1
|
Yang Z, Zhang Y, Cao Z, Li Z, Zhang L, Yang L. Expression of Estrogen Receptors in Main Immune Organs in Sheep During Early Pregnancy. Int J Mol Sci 2025; 26:3528. [PMID: 40331991 DOI: 10.3390/ijms26083528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Estrogen exerts its action via estrogen receptors (ERs), including ERα and ERβ, and has effects on immunomodulation during pregnancy. It is known that there are changes in the function of the maternal immune organs during pregnancy. However, it is not clear if early pregnancy has effects on the expression of ERα and ERβ in the ovine maternal thymus, lymph nodes, spleen, and liver. In this study, these maternal immune organs were harvested at day 16 of the estrous cycle and at days 13, 16, and 25 of pregnancy (n = 6 for each group) after the ewes were euthanized. The mRNA and protein expression of ERα and ERβ were analyzed using real-time PCR and Western blot and immunohistochemical analyses. The results reveal that the mRNA and protein expression of both ERα and ERβ were upregulated in the maternal spleen and the expression of ERα and ERβ in the thymus, lymph nodes, and liver was modulated during early pregnancy. In conclusion, early pregnancy modulates the expression of ERα and ERβ in the maternal thymus, lymph nodes, spleen, and liver in a tissue-specific manner, which is related to the regulation of maternal immune function during early pregnancy in ewes.
Collapse
Affiliation(s)
- Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaqi Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhihong Cao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhouyuan Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
2
|
Medeiros NCD, Santos Filho END, Ayres DAS, Cancio BHMA, Smaniotto S, Reis MDDS, Lins MP. Involvement of CXCL12/CXCR4 pair in migration of thymocytes from lactating mice. J Reprod Immunol 2025; 168:104444. [PMID: 39904071 DOI: 10.1016/j.jri.2025.104444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
During the postpartum and lactation period, the involuted thymus, affected by pregnancy hormones, initiates its morphophysiological recovery with the positive regulation of the hormone prolactin (PRL), present at high levels during lactation. PRL has pleiotropic effects on thymic epithelial cells, thymocytes, as well as on elements of the extracellular matrix. In this study, we evaluated the production of the chemokine CXCL12 by the thymic microenvironment and its receptor, CXCR4, by thymocytes from lactating female mice. To achieve this objective, we used C57BL/6 female mice that were nulliparous or on the 15th day of lactation. After euthanasia, their thymi were collected, weighed, and processed for histological analyses and PRL quantitation. In other experiments, the thymus was mechanically disrupted to obtain fresh thymocytes, which were subsequently subjected to in vitro assays and flow cytometry analyses. Also, the plasma serum of the females was collected to measure PRL levels. It was observed that there was lower cellularity and thymic weight on the 15th day of lactation, along with histological alterations that this organ normally exhibits during this period. It was found that the thymic supernatant presented higher levels of PRL than the animals' serum. Additionally, the thymic medulla exhibited higher quantities of CXCL12, and thymocytes displayed elevated levels of CXCR4, making them more adept at migrating in response to this chemotactic stimulus. Remarkably, this is the first report, to the best of our knowledge, indicating the action of the CXCL12/CXCR4 pair in the thymus during the physiological lactation period.
Collapse
Affiliation(s)
- Návylla Candeia de Medeiros
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil.
| | - Elvan Nascimento Dos Santos Filho
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil.
| | | | | | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil; Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Maria Danielma Dos Santos Reis
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil; Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | - Marvin Paulo Lins
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Laboratory of Immunology, Department of Basic Sciences in Health, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Brazil.
| |
Collapse
|
3
|
Yang Z, Cao Z, Zhang Y, Li Z, Zhang L, Yang L. Changes in expression of FSH and LH receptors in the ovine main immune organs during early pregnancy. Vet Immunol Immunopathol 2025; 280:110867. [PMID: 39740373 DOI: 10.1016/j.vetimm.2024.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are mainly involved in follicle development and ovulation, but FSH receptor (FSHR) and LH receptor (LHR) are also expressed in the immune system. Nevertheless, it is not clear if gestation affects the expression of the FSHR and LHR in the maternal main immune organs (thymus, lymph node, spleen, and liver). In this study, these organs were sampled from the ewes at the estrous cycle, and during early pregnancy, and mRNA and protein expression of FSHR and LHR were analyzed. The results showed that early pregnancy downregulated mRNA and protein expression of FSHR and LHR in the liver, the FSHR in the thymus and lymph nodes, but upregulated mRNA and protein expression of FSHR in the spleen, and LHR in lymph nodes. In addition, mRNA and protein expression of LHR in the thymus and spleen was changed, which is reported for the first time at present. In summary, early pregnancy regulates the expression of FSHR and LHR in the maternal immune organs, which may be involved in the modulation of maternal immune function, and necessary for pregnancy maintenance in ewes.
