1μM S1P on granulosa cell number and their proportion in G2/M phases is similar to that observed with 1ng/mL FSH. The results of this study are the first to demonstrate sphingosine-1-phosphate (S1P) synthesis in granulosa cells under the control of FSH and VEGF. The later achieved through the regulation of sphingosine kinase 1 expression. This S1P augments the proportion of cells in the G2/M phase of the cell cycle that translates in increased granulosa cell proliferation.
Collapse
Affiliation(s)
- C G Hernández-Coronado
- Universidad Autónoma Metropolitana-Xochimilco, División de Ciencias Biológicas y de la Salud, Estudiante del Programa de Doctorado en Ciencias Agropecuarias, Mexico
| | - A Guzmán
- Universidad Autónoma Metropolitana-Xochimilco, Departamento Producción Agrícola y Animal, Calzada del Hueso 1100, CP 04960 México City, Mexico
| | - A Rodríguez
- Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria, Av. Universidad 3000, CP 04510 México City, Mexico
| | - J A Mondragón
- CINVESTAV, I.P.N. Departamento de Fisiología, Biofísica y Neurociencias, Av. Instituto Politécnico Nacional 2508, Código Postal 07360 México City, Mexico
| | - M C Romano
- CINVESTAV, I.P.N. Departamento de Fisiología, Biofísica y Neurociencias, Av. Instituto Politécnico Nacional 2508, Código Postal 07360 México City, Mexico
| | - C G Gutiérrez
- Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria, Av. Universidad 3000, CP 04510 México City, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana-Xochimilco, Departamento Producción Agrícola y Animal, Calzada del Hueso 1100, CP 04960 México City, Mexico.
| |
Collapse
|
24
|
FANG YANQIU, LU XIAODAN, LIU LEI, LIN XIUYING, SUN MUNAN, FU JIANHUA, XU SHUFEN, TAN YAN. Vascular endothelial growth factor induces anti-Müllerian hormone receptor 2 overexpression in ovarian granulosa cells of in vitro fertilization/intracytoplasmic sperm injection patients. Mol Med Rep 2016; 13:5157-62. [DOI: 10.3892/mmr.2016.5173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 03/08/2016] [Indexed: 11/06/2022] Open
|
25
|
Munakata Y, Kawahara-Miki R, Shiratsuki S, Tasaki H, Itami N, Shirasuna K, Kuwayama T, Iwata H. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. J Reprod Dev 2016; 62:359-66. [PMID: 27108636 PMCID: PMC5004791 DOI: 10.1262/jrd.2016-022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicle development is accompanied by proliferation of granulosa cells and increasing
oocyte size. To obtain high-quality oocytes in vitro, it is important to
understand the processes that occur in oocytes and granulosa cells during follicle
development and the differences between in vivo and in
vitro follicle development. In the present study, oocytes and granulosa cells
were collected from early antral follicles (EAFs, 0.5–0.7 mm in diameter), small antral
follicles (SAFs, 1–3 mm in diameter), large antral follicles (LAFs, 3–7 mm in diameter),
and in vitro grown oocyte-and-granulosa cell complexes (OGCs), which were
cultured for 14 days after collection from EAFs. Gene expression was analyzed
comprehensively using the next-generation sequencing technology. We found top upstream
regulators during the in vivo follicle development and compared them with
those in in vitro developed OGCs. The comparison revealed that
HIF1 is among the top regulators during both in vivo
and in vitro development of OGCs. In addition, we found that
HIF1-mediated upregulation of glycolysis in granulosa cells is important for the growth of
OGCs, but the cellular metabolism differs between in vitro and in
vivo grown OGCs. Furthermore, on the basis of comparison of upstream regulators
between in vivo and in vitro development of OGCs, we
believe that low expression levels of FLT1 (VEGFA receptor),
SPP1, and PCSK6 can be considered causal factors of
the suboptimal development under in vitro culture conditions.
Collapse
Affiliation(s)
- Yasuhisa Munakata
- Department of Animal Sciences, Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang Y, Chen J, Wu H, Pei X, Chang Q, Ma W, Ma H, Hei C, Zheng X, Cai Y, Zhao C, Yu J, Wang Y. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone. BIOMED RESEARCH INTERNATIONAL 2015; 2015:397264. [PMID: 26539488 PMCID: PMC4620037 DOI: 10.1155/2015/397264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/23/2015] [Accepted: 08/30/2015] [Indexed: 01/16/2023]
Abstract
Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects.
