1
|
Sekiya T, Holley MC. The Glial Scar: To Penetrate or Not for Motor Pathway Restoration? Cell Transplant 2025; 34:9636897251315271. [PMID: 40152462 PMCID: PMC11951902 DOI: 10.1177/09636897251315271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 03/29/2025] Open
Abstract
Although notable progress has been made, restoring motor function from the brain to the muscles continues to be a substantial clinical challenge in motor neuron diseases/disorders such as spinal cord injury (SCI). While cell transplantation has been widely explored as a potential therapeutic method for reconstructing functional motor pathways, there remains considerable opportunity for enhancing its therapeutic effectiveness. We reviewed studies on motor pathway regeneration to identify molecular and ultrastructural cues that could enhance the efficacy of cell transplantation. While the glial scar is often cited as an intractable barrier to axon regeneration, this mainly applies to axons trying to penetrate its "core" to reach the opposite side. However, the glial scar exhibits a "duality," with an anti-regenerative core and a pro-regenerative "surface." This surface permissiveness is attributed to pro-regenerative molecules, such as laminin in the basement membrane (BM). Transplanting donor cells onto the BM, which forms plastically after injury, may significantly enhance the efficacy of cell transplantation. Specifically, forming detour pathways between transplanted cells and endogenous propriospinal neurons on the pro-regenerative BM may efficiently bypass the intractable scar core and promote motor pathway regeneration. We believe harnessing the tissue's innate repair capacity is crucial, and targeting post-injury plasticity in astrocytes and Schwann cells, especially those associated with the BM that has predominantly been overlooked in the field of SCI research, can advance motor system restoration to a new stage. A shift in cell delivery routes-from the traditional intra-parenchymal (InP) route to the transplantation of donor cells onto the pro-regenerative BM via the extra-parenchymal (ExP) route-may signify a transformative step forward in neuro-regeneration research. Practically, however, the complementary use of both InP and ExP methods may offer the most substantial benefit for restoring motor pathways. We aim for this review to deepen the understanding of cell transplantation and provide a framework for evaluating the efficacy of this therapeutic modality in comparison to others.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, England
| |
Collapse
|
2
|
Ho MH, Tsai YJ, Chen CY, Yang A, Burnouf T, Wang Y, Chiang YH, Hoffer BJ, Chou SY. CCL5 is essential for axonogenesis and neuronal restoration after brain injury. J Biomed Sci 2024; 31:91. [PMID: 39285280 PMCID: PMC11406852 DOI: 10.1186/s12929-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) causes axon tearing and synapse degradation, resulting in multiple neurological dysfunctions and exacerbation of early neurodegeneration; the repair of axonal and synaptic structures is critical for restoring neuronal function. C-C Motif Chemokine Ligand 5 (CCL5) shows many neuroprotective activities. METHOD A close-head weight-drop system was used to induce mild brain trauma in C57BL/6 (wild-type, WT) and CCL5 knockout (CCL5-KO) mice. The mNSS score, rotarod, beam walking, and sticker removal tests were used to assay neurological function after mTBI in different groups of mice. The restoration of motor and sensory functions was impaired in CCL5-KO mice after one month of injury, with swelling of axons and synapses from Golgi staining and reduced synaptic proteins-synaptophysin and PSD95. Administration of recombinant CCL5 (Pre-treatment: 300 pg/g once before injury; or post-treatment: 30 pg/g every 2 days, since 3 days after injury for 1 month) through intranasal delivery into mouse brain improved the motor and sensory neurological dysfunctions in CCL5-KO TBI mice. RESULTS Proteomic analysis using LC-MS/MS identified that the "Nervous system development and function"-related proteins, including axonogenesis, synaptogenesis, and myelination signaling pathways, were reduced in injured cortex of CCL5-KO mice; both pre-treatment and post-treatment with CCL5 augmented those pathways. Immunostaining and western blot analysis confirmed axonogenesis and synaptogenesis related Semaphorin, Ephrin, p70S6/mTOR signaling, and myelination-related Neuregulin/ErbB and FGF/FAK signaling pathways were up-regulated in the cortical tissue by CCL5 after brain injury. We also noticed cortex redevelopment after long-term administration of CCL5 after brain injury with increased Reelin positive Cajal-Rerzius Cells and CXCR4 expression. CCL5 enhanced the growth of cone filopodia in a primary neuron culture system; blocking CCL5's receptor CCR5 by Maraviroc reduced the intensity of filopodia in growth cone and also CCL5 mediated mTOR and Rho signalling activation. Inhibiting mTOR and Rho signaling abolished CCL5 induced growth cone formation. CONCLUSIONS CCL5 plays a critical role in starting the intrinsic neuronal regeneration system following TBI, which includes growth cone formation, axonogenesis and synaptogensis, remyelination, and the subsequent proper wiring of cortical circuits. Our study underscores the potential of CCL5 as a robust therapeutic stratagem in treating axonal injury and degeneration during the chronic phase after mild brain injury.
Collapse
Affiliation(s)
- Man-Hau Ho
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei City, 11031, Taiwan
| | - Yih-Jeng Tsai
- Department of Otolaryngology Head and Neck Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 11160, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 24352, Taiwan
| | - Chia-Yen Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei City, 11031, Taiwan
| | - Anastasia Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei City, 11031, Taiwan
- Department of Molecular and Cell Biology, University of California, Berkeley, LA, 94720, USA
| | - Thierry Burnouf
- Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Zhunan, 350401, Taiwan
| | - Yung-Hsiao Chiang
- Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Barry J Hoffer
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei City, 11031, Taiwan
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Scientist Emeritus, National Institutes of Health, Maryland, 20892, USA
| | - Szu-Yi Chou
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, 11031, Taiwan.