Collapse
Affiliation(s)
- Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zhihong Cao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yaqi Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zhouyuan Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China.
| |
Collapse
|
4
|
Fang H, Wang X, Wang Z, Ma X, Zhang L, Yang L. Modulation of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum during early pregnancy. Domest Anim Endocrinol 2024; 89:106870. [PMID: 38954983 DOI: 10.1016/j.domaniend.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xinxin Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Zhongyue Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xiaoxin Ma
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China.
| |
Collapse
|
5
|
Zhu T, Li W. The regulation of prolactin secretion and its targeting function of teleost. Gen Comp Endocrinol 2024; 354:114530. [PMID: 38657738 DOI: 10.1016/j.ygcen.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Prolactin is involved in regulating various physiological activities of vertebrates and is one of the most momentous pituitary hormones. However, not enough attention is currently paid to prolactin, especially in teleost. This paper aims to gather, organize, and analyze recent studies on the regulation and functions of prolactin. By comparing with other animal groups, it highlights the significant role of prolactin in fish reproduction, immunity, growth, and osmotic pressure regulation, as well as the upstream and downstream factors that may be involved in the regulation of prolactin functions were introduced to provide a theoretical basis for the in-depth study and potential practical application of prolactin.
Collapse
Affiliation(s)
- Tiansheng Zhu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 China.
| |
Collapse
|
6
|
Guo X, Zhao C, Yang R, Wang Y, Hu X. ABCD4 is associated with mammary gland development in mammals. BMC Genomics 2024; 25:494. [PMID: 38764031 PMCID: PMC11103957 DOI: 10.1186/s12864-024-10398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Mammary gland development is a critical process in mammals, crucial for their reproductive success and offspring nourishment. However, the functional roles of key candidate genes associated with teat number, including ABCD4, VRTN, PROX2, and DLST, in this developmental process remain elusive. To address this gap in knowledge, we conducted an in-depth investigation into the dynamic expression patterns, functional implications, and regulatory networks of these candidate genes during mouse mammary gland development. RESULTS In this study, the spatial and temporal patterns of key genes were characterized in mammary gland development. Using time-series single-cell data, we uncovered differences in the expression of A bcd4, Vrtn, Prox2, and Dlst in cell population of the mammary gland during embryonic and adult stages, while Vrtn was not detected in any cells. We found that only overexpression and knockdown of Abcd4 could inhibit proliferation and promote apoptosis of HC11 mammary epithelial cells, whereas Prox2 and Dlst had no significant effect on these cells. Using RNA-seq and qPCR, further analysis revealed that Abcd4 can induce widespread changes in the expression levels of genes involved in mammary gland development, such as Igfbp3, Ccl5, Tlr2, and Prlr, which were primarily associated with the MAPK, JAK-STAT, and PI3K-AKT pathways by functional enrichment. CONCLUSIONS These findings revealed ABCD4 as a candidate gene pivotal for regulating mammary gland development and lactation during pregnancy by influencing PRLR expression.
Collapse
Affiliation(s)
- Xiaoli Guo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition &, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chengcheng Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruifei Yang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhe Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Fang H, Li Q, Wang H, Ren Y, Zhang L, Yang L. Maternal nutrient metabolism in the liver during pregnancy. Front Endocrinol (Lausanne) 2024; 15:1295677. [PMID: 38572473 PMCID: PMC10987773 DOI: 10.3389/fendo.2024.1295677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Haichao Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ying Ren
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
8
|
Meng Y, Yang Z, Quan Y, Zhao S, Zhang L, Yang L. Regulation of IkappaB Protein Expression by Early Gestation in the Thymus of Ewes. Vet Sci 2023; 10:462. [PMID: 37505866 PMCID: PMC10384501 DOI: 10.3390/vetsci10070462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The thymus is an essential component of maternal immune systems that play key roles in recognizing the placenta as immunologically foreign. The inhibitor of the NF-κB (IκB) family has essential effects on the NF-κB pathway; however, it is unclear whether early pregnancy modulates the expression of the IκB family in the thymus. In this study, maternal thymuses were sampled on day 16 of nonpregnancy and different gestation stages in the ovine, and the expression of IκB proteins was analyzed. The data showed that B cell leukemia-3 and IκBβ increased; however, IκBα, IκBε, and IKKγ deceased during gestation. Furthermore, there was an increase in IκBNS and IκBζ expression values on day 13 of pregnancy; however, this decreased on day 25 of gestation. In summary, the expression of the IκB family was modulated in the thymus during early gestation, suggesting that the maternal thymus can be associated with maternal immunologic tolerance and pregnancy establishment in ewes.