Collapse
Affiliation(s)
- Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Jie Chen
- Department of Human Anatomy, Inner Mongolia Medical University, Hohhot 010010, China
| | - Hao Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaomin Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
27
|
Ortega HH, Veiga-Lopez A, Sreedharan S, del Luján Velázquez MM, Salvetti NR, Padmanabhan V. Developmental Programming: Does Prenatal Steroid Excess Disrupt the Ovarian VEGF System in Sheep? Biol Reprod 2015; 93:58. [PMID: 26178718 DOI: 10.1095/biolreprod.115.131607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023] Open
Abstract
Prenatal testosterone (T), but not dihydrotestosterone (DHT), excess disrupts ovarian cyclicity and increases follicular recruitment and persistence. We hypothesized that the disruption in the vascular endothelial growth factor (VEGF) system contributes to the enhancement of follicular recruitment and persistence in prenatal T-treated sheep. The impact of T/DHT treatments from Days 30 to 90 of gestation on VEGFA, VEGFB, and their receptor (VEGFR-1 [FLT1], VEGFR-2 [KDR], and VEGFR-3 [FLT4]) protein expression was examined by immunohistochemistry on Fetal Days 90 and 140, 22 wk, 10 mo (postpubertal), and 21 mo (adult) of age. Arterial morphometry was performed in Fetal Day 140 and postpubertal ovaries. VEGFA and VEGFB expression were found in granulosa cells at all stages of follicular development with increased expression in antral follicles. VEGFA was present in theca interna, while VEGFB was present in theca interna/externa and stromal cells. All three receptors were expressed in the granulosa, theca, and stromal cells during all stages of follicular development. VEGFR-3 increased with follicular differentiation with the highest level seen in the granulosa cells of antral follicles. None of the members of the VEGF family or their receptor expression were altered by age or prenatal T/DHT treatments. At Fetal Day 140, area, wall thickness, and wall area of arteries from the ovarian hilum were larger in prenatal T- and DHT-treated females, suggestive of early androgenic programming of arterial differentiation. This may facilitate increased delivery of endocrine factors and thus indirectly contribute to the development of the multifollicular phenotype.
Collapse
Affiliation(s)
- Hugo Héctor Ortega
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Almudena Veiga-Lopez
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Shilpa Sreedharan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Melisa María del Luján Velázquez
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Natalia Raquel Salvetti
- Department of Morphological Sciences, Faculty of Veterinary Sciences, National University of Litoral, Esperanza, Santa Fe, Argentina Argentine National Research Council (CONICET), Esperanza, Santa Fe, Argentina
| | - Vasantha Padmanabhan
- Department of Pediatrics and the Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Gupta M, Dangi SS, Singh G, Sarkar M. Expression and localization of ghrelin and its receptor in ovarian follicles during different stages of development and the modulatory effect of ghrelin on granulosa cells function in buffalo. Gen Comp Endocrinol 2015; 210:87-95. [PMID: 25275756 DOI: 10.1016/j.ygcen.2014.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/01/2014] [Accepted: 09/20/2014] [Indexed: 12/13/2022]
Abstract
Ghrelin, a hormone predominantly found in the stomach, was recently described as a factor that controls female reproductive function. The aim of our study was to investigate the expression and localization of ghrelin and its active receptor, growth hormone secretagogue receptor type 1a (GHS-R1a) in buffalo ovarian follicles of different follicular size and to investigate role of ghrelin on estradiol (E2) secretion, aromatase (CYP19A1), proliferating cell nuclear antigen (PCNA) and apoptosis regulator Bax gene expression on granulosa cell culture. Using real time PCR and western blot, we measured gene and protein expression of examined factors. Localization was done with immunofluorescence method. Expression of ghrelin increased with follicle size with significantly highest in dominant or pre-ovulatory follicle (P<0.05). Expression of GHS-R1a was comparable in medium and large follicle but was higher than small follicles (P<0.05). Both the factors were localized in granulosa and theca cells. Pattern of intensity of immunofluorescence was similar with mRNA and protein expression. In the in vitro study granulosa cells (GCs) were cultured and treated with ghrelin each at 1, 10 and 100ng/ml concentrations for two days after obtaining 75-80 per cent confluence. Ghrelin treatment significantly (P<0.05) inhibited E2 secretion, CYP19A1 expression, apoptosis and promoted cell proliferation. In conclusion, this study provides novel evidence for the presence of ghrelin and receptor GHS-R1a in ovarian follilcles and modulatory role of ghrelin on granulosa cell function in buffalo.