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xing Street, Taipei City, 11031, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
3
|
Tsang CK, Zheng XS. Role of RNA polymerase III transcription and regulation in ischaemic stroke. RNA Biol 2024; 21:1-10. [PMID: 39363536 PMCID: PMC11457610 DOI: 10.1080/15476286.2024.2409554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - X.F. Steven Zheng
- Rutgers Cancer Institute, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
4
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
5
|
Zhu Z, Huang X, Du M, Wu C, Fu J, Tan W, Wu B, Zhang J, Liao ZB. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol Psychiatry 2023; 28:2630-2644. [PMID: 37340171 PMCID: PMC10615752 DOI: 10.1038/s41380-023-02126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Post-traumatic stress disorder (PTSD) is usually considered a psychiatric disorder upon emotional trauma. However, with the rising number of conflicts and traffic accidents around the world, the incidence of PTSD has skyrocketed along with traumatic brain injury (TBI), a complex neuropathological disease due to external physical force and is also the most common concurrent disease of PTSD. Recently, the overlap between PTSD and TBI is increasingly attracting attention, as it has the potential to stimulate the emergence of novel treatments for both conditions. Of note, treatments exploiting the microRNAs (miRNAs), a well-known class of small non-coding RNAs (ncRNAs), have rapidly gained momentum in many nervous system disorders, given the miRNAs' multitudinous and key regulatory role in various biological processes, including neural development and normal functioning of the nervous system. Currently, a wealth of studies has elucidated the similarities of PTSD and TBI in pathophysiology and symptoms; however, there is a dearth of discussion with respect to miRNAs in both PTSD and TBI. In this review, we summarize the recent available studies of miRNAs in PTSD and TBI and discuss and highlight promising miRNAs therapeutics for both conditions in the future.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
7
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M, Razmeh S, Shabaninejad Z, Yousefi F, Behrouj H, Ghasemi H, Khatami SH. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40:232-247. [PMID: 35258097 DOI: 10.1002/cbf.3692] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Traumatic brain injury (TBI) is one of the most concerning health issues in which the normal brain function may be disrupted as a result of a blow, bump, or jolt to the head. Loss of consciousness, amnesia, focal neurological defects, alteration in mental state, and destructive diseases of the nervous system such as cognitive impairment, Parkinson's, and Alzheimer's disease. Parkinson's disease is a chronic progressive neurodegenerative disorder, characterized by the early loss of striatal dopaminergic neurons. TBI is a major risk factor for Parkinson's disease. Existing therapeutic approaches have not been often effective, indicating the necessity of discovering more efficient therapeutic targets. The mammalian target of rapamycin (mTOR) signaling pathway responds to different environmental cues to modulate a large number of cellular processes such as cell proliferation, survival, protein synthesis, autophagy, and cell metabolism. Moreover, mTOR has been reported to affect the regeneration of the injured nerves throughout the central nervous system (CNS). In this context, recent evaluations have revealed that mTOR inhibitors could be potential targets to defeat a group of neurological disorders, and thus, a number of clinical trials are investigating their efficacy in treating dementia, autism, epilepsy, stroke, and brain injury, as irritating neurological defects. The current review describes the interplay between mTOR signaling and major CNS-related disorders (esp. neurodegenerative diseases), as well as the mTOR signaling-TBI relationship. It also aims to discuss the promising therapeutic capacities of mTOR inhibitors during the TBI.
Collapse
Affiliation(s)
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Khalifeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeed Razmeh
- Department of Internal Medicine, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis 2021; 12:949. [PMID: 34654807 PMCID: PMC8519909 DOI: 10.1038/s41419-021-04240-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Caspases are an evolutionary conserved family of cysteine-dependent proteases that are involved in many vital cellular processes including apoptosis, proliferation, differentiation and inflammatory response. Dysregulation of caspase-mediated apoptosis and inflammation has been linked to the pathogenesis of various diseases such as inflammatory diseases, neurological disorders, metabolic diseases, and cancer. Multiple caspase inhibitors have been designed and synthesized as a potential therapeutic tool for the treatment of cell death-related pathologies. However, only a few have progressed to clinical trials because of the consistent challenges faced amongst the different types of caspase inhibitors used for the treatment of the various pathologies, namely an inadequate efficacy, poor target specificity, or adverse side effects. Importantly, a large proportion of this failure lies in the lack of understanding various caspase functions. To overcome the current challenges, further studies on understanding caspase function in a disease model is a fundamental requirement to effectively develop their inhibitors as a treatment for the different pathologies. Therefore, the present review focuses on the descriptive properties and characteristics of caspase inhibitors known to date, and their therapeutic application in animal and clinical studies. In addition, a brief discussion on the achievements, and current challenges faced, are presented in support to providing more perspectives for further development of successful therapeutic caspase inhibitors for various diseases.
Collapse
Affiliation(s)
- Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Yun Zhao
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
10
|
Campolo M, Casili G, Lanza M, Filippone A, Cordaro M, Ardizzone A, Scuderi SA, Cuzzocrea S, Esposito E, Paterniti I. The inhibition of mammalian target of rapamycin (mTOR) in improving inflammatory response after traumatic brain injury. J Cell Mol Med 2021; 25:7855-7866. [PMID: 34245104 PMCID: PMC8358860 DOI: 10.1111/jcmm.16702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Traumatic brain injury (TBI) provokes primary and secondary damage on endothelium and brain parenchyma, leading neurons die rapidly by necrosis. The mammalian target of rapamycin signalling pathway (mTOR) manages numerous aspects of cellular growth, and it is up-regulated after moderate to severe traumatic brain injury (TBI). Currently, the significance of this increased signalling event for the recovery of brain function is unclear; therefore, we used two different selective inhibitors of mTOR activity to discover the functional role of mTOR inhibition in a mouse model of TBI performed by a controlled cortical impact injury (CCI). Treatment with KU0063794, a dual mTORC1 and mTORC2 inhibitor, and with rapamycin as well-known inhibitor of mTOR, was performed 1 and 4 hours subsequent to TBI. Results proved that mTOR inhibitors, especially KU0063794, significantly improved cognitive and motor recovery after TBI, reducing lesion volumes. Also, treatment with mTOR inhibitors ameliorated the neuroinflammation associated with TBI, showing a diminished neuronal death and astrogliosis after trauma. Our findings propose that the involvement of selective mTORC1/2 inhibitor may represent a therapeutic strategy to improve recovery after brain trauma.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Guan C, Luan L, Li J, Yang L. MiR-212-3p improves rat functional recovery and inhibits neurocyte apoptosis in spinal cord injury models via PTEN downregulation-mediated activation of AKT/mTOR pathway. Brain Res 2021; 1768:147576. [PMID: 34216580 DOI: 10.1016/j.brainres.2021.147576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Multiple cellular and molecular changes are involved in the etiology of spinal cord injury (SCI) and the recovery from SCI. Accumulating studies showed aberrant expression of microRNAs (miRNAs) after SCI. Here, we established in vivo and in vitro models to analyze the role of miR-212-3p in SCI. METHODS An in vivo model of SCI was established in Sprague-Dawley rats. SCI-induced histopathological changes of the spinal cord were observed by hematoxylin-eosin staining. Functional recovery of rats with SCI was evaluated using the Basso-Beattie-and-Bresnahan scale. PC12 cells were stimulated by lipopolysaccharide (LPS) to establish SCI model of neuronal apoptosis in vitro. Dual-luciferase reporter assay was performed to validate the potential target of miR-212-3p predicted by TargetScan 7.2. MTT assay and flow cytometry were carried out to measure the viability and apoptosis of PC12 cell, respectively. The expressions of miR-212-3p, PTEN, phosphorylated (p)-AKT, AKT, p-mTOR, mTOR, Cleaved caspase-3 and BCl-2 in spinal cord tissues and PC12 cells were analyzed by qRT-PCR or Western blot. RESULTS In the spinal cord of rats with SCI, the expressions of miR-212-3p, p-AKT, p-mTOR and BCl-2 were downregulated, whereas those of PTEN and Cleaved caspase-3 were upregulated. BBB scores were low, and there were histopathological changes, which were all reversed after the injection of agomiR-212-3p. MiR-212-3p directly targeted PTEN. Upregulated miR-212-3p in LPS-injured PC12 cells suppressed apoptosis, downregulated the expressions of PTEN and Cleaved caspase-3, promoted viability and upregulated the expressions of p-AKT, p-mTOR and BCl-2, which were all reversed by overexpressed PTEN. CONCLUSION MiR-212-3p improved functional recovery of SCI rats and inhibited LPS-induced neurocyte apoptosis by targeting PTEN to activate AKT/mTOR pathway.