Collapse
Affiliation(s)
- Yao Meng
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yaodong Quan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Shuxin Zhao
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
9
|
Yang L, Meng Y, Shi Y, Fang H, Zhang L. Maternal hepatic immunology during pregnancy. Front Immunol 2023; 14:1220323. [PMID: 37457700 PMCID: PMC10348424 DOI: 10.3389/fimmu.2023.1220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The liver plays pivotal roles in immunologic responses, and correct hepatic adaptations in maternal immunology are required during pregnancy. In this review, we focus on anatomical and immunological maternal hepatic adaptations during pregnancy, including our recent reports in this area. Moreover, we summarize maternal pregnancy-associated liver diseases, including hyperemesis gravidarum; intrahepatic cholestasis of pregnancy; preeclampsia, specifically hemolysis, elevated liver enzymes, and low platelet count syndrome; and acute fatty liver of pregnancy. In addition, the latest information about the factors that regulate hepatic immunology during pregnancy are reviewed for the first time, including human chorionic gonadotropin, estrogen, progesterone, growth hormone, insulin like growth factor 1, oxytocin, adrenocorticotropic hormone, adrenal hormone, prolactin, melatonin and prostaglandins. In summary, the latest progress on maternal hepatic anatomy and immunological adaptations, maternal pregnancy-associated diseases and the factors that regulate hepatic immunology during pregnancy are discussed, which may be used to prevent embryo loss and abortion, as well as pregnancy-associated liver diseases.
Collapse
|
10
|
Wu J, Fang S, Feng P, Cai C, Zhang L, Yang L. Changes in expression levels of Nod-like receptors in the spleen of ewes. Anim Reprod 2023; 20:e20220093. [PMID: 37228386 PMCID: PMC10205055 DOI: 10.1590/1984-3143-ar2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/07/2023] [Indexed: 05/27/2023] Open
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) have critical effects on interfaces of the immune and reproductive systems, and the spleen plays a key role in both innate and adaptive immune functions. It is hypothesized that NLR family participates in maternal splenic immune regulation during early pregnancy in sheep. In this study, maternal spleens were collected on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation (n = 6 for each group) in ewes. Expression of NLR family, including NOD1, NOD2, class II transactivator (CIITA), NLR family apoptosis inhibitory protein (NAIP), nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing 1 (NLRP1), NLRP3 and NLRP7, was analyzed using quantitative real-time PCR, Western blot and immunohistochemistry analysis. The results revealed that expression levels of NOD1, NOD2, CIITA and NLRP3 were downregulated at days 13 and 16 of pregnancy, but expression of NLRP3 was increased at day 25 of pregnancy. In addition, expression values of NAIP and NLRP7 mRNA and proteins were improved at days 16 and 25 of pregnancy, and NLRP1 was peaked at days 13 and 16 of pregnancy in the maternal spleen. Furthermore, NOD2 and NLRP7 proteins were limited to the capsule, trabeculae and splenic cords. In summary, early pregnancy changes expression of NLR family in the maternal spleen, which may be related with the maternal splenic immunomodulation during early pregnancy in sheep.
Collapse
Affiliation(s)
- Jiaxuan Wu
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Shengya Fang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Chunjiang Cai
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
11
|
Expression of IkappaB Family in the Ovine Liver during Early Pregnancy. Animals (Basel) 2023; 13:ani13061057. [PMID: 36978599 PMCID: PMC10044098 DOI: 10.3390/ani13061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
During normal pregnancy, there is a dynamic regulation of the maternal immune system, including the liver, to accommodate the presence of the allogeneic foetus in the uterus. However, it was unclear that the expression of the IkappaB (IκB) family was regulated in the ovine maternal liver during early pregnancy. In this study, sheep livers were collected at day 16 of the oestrous cycle (NP16), and days 13, 16 and 25 of gestation (DP13, DP16 and DP25), and RT-qPCR, Western blot and immunohistochemistry analysis were used to analyse the expression of the IκB family, including B cell leukemia-3 (BCL-3), IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. The results revealed that expression of BCL-3, IκBβ, IκBε and IKKγ peaked at DP16, and the expression of IκBα was increased during early pregnancy. In addition, the expression of IκBζ peaked at DP13 and DP16, and IκBNS peaked at DP13. IκBβ and IKKγ proteins were located in the endothelial cells of the proper hepatic arteries and portal veins, and hepatocytes. In conclusion, early pregnancy changed the expression of the IκB family, suggesting that the modulation of the IκB family may be related to the regulation of maternal hepatic functions, which may be favourable for pregnancy establishment in sheep.