Collapse
Affiliation(s)
- M Gupta
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S S Dangi
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - G Singh
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India
| | - M Sarkar
- Physiology & Climatology Division, Indian Veterinary Research Institute, Izatnagar 243122, India.
| |
Collapse
|
29
|
Kere M, Siriboon C, Liao JW, Lo NW, Chiang HI, Fan YK, Kastelic JP, Ju JC. Vascular endothelial growth factor A improves quality of matured porcine oocytes and developing parthenotes. Domest Anim Endocrinol 2014; 49:60-9. [PMID: 25061966 DOI: 10.1016/j.domaniend.2014.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Vascular endothelial growth factor is a multipotent angiogenic factor implicated in cell survival and proliferation. The objective was to determine effects of exogenous recombinant human VEGFA (or VEGFA165) in culture media on porcine oocyte maturation and parthenote development. Adding 5 ng/mL VEGFA to the culture medium improved the maturation rate of denuded oocytes (P < 0.05), although 5, 50, or 500 ng/mL did not significantly affect nuclear maturation of oocytes. Parthenotes from oocytes cultured either in in vitro maturation or in vitro culture medium supplemented with 5 or 50 ng/mL VEGFA had an improved blastocyst rate and increased total numbers of cells (P < 0.05). Moreover, those treated with 5 ng/mL of VEGFA had a higher hatched blastocyst rate (average of 121 cells per blastocyst). All VEGFA-treated oocytes had reduced apoptotic indices (P < 0.05), except for those with a higher dose (500 ng/mL) of VEGFA which had more apoptotic cells (P < 0.05). Adding 5 ng/mL VEGFA to oocytes during the last 22 h of in vitro maturation improved (P < 0.05) blastocyst rates and total numbers of cells, with reduced apoptosis indices similar to that of long-term (44 h) culture. Furthermore, Axitinib (VEGFR inhibitor) reversed the effects of VEGFA on parthenote development (P < 0.05). Follicular fluids from medium (2-6 mm) to large (>6 mm) follicles contained 5.3 and 7.0 ng/mL vascular endothelial growth factor protein, respectively, higher (P < 0.05) than concentrations in small (<2 mm) follicles (0.4 ng/mL). Also, VEGFA and its receptor (VEGFR-2) were detected (immunohistochemistry) in growing follicles and developing blastocysts. In addition, VEGFA inhibited caspase-3 activation in matured oocytes (P < 0.05). In conclusion, this is apparently the first report that VEGFA has proliferative and cytoprotective roles in maturing porcine oocytes and parthenotes. Furthermore, an optimal VEGFA concentration promoted porcine oocyte maturation and subsequent development.
Collapse
Affiliation(s)
- M Kere
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - C Siriboon
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 402, Taiwan
| | - J W Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - N W Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung 407, Taiwan
| | - H I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Y K Fan
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan
| | - J P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J C Ju
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung 402, Taiwan; Agriculture Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Medical Research Department, China Medical University Hospital, Taichung 404, Taiwan; Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
30
|
Kohen P, Henríquez S, Rojas C, Gerk PM, Palomino WA, Strauss JF, Devoto L. 2-Methoxyestradiol in the human corpus luteum throughout the luteal phase and its influence on lutein cell steroidogenesis and angiogenic activity. Fertil Steril 2013; 100:1397-404. [DOI: 10.1016/j.fertnstert.2013.07.1980] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
|
31
|
Fátima LA, Evangelista MC, Silva RS, Cardoso APM, Baruselli PS, Papa PC. FSH up-regulates angiogenic factors in luteal cells of buffaloes. Domest Anim Endocrinol 2013; 45:224-37. [PMID: 24209507 DOI: 10.1016/j.domaniend.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 02/05/2023]
Abstract
Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins.
Collapse
MESH Headings
- Angiogenic Proteins/analysis
- Angiogenic Proteins/genetics
- Animals
- Buffaloes/metabolism
- Cells, Cultured
- Female
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Fluorescent Antibody Technique
- Follicle Stimulating Hormone/pharmacology
- Granulosa Cells/chemistry
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Luteal Cells/chemistry
- Luteal Cells/metabolism
- Luteinizing Hormone/pharmacology
- Male
- Progesterone/biosynthesis
- RNA, Messenger/analysis
- Real-Time Polymerase Chain Reaction/veterinary
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/analysis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Superovulation/physiology
- Up-Regulation
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- L A Fátima
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil.