Collapse
Affiliation(s)
- Congjin Guan
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology Affiliated Hospital, China
| | - Liyi Luan
- Department of Orthopedic, The People's Hospital of Gaotang, China
| | - Ji Li
- School of Integrated Chinese and Western Medical, Southwest Medical University, China
| | - Lei Yang
- Department of Neurosurgery, Kunming Children's Hospital, China.
| |
Collapse
|
12
|
Ma Y, Liu Y, Ruan X, Liu X, Zheng J, Teng H, Shao L, Yang C, Wang D, Xue Y. Gene Expression Signature of Traumatic Brain Injury. Front Genet 2021; 12:646436. [PMID: 33859672 PMCID: PMC8042258 DOI: 10.3389/fgene.2021.646436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Traumatic brain injury (TBI) is a brain function change caused by external forces, which is one of the main causes of death and disability worldwide. The aim of this study was to identify early diagnostic markers and potential therapeutic targets for TBI. Methods: Differences between TBI and controls in GSE89866 and GSE104687 were analyzed. The two groups of differentially expressed genes (DEGs) were combined for coexpression analysis, and the modules of interest were performed using enrichment analysis. Hub genes were identified by calculating area under curve (AUC) values of module genes, PPI network analysis, and functional similarity. Finally, the difference in immune cell infiltration between TBI and control was calculated by ssGSEA. Results: A total of 4,817 DEGs were identified in GSE89866 and 1,329 DEGs in GSE104687. They were clustered into nine modules. The genes of modules 1, 4, and 7 had the most crosstalk and were identified as important modules. Enrichment analysis revealed that they were mainly associated with neurodevelopment and immune inflammation. In the PPI network constructed by genes with top 50 AUC values in module genes, we identified the top 10 genes with the greatest connectivity. Among them, down-regulated RPL27, RPS4X, RPL23A, RPS15A, and RPL7A had similar functions and were identified as hub genes. In addition, DC and Tem were significantly up-regulated and down-regulated between TBI and control, respectively. Conclusion: We found that hub genes may have a diagnostic role for TBI. Molecular dysregulation mechanisms of TBI are associated with neurological and immune inflammation. These results may provide new ideas for the diagnosis and treatment of TBI.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Hao Teng
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
13
|
Soga T, Nakajima S, Kawaguchi M, Parhar IS. Repressor element 1 silencing transcription factor /neuron-restrictive silencing factor (REST/NRSF) in social stress and depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110053. [PMID: 32739332 DOI: 10.1016/j.pnpbp.2020.110053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 12/14/2022]
Abstract
Extreme stress is closely linked with symptoms of depression. Chronic social stress can cause structural and functional changes in the brain. These changes are associated with dysfunction of neuroprotective signalling that is necessary for cell survival, growth, and maturation. Reduced neuronal numbers and volume of brain regions have been found in depressed patients, which may be caused by decreased cell survival and increased cell death. Elucidating the mechanism underlying the degeneration of the neuroprotective system in social stress-induced depression is important for developing neuroprotective measures. The Repressor Element 1 Silencing Transcription Factor (REST) also known as Neuron-Restrictive Silencing Factor (NRSF) has been reported as a neuroprotective molecule in certain neurological disorders. Decreased expression levels of REST/NRSF in the nucleus can induce death-related gene expression, leading to neuronal death. Under physiological stress conditions, REST/NRSF over expression is known to activate neuronal survival in the brain. Alterations in REST/NRSF expression in the brain has been reported in stressed animal models and in the post-mortem brain of patients with depression. Here, we highlight the neuroprotective function of REST/NRSF and discuss dysregulation of REST/NRSF and neuronal damage during social stress and depression.
Collapse
Affiliation(s)
- Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia
| | - Shingo Nakajima
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia
| | - Maiko Kawaguchi
- Laboratory of Animal Behaviour and Environmental Science, School of Agriculture, Kawasaki, Kanagawa 214-8571, Japan
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, PJ, 47500, Malaysia.