Collapse
|
12
|
Fang S, Cai C, Bai Y, Zhang L, Yang L. Early Pregnancy Regulates Expression of IkappaB Family in Ovine Spleen and Lymph Nodes. Int J Mol Sci 2023; 24:ijms24065156. [PMID: 36982231 PMCID: PMC10049502 DOI: 10.3390/ijms24065156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Early pregnancy modulates the maternal immune system, including the spleen and lymph nodes, which participate in maternal innate and adaptive immune responses. Methods: Ovine spleens and lymph nodes were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and qRT-PCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the IκB family, including BCL-3, IκBα, IκBβ, IκBε, IKKγ, IκBNS and IκBζ. Early pregnancy induced expression of BCL-3, IκBα, IκBε, IKKγ and IκBζ, and expression of BCL-3, IκBβ and IκBNS peaked at day 16 of pregnancy in the spleen. However, early pregnancy suppressed the expression of BCL-3 and IκBNS, but stimulated the expression of IκBβ and IκBζ, and expression levels of IκBα, IκBβ, IκBε and IKKγ peaked in lymph nodes at days 13 and/or 16 of pregnancy. Early pregnancy changed the expression of the IκB family in the maternal spleen and lymph node in a tissue-specific manner, suggesting that the modulation of the IκB family may be involved in regulation of maternal functions of the spleen and lymph nodes, which are necessary for the establishment of maternal immune tolerance during early pregnancy in sheep.
Collapse
Affiliation(s)
- Shengya Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chunjiang Cai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
13
|
Modulation of Nod-like Receptor Expression in the Thymus during Early Pregnancy in Ewes. Vaccines (Basel) 2022; 10:vaccines10122128. [PMID: 36560538 PMCID: PMC9781860 DOI: 10.3390/vaccines10122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are involved in modulating the innate immune responses of the trophoblast and the placenta in normal pregnancy. The thymus participates in regulation of innate and adaptive immune responses. However, it is unclear whether expression of NLR is modulated in the maternal thymus during early pregnancy. In this study, thymuses were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation (n = 6 for each group) from ewes after slaughter. Different stages were chosen because the maternal thymus was under the different effects of interferon-tau and/or progesterone or not. RT-qPCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the NLR family, including NOD1; NOD2; major histocompatibility complex class II transactivator (CIITA); NLR family apoptosis inhibitory protein (NAIP); nucleotide-binding oligomerization domain and Leucine-rich repeat and Pyrin domain containing protein 1 (NLRP1), NLRP3 and NLRP7. The results showed that expression level of NOD1 was changed with the pregnancy stages, and expression levels of NOD2, CIITA, NAIP, NLRP1, NLRP3 and NLRP7 mRNA and proteins were peaked at day 13 of pregnancy. The levels of NOD2 and CIITA were increased during early pregnancy. The stainings for NOD2 and NLRP7 proteins were located in epithelial reticular cells, capillaries and thymic corpuscles. In summary, pregnancy stages changed expression of NLR family in the maternal thymus, which may be related to the modulation of maternal thymic immune responses, and beneficial for normal pregnancy in sheep.
Collapse
|
14
|
Zhao Z, Li Y, Cao J, Fang H, Zhang L, Yang L. Early Pregnancy Modulates Expression of the Nod-like Receptor Family in Lymph Nodes of Ewes. Animals (Basel) 2022; 12:ani12233285. [PMID: 36496806 PMCID: PMC9738492 DOI: 10.3390/ani12233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
NOD receptors (NLRs) mediate adaptive immune responses and immune tolerance. Nevertheless, it is not clear if gestation modulates the NLR signaling pathway in lymph nodes of ewes. In this study, lymph nodes of ewes were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation (n = 6 for each group). RT-qPCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the NLR family, including NOD1, NOD2, CIITA, NAIP, NLRP1, NLRP3 and NLRP7. The data showed that early gestation enhanced expression of NOD1, CIITA, NLRP1, NLRP3 and NLRP7 mRNA, as well as proteins at day 16 of gestation, and the expression levels of NOD2, CIITA, NLRP1 and NLRP7 were higher at days 13 and 25 of gestation than day 16 of the estrous cycle. However, NOD1 expression was lower on days 13 and 25 of gestation compared to day 16 of the estrous cycle, and early gestation suppressed NAIP expression. In summary, early pregnancy modulated expression of the NLR family in ovine lymph nodes, which participates in immune regulation, and this modulation may be necessary for pregnancy establishment in ewes.
Collapse
|