| | | | | | | | | | | |
Collapse
|
32
|
Brown HM, Russell DL. Blood and lymphatic vasculature in the ovary: development, function and disease. Hum Reprod Update 2013; 20:29-39. [PMID: 24097804 DOI: 10.1093/humupd/dmt049] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The remodelling of the blood vasculature has been the subject of much research while rapid progress in the understanding of the factors controlling lymphangiogenesis in the ovary has only been reported more recently. The ovary undergoes cyclic remodelling throughout each menstrual/estrous cycle. This process requires significant vascular remodelling to supply each new cohort of growing follicles. METHODS Literature searches were performed to review studies on the ovarian lymphatic vasculature that described spatial, temporal and functional data in human or animal species. The role of ovarian blood and lymphatic vasculature in the pathogenesis of ovarian disease and dysfunction was also explored. RESULTS Research in a number of species including zebrafish, rodents and primates has described the lymphatic vasculature within the remodelling ovary, while recent research in mouse has confirmed hormonal regulation of lymphangiogenic growth factors, their receptors and also a role for the protease, ADAMTS1 in the development of the lymphatic vasculature. With a critical role in the maintenence of fluid homeostasis, the ovarian lymphatic vasculature is important for normal ovarian function and has been linked to syndromes involving ovarian fluid imbalance, including ovarian hyperstimulation syndrome and massive ovarian edema. The lymphatic vasculature has also been heavily implicated in the metastatic cancer process. CONCLUSION The spatial and temporal regulation of the ovarian lymphatic vasculature has now been reported in a number of species and the data also implicate the ovarian lymphatic vasculature in ovarian pathologies, including cancer and those linked with use of artificial reproduction technologies.
Collapse
Affiliation(s)
- H M Brown
- Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Level 3, Medical School South, Frome Rd., Adelaide 5005, Australia
| | | |
Collapse
|
33
|
Amount of mRNA and localization of vascular endothelial growth factor and its receptors in the ovarian follicle during estrous cycle of water buffalo (Bubalus bubalis). Anim Reprod Sci 2013; 137:163-76. [DOI: 10.1016/j.anireprosci.2013.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/22/2022]
|
34
|
Ally N, Zou XL, Jiang BC, Qin L, Zhai L, Xiao P, Liu HL. Inhibition of vascular endothelial growth factor A expression in mouse granulosa cells by lentivector-mediated RNAi. GENETICS AND MOLECULAR RESEARCH 2012; 11:4019-33. [PMID: 23212339 DOI: 10.4238/2012.november.28.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Vascular endothelial growth factor (VEGF) has been found responsible for the induction of proliferation and differentiation in granulosa cells. We constructed four short hairpin RNA (shRNA) expression plasmids targeting the mouse VEGFA gene, and examined their effect on VEGF expression in mouse granulosa cells (MGC) in vitro. Four different shRNA oligonucleotides targeting the coding sequence of mouse VEGFA mRNA and one negative control (shNC) were designed and cloned into a pGPU6/GFP/Neo siRNA expression vector, and transiently transfected into MGC. At 48 h post-transfection, total RNA was extracted from the cells and subjected to qRT-PCR analysis. The most effective interference vector, shVEGF1487 was chosen for lentiviral construction. The recombinant plasmid was then transfected into 293FT cells via Lipofectamine(TM) 2000-mediated gene transfer, for the production of lentivirus, and then concentrated via ultracentrifugation. This lentiviral vector was then used for the transduction of MGC. VEGFA gene expression, apoptosis genes and VEGFA receptor genes were detected by qRT-PCR, the VEGFA protein level in culture media by ELISA assay and protein levels in MGC by Western blot analysis. The four VEGFA expression plasmids were successfully constructed and the most effective interference vector, shVEGF1487, was chosen for lentiviral production and MGC transduction. There was significant knockdown of the VEGFA gene, receptor genes and apoptosis genes for all the shVEGF constructs, compared with the shNC and Mock controls. The lentiviral vector also gave significant knockdown of the VEGFA gene. Protein levels were lower for most of the shVEGFs based on Western blot analysis with exception of VEGF1359; in this case, it was higher than shNC but lower than for the Mock group. Lentivector-transduced MGC also gave lower levels of protein. We conclude that shVEGF expression plasmids and lentivector carrying RNAi are promising tools for the inhibition of VEGF, the corresponding receptor genes, and apoptosis gene expression in MGC.