| |
Collapse
|
14
|
Tang Y, Dong X, Chen G, Ye W, Kang J, Tang Y, Feng Z. Vagus Nerve Stimulation Attenuates Early Traumatic Brain Injury by Regulating the NF-κB/NLRP3 Signaling Pathway. Neurorehabil Neural Repair 2020; 34:831-843. [PMID: 32772884 DOI: 10.1177/1545968320948065] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Oxidative stress, inflammation, and apoptosis are vital pathophysiological features post-TBI. OBJECTIVES Research has shown that vagus nerve stimulation (VNS) can attenuate oxidative stress in various diseases. However, the critical role of VNS in TBI is still not completely understood. This study investigated the protective effects and potential mechanism of VNS on TBI. METHODS Male Sprague-Dawley rats were randomized into 3 groups: sham, TBI, and TBI + VNS. The TBI model was induced in rats by the free-fall drop method. The vagal nerve trunk was separated, and VNS was performed after establishing the TBI model. RESULTS The results showed that VNS significantly ameliorated tissue damage, neurological deficits, and cerebral edema, compared with the sham VNS group. Additionally, VNS alleviated oxidative stress, inflammation, and apoptosis in the pericontusive cortex of rats after TBI. VNS also significantly suppressed expression of the nuclear factor-κB (NF-κB) protein in the nucleus and activation of the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome. CONCLUSIONS Taken together, the present study indicates that VNS may attenuate brain damage after TBI by inhibiting oxidative stress, inflammation, and apoptosis, possibly through the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Gengfa Chen
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Wen Ye
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Junwei Kang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhen Feng
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
15
|
Liu J, Li K, Huang K, Yang C, Huang Z, Zhao X, Song S, Pang T, Zhou J, Wang Y, Wang C, Tang Y. Acellularized spinal cord scaffolds incorporating bpV(pic)/PLGA microspheres promote axonal regeneration and functional recovery after spinal cord injury. RSC Adv 2020; 10:18677-18686. [PMID: 35518337 PMCID: PMC9053942 DOI: 10.1039/d0ra02661a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 01/20/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery. Phosphatase and tensin homolog (PTEN) inhibition by pharmacological blockade with bisperoxovanadium (pic) (bpV(pic)) has been reported to increase AKT/mTOR activity and induce robust axonal elongation and regeneration. However, the therapeutic effect of bpV(pic) in treating SCI is limited due to the lack of efficient delivery approaches. In this study, a composite scaffold consisting of an acellular spinal cord (ASC) scaffold and incorporated bpV(pic) loaded poly (lactic-co-glycolic acid) (PLGA) microspheres was developed, in order to improve the therapeutic effect of bpV(pic) on SCI. The inhibition of PTEN activity and activation of the mTORC1/AKT pathway, the axonal regeneration and the markers of apoptosis were analyzed via western blot and immunofluorescence in vitro. The bpV(pic)/PLGA/ASC scaffolds showed excellent biocompatibility and promoted the viability of neural stem cells and axonal growth in vitro. Implantation of the composite scaffold into rats with hemi-sectioned SCI resulted in increased axonal regeneration and functional recovery in vivo. Besides, bpV(pic) inhibited the phosphorylation of PTEN and activated the PI3K/mTOR signaling pathway. The successful construction of the composite scaffold improves the therapeutic effect of bpV(pic) on SCI.
Collapse
Affiliation(s)
- Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdong510000China
| | - Ke Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Zhipeng Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Xingchang Zhao
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Shiqiang Song
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Taisen Pang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| | - Jing Zhou
- Department of Anatomy, Youjiang Medical College for NationalitiesBaiseGuangxi533000China
| | - Yuhai Wang
- Academy of Orthopedics, People's Hospital of Ningxia Hui Autonomous RegionNingxia502213China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of TechnologyNo. 1 University Road, Songshan LakeDongguanGuangdong523808P. R. China+86-1341-6885162
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities18 Zhongshan II RoadBaiseGuangxi533000China+86-0776-2833076
| |
Collapse
|
16
|
Wang J, Rong Y, Ji C, Lv C, Jiang D, Ge X, Gong F, Tang P, Cai W, Liu W, Fan J. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury. J Nanobiotechnology 2020; 18:72. [PMID: 32404105 PMCID: PMC7222346 DOI: 10.1186/s12951-020-00630-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Spinal cord injury (SCI) has a very disabling central nervous system impact but currently lacks effective treatment. Bone marrow-derived macrophages (BMDMs) are recruited to the injured area after SCI and participate in the regulation of functional recovery with microglia. Previous studies have shown that M2 microglia-derived small extracellular vesicles (SEVs) have neuroprotective effects, but the effects of M2 BMDM-derived sEVs (M2 BMDM-sEVs) have not been reported in SCI treatment. Results In this study, we investigated the role of M2 BMDM-sEVs in vivo and in vitro for SCI treatment and its mechanism. Our results indicated that M2 BMDM-sEVs promoted functional recovery after SCI and reduced neuronal apoptosis in mice. In addition, M2 BMDM-sEVs targeted mammalian target of rapamycin (mTOR) to enhance the autophagy level of neurons and reduce apoptosis. MicroRNA-421-3P (miR-421-3p) can bind to the 3′ untranslated region (3′UTR) of mTOR. MiR-421-3p mimics significantly reduced the activity of luciferase-mTOR 3′UTR constructs and increased autophagy. At the same time, tail vein injection of inhibitors of SEVs (Inh-sEVs), which were prepared by treatment with an miR-421-3p inhibitor, showed diminished protective autophagy of neuronal cells in vivo. Conclusions In conclusion, M2 BMDM-sEVs inhibited the mTOR autophagy pathway by transmitting miR-421-3p, which reduced neuronal apoptosis and promoted functional recovery after SCI, suggesting that M2 BMDM-sEVs may be a potential therapy for SCI.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuluo Rong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengyue Ji
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chengtang Lv
- Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Dongdong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xuhui Ge
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangyi Gong
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pengyu Tang
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Weihua Cai
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Wei Liu
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Jin Fan
- Department of Orthopaedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
17
|
Huang R, Huang Y, Zeng G, Li M, Jin Y. Ursodeoxycholic acid inhibits intimal hyperplasia, vascular smooth muscle cell excessive proliferation, migration via blocking miR-21/PTEN/AKT/mTOR signaling pathway. Cell Cycle 2020; 19:918-932. [PMID: 32202193 PMCID: PMC7217369 DOI: 10.1080/15384101.2020.1732514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive migration and proliferation of vascular smooth muscle cells (VSMCs) are critical cellular events that lead to intimal hyperplasia in atherosclerosis and restenosis. In this study, we investigated the protective effects of ursodeoxycholic acid (UDCA) on intimal hyperplasia and VSMC proliferation and migration, and the underlying mechanisms by which these events occur. A rat unilateral carotid artery was ligated to induce vascular injury and the microRNA (miRNA) expression profiles were determined using miRNA microarray analysis. We observed that UDCA significantly reduced the degree of intimal hyperplasia and induced miR-21 dysregulation. Restoration of miR-21 by agomir-miR-21 reversed the protective effects of UDCA on intimal hyperplasia and proliferation in vivo. In vitro, UDCA suppressed PDGF-BB-induced VSMC proliferation, invasion and migration in a dose-dependent manner, whereas the suppressive effect of UDCA was abrogated by overexpression of miR-21 in PDGF-BB-incubated VSMCs. Furthermore, we identified that miR-21 in VSMCs targeted the phosphatase and tensin homolog (PTEN), a tumor suppressor gene, negatively modulated the AKT/mTOR pathway. More importantly, we observed that that UDCA suppressed AKT/mTOR signaling pathway in the carotid artery injury model, whereas this pathway was reactivated by overexpression of miR-21. Taken together, our findings indicated that UDCA inhibited intimal hyperplasia and VSMCs excessive migration and proliferation via blocking miR-21/PTEN/AKT/mTOR signaling pathway, which suggests that UDCA may be a promising candidate for the therapy of atherosclerosis.
Collapse
Affiliation(s)
- Rong Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Huang
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Zeng
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengfan Li
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongzhi Jin
- Department of General Surgery, Putuo Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Xia Z, Liu W, Zheng F, Huang W, Xing Z, Peng W, Tang T, Luo J, Yi L, Wang Y. VISSA-PLS-DA-Based Metabolomics Reveals a Multitargeted Mechanism of Traditional Chinese Medicine for Traumatic Brain Injury. ASN Neuro 2020; 12:1759091420910957. [PMID: 32146828 PMCID: PMC7066589 DOI: 10.1177/1759091420910957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metabolomics is an emerging tool to uncover the complex pathogenesis of disease, as well as the multitargets of traditional Chinese medicines, with chemometric analysis being a key step. However, conventional algorithms are not suitable for directly analyzing data at all times. The variable iterative space shrinkage approach-partial least squares-discriminant analysis, a novel algorithm for data mining, was first explored to screen metabolic varieties to reveal the multitargets of Xuefu Zhuyu decoction (XFZY) against traumatic brain injury (TBI) by the 7th day. Rat plasma from Sham, Vehicle, and XFZY groups was used for gas chromatography/mass spectrometry-based metabolomics. This method showed an improved discrimination ability (area under the curve = 93.64%). Threonine, trans-4-hydroxyproline, and creatinine were identified as the direct metabolic targets of XFZY against TBI. Five metabolic pathways affected by XFZY in TBI rats, were enriched using Metabolic Pathway Analysis web tool (i.e., phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; galactose metabolism; alanine, aspartate, and glutamate metabolism; and tryptophan metabolism). In conclusion, metabolomics coupled with variable iterative space shrinkage approach-partial least squares-discriminant analysis model may be a valuable tool for identifying the holistic molecular mechanisms involved in the effects of traditional Chinese medicine, such as XFZY.
Collapse
Affiliation(s)
- Zian Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Wenbin Liu
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology
| | - Fei Zheng
- College of Electrical and Information Engineering, Hunan University
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Zhihua Xing
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| | - Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University
| |
Collapse
|
19
|
Weiss HR, Mellender SJ, Kiss GK, Liu X, Chi OZ. Improvement in Microregional Oxygen Supply/Consumption Balance and Infarct Size After Cerebral Ischemia-Reperfusion With Inhibition of p70 Ribosomal S6 Kinase (S6K1). J Stroke Cerebrovasc Dis 2019; 28:104276. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023] Open
|
20
|
Ko J, Hemphill M, Yang Z, Beard K, Sewell E, Shallcross J, Schweizer M, Sandsmark DK, Diaz-Arrastia R, Kim J, Meaney D, Issadore D. Multi-Dimensional Mapping of Brain-Derived Extracellular Vesicle MicroRNA Biomarker for Traumatic Brain Injury Diagnostics. J Neurotrauma 2019; 37:2424-2434. [PMID: 30950328 DOI: 10.1089/neu.2018.6220] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diagnosis and prognosis of traumatic brain injury (TBI) is complicated by variability in the type and severity of injuries and the multiple endophenotypes that describe each patient's response and recovery to the injury. It has been challenging to capture the multiple dimensions that describe an injury and its recovery to provide clinically useful information. To address this challenge, we have performed an open-ended search for panels of microRNA (miRNA) biomarkers, packaged inside of brain-derived extracellular vesicles (EVs), that can be combined algorithmically to accurately classify various states of injury. We mapped GluR2+ EV miRNA across a variety of injury types, injury intensities, history of injuries, and time elapsed after injury, and sham controls in a pre-clinical murine model (n = 116), as well as in clinical samples (n = 36). We combined next-generation sequencing with a technology recently developed by our lab, Track Etched Magnetic Nanopore (TENPO) sorting, to enrich for GluR2+ EVs and profile their miRNA. By mapping and comparing brain-derived EV miRNA between various injuries, we have identified signaling pathways in the packaged miRNA that connect these biomarkers to underlying mechanisms of TBI. Many of these pathways are shared between the pre-clinical model and the clinical samples, and present distinct signatures across different injury models and times elapsed after injury. Using this map of EV miRNA, we applied machine learning to define a panel of biomarkers to successfully classify specific states of injury, paving the way for a prognostic blood test for TBI. We generated a panel of eight miRNAs (miR-150-5p, miR-669c-5p, miR-488-3p, miR-22-5p, miR-9-5p, miR-6236, miR-219a.2-3p, miR-351-3p) for injured mice versus sham mice and four miRNAs (miR-203b-5p, miR-203a-3p, miR-206, miR-185-5p) for TBI patients versus healthy controls.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zijian Yang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jamie Shallcross
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa Schweizer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Rana A, Singh S, Sharma R, Kumar A. Traumatic Brain Injury Altered Normal Brain Signaling Pathways: Implications for Novel Therapeutics Approaches. Curr Neuropharmacol 2019; 17:614-629. [PMID: 30207236 PMCID: PMC6712292 DOI: 10.2174/1570159x16666180911121847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is the main reason of lifelong disability and casualty worldwide. In the United State alone, 1.7 million traumatic events occur yearly, out of which 50,000 results in deaths. Injury to the brain could alter various biological signaling pathways such as excitotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis which can result in various neurological disorders such as Psychosis, Depression, Alzheimer disease, Parkinson disease, etc. In literature, various reports have indicated the alteration of these pathways after traumatic brain injury but the exact mechanism is still unclear. Thus, in the first part of this article, we have tried to summarize TBI as a modulator of various neuronal signaling pathways. Currently, very few drugs are available in the market for the treatment of TBI and these drugs only provide the supportive care. Thus, in the second part of the article, based on TBI altered signaling pathways, we have tried to find out potential targets and promising therapeutic approaches in the treatment of TBI.