Collapse
Affiliation(s)
- N Ally
- Department of Animal Breeding and Genetics, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
35
|
McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 2012; 144:221-33. [PMID: 22653318 DOI: 10.1530/rep-12-0025] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Little is known about the involvement of microRNAs (miRNAs) in the follicular-luteal transition. The aim of this study was to identify genome-wide changes in miRNAs associated with follicular differentiation in sheep. miRNA libraries were produced from samples collected at defined stages of the ovine oestrous cycle and representing healthy growing follicles, (diameter, 4.0-5.5 mm), pre-ovulatory follicles (6.0-7.0 mm), early corpora lutea (day 3 post-oestrus) and late corpora lutea (day 9). A total of 189 miRNAs reported in sheep or other species and an additional 23 novel miRNAs were identified by sequencing these libraries. miR-21, miR-125b, let-7a and let-7b were the most abundant miRNAs overall, accounting for 40% of all miRNAs sequenced. Examination of changes in cloning frequencies across development identified nine different miRNAs whose expression decreased in association with the follicular-luteal transition and eight miRNAs whose expression increased during this transition. Expression profiles were confirmed by northern analyses, and experimentally validated targets were identified using miRTarBase. A majority of the 29 targets identified represented genes known to be actively involved in regulating follicular differentiation in vivo. Finally, luteinisation of follicular cells in vitro resulted in changes in miRNA levels that were consistent with those identified in vivo, and these changes were temporally associated with changes in the levels of putative miRNA targets in granulosa cells. In conclusion, this is the first study to characterise genome-wide miRNA profiles during different stages of follicle and luteal development. Our data identify a subset of miRNAs that are potentially important regulators of the follicular-luteal transition.
Collapse
Affiliation(s)
- D McBride
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Masoumi Moghaddam S, Amini A, Morris DL, Pourgholami MH. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev 2012; 31:143-162. [PMID: 22101807 PMCID: PMC3350632 DOI: 10.1007/s10555-011-9337-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination.
Collapse
Affiliation(s)
- Samar Masoumi Moghaddam
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - Afshin Amini
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - David L. Morris
- Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| | - Mohammad H. Pourgholami
- Cancer Research Laboratories, Department of Surgery, St George Hospital, University of New South Wales, Sydney, NSW 2217 Australia
| |
Collapse
|
37
|
Zhong YP, Ying Y, Wu HT, Zhou CQ, Xu YW, Wang Q, Li J, Shen XT, Li J. Comparison of Endocrine Profile and In Vitro Fertilization Outcome in Patients with PCOS, Ovulatory PCO, or Normal Ovaries. Int J Endocrinol 2012; 2012:492803. [PMID: 22518124 PMCID: PMC3299229 DOI: 10.1155/2012/492803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022] Open
Abstract
Aim. To compare the basic endocrine profile and outcomes of in vitro fertilization (IVF) in women with polycystic ovary syndrome (PCOS), ovulatory polycystic ovaries (PCO), or normal ovaries (NO). Methods. The basic clinical features and in vitro fertilization and embryo transfer outcome in patients receiving IVF or intracytoplasmic sperm injection (ICSI) were retrospectively analyzed. Results. The body mass index, basal luteinizing hormone, and testosterone levels were significantly lower in patients with ovulatory PCO compared to those in patients with PCOS. The PCOS patients exhibited the shortest duration of ovarian stimulation and lowest dose of gonadotropin, followed by the ovulatory PCO and NO patients. The ovulatory PCO and PCOS patients showed similar levels of E2 on the human chorionic gonadotropin treatment day and numbers of oocytes, which were both significantly higher than those of the NO patients. The fertilization rate of the PCOS patients was significantly lower than the other two groups. Compared to NO patients, the cleavage rate was lower in both PCOS and ovulatory PCO patients, however, the number of available embryos was significantly more in these two groups. The incidence of the moderate to severe ovarian hyperstimulation syndrome (OHSS) was markedly higher in the PCOS and ovulatory PCO patients. Conclusion. Ovulatory PCO patients do not express similar endocrine abnormalities as PCOS patients. Although the fertilization rate and cleavage rate were relatively low in PCOS patients, ultimately, all the three groups showed similar transferred embryo numbers, clinical pregnancy rates, and implantation rates. Since the incidence of OHSS was much higher in the PCOS and ovulatory PCO patients, we should take more care of these patients and try to prevent severe OHSS.