Collapse
Affiliation(s)
| | | | | | - Anoop Kumar
- Address correspondence to this author at the Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab-142001, India; Tel: +91 636 324200/324201; E-mail:
| |
Collapse
|
22
|
Cheng X, Li K, Liu M, Xu M, Hu X, Yan R, Förster E, Zhao S. The effect of P85 on neuronal proliferation and differentiation during development of mouse cerebral cortex. Dev Biol 2018; 441:95-103. [DOI: 10.1016/j.ydbio.2018.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/23/2018] [Accepted: 06/23/2018] [Indexed: 12/28/2022]
|
23
|
Chen XB, Wang ZL, Yang QY, Zhao FY, Qin XL, Tang XE, Du JL, Chen ZH, Zhang K, Huang FJ. Diosgenin Glucoside Protects against Spinal Cord Injury by Regulating Autophagy and Alleviating Apoptosis. Int J Mol Sci 2018; 19:ijms19082274. [PMID: 30072674 PMCID: PMC6121626 DOI: 10.3390/ijms19082274] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic lesion of central nervous system (CNS) with only a limited number of restorative therapeutic options. Diosgenin glucoside (DG), a major bioactive ingredient of Trillium tschonoskii Max., possesses neuroprotective effects through its antioxidant and anti-apoptotic functions. In this study, we investigated the therapeutic benefit and underlying mechanisms of DG treatment in SCI. We found that in Sprague-Dawley rats with traumatic SCI, the expressions of autophagy marker Light Chain 3 (LC3) and Beclin1 were decreased with concomitant accumulation of autophagy substrate protein p62 and ubiquitinated proteins, indicating an impaired autophagic activity. DG treatment, however, significantly attenuated p62 expression and upregulated the Rheb/mTOR signaling pathway (evidenced as Ras homolog enriched in brain) due to the downregulation of miR-155-3p. We also observed significantly less tissue injury and edema in the DG-treated group, leading to appreciable functional recovery compared to that of the control group. Overall, the observed neuroprotection afforded by DG treatment warrants further investigation on its therapeutic potential in SCI.
Collapse
Affiliation(s)
- Xian-Bing Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Zi-Li Wang
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Qing-Yu Yang
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Fang-Yu Zhao
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Xiao-Li Qin
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Xian-E Tang
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Jun-Long Du
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Zong-Hai Chen
- College of Medicine, Hubei University for Nationalities, Enshi 445000, China.
| | - Kui Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Fei-Jun Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Are We Ready for a Human Head Transplant? The Obstacles That Must Be Overcome. CURRENT TRANSPLANTATION REPORTS 2018. [DOI: 10.1007/s40472-018-0196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Huang C, Hu G. Shikonin suppresses proliferation and induces apoptosis in endometrioid endometrial cancer cells via modulating miR-106b/PTEN/AKT/mTOR signaling pathway. Biosci Rep 2018; 38:BSR20171546. [PMID: 29449346 PMCID: PMC5897745 DOI: 10.1042/bsr20171546] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/22/2022] Open
Abstract
Shikonin, a natural naphthoquinone isolated from a traditional Chinese medicinal herb, which exerts anticancer effects in various cancers. However, the molecular mechanisms underlying the therapeutic effects of shikonin against endometrioid endometrial cancer (EEC) have not yet been fully elucidated. Herein, we investigated anticancer effects of shikonin on EEC cells and explored the underlying molecular mechanism. We observed that shikonin inhibits proliferation in human EEC cell lines in a dose-dependent manner. Moreover, shikonin-induced apoptosis was characterized by the up-regulation of the pro-apoptotic proteins cleaved-Caspase-3 and Bax, and the down-regulation of the anti-apoptotic protein Bcl-2. Microarray analyses demonstrated that shikonin induces many miRNAs' dysregulation, and miR-106b was one of the miRNAs being most significantly down-regulated. miR-106b was identified to exert procancer effect in various cancers, but in EEC remains unclear. We first confirmed that miR-106b is up-regulated in EEC tissues and cells, and knockdown of miR-106b suppresses proliferation and promotes apoptosis. Meanwhile, our results validated that the restored expression of miR-106b abrogates the antiproliferative and pro-apoptotic effects of shikonin. We also identified that miR-106b targets phosphatase and tensin homolog (PTEN), a tumor suppressor gene, which in turn modulates AKT/mTOR signaling pathway. Our findings indicated that shikonin inhibits proliferation and promotes apoptosis in human EEC cells by modulating the miR-106b/PTEN/AKT/mTOR signaling pathway, suggesting shikonin could act a potential therapeutic agent in the EEC treatment.
Collapse
Affiliation(s)
- Caimei Huang
- Department of Traditional Chinese Medicine, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, China
| | - Guohua Hu
- Gynecology of Traditional Chinese Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine Affiliated to Shanghai TCM University, Shanghai 200071, China
| |
Collapse
|
26
|
Ferrucci M, Biagioni F, Lenzi P, Gambardella S, Ferese R, Calierno MT, Falleni A, Grimaldi A, Frati A, Esposito V, Limatola C, Fornai F. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells. Oncotarget 2018; 8:29574-29599. [PMID: 28418837 PMCID: PMC5444688 DOI: 10.18632/oncotarget.15906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
| | - Stefano Gambardella
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Rosangela Ferese
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Maria Teresa Calierno
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alfonso Grimaldi
- Department of Physiology and Pharmacology, La Sapienza University of Rome, Roma, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| | - Vincenzo Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy.,Department of Physiology and Pharmacology, La Sapienza University of Rome, Roma, Italy
| | - Cristina Limatola
- Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy.,Department of Physiology and Pharmacology, La Sapienza University of Rome, Roma, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
27
|
Qu Y, Liu Y, Chen L, Zhu Y, Xiao X, Wang D, Zhu Y. Nobiletin prevents cadmium-induced neuronal apoptosis by inhibiting reactive oxygen species and modulating JNK/ERK1/2 and Akt/mTOR networks in rats. Neurol Res 2018; 40:211-220. [PMID: 29334873 DOI: 10.1080/01616412.2018.1424685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yu Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Li Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yanmei Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Xingjun Xiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| |
Collapse
|
28
|
Zhu H, Xie R, Liu X, Shou J, Gu W, Gu S, Che X. MicroRNA-494 improves functional recovery and inhibits apoptosis by modulating PTEN/AKT/mTOR pathway in rats after spinal cord injury. Biomed Pharmacother 2017; 92:879-887. [PMID: 28601045 DOI: 10.1016/j.biopha.2017.05.143] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/27/2017] [Accepted: 05/31/2017] [Indexed: 01/16/2023] Open
Abstract
Multiple cellular, molecular, and biochemical changes contribute to the etiology and treatment outcome of contusion spinal cord injury (SCI). MicroRNAs (miRNAs) aberrant expression have been found after SCI in recent studies. However, little is known about the functional significance of the unique role of miRNAs in SCI. Here, we established a rat SCI model and performed the miRNA microarray to analyze miRNAs expression at different times post-SCI. Microarray data revealed that 14 miRNAs were upregulated and 46 miRNAs were downregulated by 2 times compared with sham rat spinal cords, and miR-494 was one of the miRNAs being most significantly downregulated. Subsequently, we investigated miR-494 function and found that upregulation of miR-494 by agomir-494 improves functional recovery, reduces lesion size and inhibits apoptotic cell in rats following SCI. Moreover, our data showed that miR-494 suppresses phosphatase and tensin homolog (PTEN), a negative regulator of AKT/mTOR pathway, through directly targeting its 3'-UTR in BV-2 cells. Most importantly, we demonstrated that overexpression of miR-494 activates AKT/mTOR signaling pathway via inhibiting PTEN expression in rat SCI model. These findings suggested that miR-494 harbored the protective effect after SCI by modulating PTEN/AKT/mTOR pathway in rats and it is a potential candidate for SCI therapeutics.
Collapse
Affiliation(s)
- Huaguang Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaodong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiajun Shou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wentao Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shixin Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaoming Che
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
29
|
Swiatkowski P, Nikolaeva I, Kumar G, Zucco A, Akum BF, Patel MV, D'Arcangelo G, Firestein BL. Role of Akt-independent mTORC1 and GSK3β signaling in sublethal NMDA-induced injury and the recovery of neuronal electrophysiology and survival. Sci Rep 2017; 7:1539. [PMID: 28484273 PMCID: PMC5431483 DOI: 10.1038/s41598-017-01826-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity, mediated by overstimulation of N-methyl-D-aspartate (NMDA) receptors, is a mechanism that causes secondary damage to neurons. The early phase of injury causes loss of dendritic spines and changes to synaptic activity. The phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) pathway has been implicated in the modulation and regulation of synaptic strength, activity, maturation, and axonal regeneration. The present study focuses on the physiology and survival of neurons following manipulation of Akt and several downstream targets, such as GSK3β, FOXO1, and mTORC1, prior to NMDA-induced injury. Our analysis reveals that exposure to sublethal levels of NMDA does not alter phosphorylation of Akt, S6, and GSK3β at two and twenty four hours following injury. Electrophysiological recordings show that NMDA-induced injury causes a significant decrease in spontaneous excitatory postsynaptic currents at both two and twenty four hours, and this phenotype can be prevented by inhibiting mTORC1 or GSK3β, but not Akt. Additionally, inhibition of mTORC1 or GSK3β promotes neuronal survival following NMDA-induced injury. Thus, NMDA-induced excitotoxicity involves a mechanism that requires the permissive activity of mTORC1 and GSK3β, demonstrating the importance of these kinases in the neuronal response to injury.
Collapse
Affiliation(s)
- Przemyslaw Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Ina Nikolaeva
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Gaurav Kumar
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Avery Zucco
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Mihir V Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.
| |
Collapse
|
30
|
Nikolaeva I, Kazdoba TM, Crowell B, D'Arcangelo G. Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders. Neuroscience 2017; 354:196-207. [PMID: 28457820 DOI: 10.1016/j.neuroscience.2017.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Mutations in the PI3K/Akt/mTOR signaling pathway or in the upstream negative regulator Pten cause human brain overgrowth disorders, such as focal cortical dysplasia and megalencephaly, and are characterized by the presence of hypertrophic neurons. These disorders often have a pediatric onset and a high comorbidity with drug-resistant epilepsy; however, effective pharmacological treatments are lacking. We established forebrain excitatory neuron-specific Pten-deficient cultures as an in vitro model of brain overgrowth disorders, and investigated the effects of this Pten mutation on PI3K/Akt/mTOR signaling and neuronal growth. Mutant neurons exhibit excessive PI3K/Akt/mTOR signaling activity, enlarged somas and increased dendritic arborization. To understand the contributions of Akt and mTORC1 kinases to the hypertrophy phenotype, we evaluated the effects of short-term treatment with the Akt inhibitor MK-2206, and the mTORC1 inhibitor RAD001, which have shown safety and efficacy in human cancer clinical trials. We found that RAD001 treatment only partially reversed the morphological abnormalities of Pten mutant neurons, whereas MK-2206 treatment completely rescued the phenotype. Interestingly, neither treatment altered the size or morphology of normal neurons. Our results suggest that Akt is a major determinant of neuronal growth, and that Akt inhibition may be an effective strategy for pharmacological intervention in brain overgrowth disorders.
Collapse
Affiliation(s)
- Ina Nikolaeva
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Molecular Biosciences, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tatiana M Kazdoba
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Beth Crowell
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
31
|
The immunologic considerations in human head transplantation. Int J Surg 2017; 41:196-202. [PMID: 28130190 DOI: 10.1016/j.ijsu.2017.01.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 11/24/2022]
Abstract
The idea of head transplantation appears at first as unrealistic, unethical, and futile. Here we discuss immunological considerations in human head transplantation. In a separate accompanying article we discuss surgical, ethical, and psychosocial issues concerned in body-to-head transplantation (BHT) [1]. The success of such an unusual allograft, where the donor and the recipient can reject each other, depends on prevention of complex immunologic reactions, especially rejection of the head by the body (graft-vs-host) or probably less likely, the possibility of the head rejecting the total body allograft (host-vs-graft). The technical and immunologic difficulties are enormous, especially since rapid nerve and cord connections and regeneration have not yet been possible to achieve. In this article we begin by briefly reviewing neuro-immunologic issues that may favor BHT such as the blood brain barrier (BBB) and point out its shortcomings. And we touch on the cellular and humoral elements in the brain proper that differ in some respects from those in other organs and in the periphery. Based on recent successes in vascular composite allografts (VCAs), we will elaborate on potential specific advantages and difficulties in BHT of various available immunosuppressive medications already utilized in VCAs. The risk/benefit ratio of these drugs will be emphasized in relation to direct brain toxicity such as seizure disorders, interference, or promotion of nerve regeneration, and potentiation of cerebral viral infections. The final portion of this article will focus on pre-transplant immunologic manipulation of the deceased donor body along with pretreatment of the recipient.