Collapse
Affiliation(s)
- Yi-Ping Zhong
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ying
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Tao Wu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Can-Quan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- *Can-Quan Zhou:
| | - Yan-Wen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Ting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Li
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
38
|
Donadeu FX, Esteves CL, Doyle LK, Walker CA, Schauer SN, Diaz CA. Phospholipase Cβ3 mediates LH-induced granulosa cell differentiation. Endocrinology 2011; 152:2857-69. [PMID: 21586561 DOI: 10.1210/en.2010-1298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies showed that under certain conditions LH can stimulate not only adenylate cyclase (AC) but also phospholipase Cβ (PLCβ) signaling in target cells; however, the physiological involvement of PLCβ in LH-induced ovarian follicular cell differentiation has not been determined. To address this, ex vivo expression analyses and specific PLCβ targeting were performed in primary bovine granulosa cells. Expression analyses in cells from small (2.0-5.9 mm), medium (6.0-9.9 mm), and ovulatory-size (10.0-13.9 mm) follicles revealed an increase in mRNA and protein levels of heterotrimeric G protein subunits-αs, -αq, -α11, and -αi2 in ovulatory-size follicles, simultaneous with a substantial increase in LH receptor expression. Among the four known PLCβ isoforms, PLCβ3 (PLCB3) was specifically up-regulated in cells from ovulatory-size follicles, in association with a predominantly cytoplasmic location of PLCB3 in these cells and a significant inositol phosphate response to LH stimulation. Furthermore, RNA interference-mediated PLCB3 down-regulation reduced the ability of LH to induce hallmark differentiation responses of granulosa cells, namely transcriptional up-regulation of prostaglandin-endoperoxide synthase 2 and down-regulation of both aromatase expression and estradiol production. Responses to the AC agonist, forskolin, however, were not affected. In addition, PLCB3 down-regulation did not alter cAMP responses to LH in granulosa cells, ruling out a primary involvement of AC in mediating the effects of PLCB3. In summary, we provide evidence of a physiological involvement of PLCβ signaling in ovulatory-size follicles and specifically identify PLCB3 as a mediator of LH-induced differentiation responses of granulosa cells.
Collapse
Affiliation(s)
- Francesc X Donadeu
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Becker S, von Otte S, Robenek H, Diedrich K, Nofer JR. Follicular fluid high-density lipoprotein-associated sphingosine 1-phosphate (S1P) promotes human granulosa lutein cell migration via S1P receptor type 3 and small G-protein RAC1. Biol Reprod 2010; 84:604-12. [PMID: 20980685 DOI: 10.1095/biolreprod.110.084152] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Coordinated migration and progesterone production by granulosa cells is critical to the development of the corpus luteum, but the underlying mechanisms remain obscure. Sphingosine 1-phosphate (S1P), which is associated with follicular fluid high-density lipoprotein (FF-HDL), was previously shown to regulate ovarian angiogenesis. We herein examined the effects of S1P and FF-HDL on the function of granulosa lutein cells. Both FF-HDL and S1P induced migration of primary human granulosa lutein cells (hGCs) and the granulosa lutein cell line HGL5. In addition, FF-HDL but not S1P promoted progesterone synthesis, and neither of the two compounds stimulated proliferation of granulosa lutein cells. Polymerase chain reaction and Western blot experiments demonstrated the expression of S1P receptor type 1 (S1PR1), S1PR2, S1PR3, and S1PR5 but not S1PR4 in hGCs and HGL5 cells. The FF-HDL- and S1P-induced granulosa lutein cell migration was emulated by FTY720, an agonist of S1PR1, S1PR3, S1PR4, and S1PR5, and by VPC24191, an agonist of S1PR1 and S1PR3, but not by SEW2871 and phytosphingosine 1-phosphate, agonists of S1PR1 and S1PR4, respectively. In addition, blockade of S1PR3 with CAY1044, suramine, or pertussis toxin inhibited hGC and HGL5 cell migration toward FF-HDL or S1P, while blockade of S1PR1 and S1PR2 with W146 and JTE013, respectively, had no effect. Both FF-HDL and S1P triggered activation of small G-protein RAC1 and actin polymerization in granulosa cells, and RAC1 inhibition with Clostridium difficile toxin B or NSC23766 abolished FF-HDL- and S1P-induced migration. The FF-HDL-associated S1P promotes granulosa lutein cell migration via S1PR3 and RAC1 activation. This may represent a novel mechanism contributing to the development of the corpus luteum.
Collapse
Affiliation(s)
- Steffi Becker
- Department of Obstetrics and Gynecology, University of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | | | | | | |
Collapse
|