Collapse
|
32
|
Finnegan J, Ye H. Cell therapy for spinal cord injury informed by electromagnetic waves. Regen Med 2016; 11:675-91. [DOI: 10.2217/rme-2016-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Collapse
Affiliation(s)
- Jack Finnegan
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
33
|
Gutilla EA, Steward O. Selective neuronal PTEN deletion: can we take the brakes off of growth without losing control? Neural Regen Res 2016; 11:1201-3. [PMID: 27651754 PMCID: PMC5020805 DOI: 10.4103/1673-5374.189160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The limited ability for injured adult axons to regenerate is a major cause for limited functional recovery after injury to the nervous system, motivating numerous efforts to uncover mechanisms capable of enhancing regeneration potential. One promising strategy involves deletion or knockdown of the phosphatase and tensin (PTEN) gene. Conditional genetic deletion of PTEN before, immediately following, or several months after spinal cord injury enables neurons of the corticospinal tract (CST) to regenerate their axons across the lesion, which is accompanied by enhanced recovery of skilled voluntary motor functions mediated by the CST. Although conditional genetic deletion or knockdown of PTEN in neurons enables axon regeneration, PTEN is a well-known tumor suppressor and mutations of the PTEN gene disrupt brain development leading to neurological abnormalities including macrocephaly, seizures, and early mortality. The long-term consequences of manipulating PTEN in the adult nervous system, as would be done for therapeutic intervention after injury, are only now being explored. Here, we summarize evidence indicating that long-term deletion of PTEN in mature neurons does not cause evident pathology; indeed, cortical neurons that have lived without PTEN for over 1 year appear robust and healthy. Studies to date provide only a first look at potential negative consequences of PTEN deletion or knockdown, but the absence of any detectable neuropathology supports guarded optimism that interventions to enable axon regeneration after injury are achievable.
Collapse
Affiliation(s)
- Erin A Gutilla
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Neurobiology & Behavior, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Neurosurgery, University of California Irvine School of Medicine, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
34
|
The mTOR signalling cascade: paving new roads to cure neurological disease. Nat Rev Neurol 2016; 12:379-92. [PMID: 27340022 DOI: 10.1038/nrneurol.2016.81] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.
Collapse
|
35
|
Citraro R, Leo A, Constanti A, Russo E, De Sarro G. mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis. Pharmacol Res 2016; 107:333-343. [DOI: 10.1016/j.phrs.2016.03.039] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022]
|
36
|
Gutilla EA, Buyukozturk MM, Steward O. Long-term consequences of conditional genetic deletion of PTEN in the sensorimotor cortex of neonatal mice. Exp Neurol 2016; 279:27-39. [PMID: 26896833 DOI: 10.1016/j.expneurol.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/18/2022]
Abstract
Targeted deletion of the phosphatase and tensin homolog on chromosome ten (PTEN) gene in the sensorimotor cortex of neonatal mice enables robust regeneration of corticospinal tract (CST) axons following spinal cord injury as adults. Here, we assess the consequences of long-term conditional genetic PTEN deletion on cortical structure and neuronal morphology and screen for neuropathology. Mice with a LoxP-flanked exon 5 of the PTEN gene (PTENf/f mice) received AAV-Cre injections into the sensorimotor cortex at postnatal day 1 (P1) and were allowed to survive for up to 18months. As adults, mice were assessed for exploratory activity (open field), and motor coordination using the Rotarod®. Some mice received injections of Fluorogold into the spinal cord to retrogradely label the cells of origin of the CST. Brains were prepared for neurohistology and immunostained for PTEN and phospho-S6, which is a downstream marker of mammalian target of rapamycin (mTOR) activation. Immunostaining revealed a focal area of PTEN deletion affecting neurons in all cortical layers, although in some cases PTEN expression was maintained in many small-medium sized neurons in layers III-IV. Neurons lacking PTEN were robustly stained for pS6. Cortical thickness was significantly increased and cortical lamination was disrupted in the area of PTEN deletion. PTEN-negative layer V neurons that give rise to the CST, identified by retrograde labeling, were larger than neurons with maintained PTEN expression, and the relative area occupied by neuropil vs. cell bodies was increased. There was no evidence of tumor formation or other neuropathology. Mice with PTEN deletion exhibited open field activity comparable to controls and there was a trend for impaired Rotarod performance (not statistically significant). Our findings indicate that early postnatal genetic deletion of PTEN that is sufficient to enable axon regeneration by adult neurons causes neuronal hypertrophy but no other detectable neuropathology.
Collapse
Affiliation(s)
- Erin A Gutilla
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Melda M Buyukozturk
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, United States; Departments of Anatomy and Neurobiology, University of California, Irvine, United States; Neurobiology and Behavior, University of California, Irvine, United States; Neurosurgery, University of California, Irvine, United States; School of Medicine, University of California, Irvine, United States.
| |
Collapse
|
37
|
Chen CH, Sung CS, Huang SY, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH, Wen ZH, Chen WF. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 2016; 278:27-41. [PMID: 26828688 DOI: 10.1016/j.expneurol.2016.01.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Abstract
Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shi-Ying Huang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Wei Feng
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Han-Chun Hung
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan
| | - San-Nan Yang
- I-Shou University, School of Medicine, College of Medicine and Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan
| | - Nan-Fu Chen
- Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Wu-Fu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
38
|
Xing Z, Xia Z, Peng W, Li J, Zhang C, Fu C, Tang T, Luo J, Zou Y, Fan R, Liu W, Xiong X, Huang W, Sheng C, Gan P, Wang Y. Xuefu Zhuyu decoction, a traditional Chinese medicine, provides neuroprotection in a rat model of traumatic brain injury via an anti-inflammatory pathway. Sci Rep 2016; 6:20040. [PMID: 26818584 PMCID: PMC4730240 DOI: 10.1038/srep20040] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is central to the pathology of traumatic brain injury (TBI). Xuefu Zhuyu decoction (XFZY) is an effective traditional Chinese medicine to treat TBI. To elucidate its potential molecular mechanism, this study aimed to demonstrate that XFZY functions as an anti-inflammatory agent by inhibiting the PI3K-AKT-mTOR pathway. Sprague-Dawley rats were exposed to controlled cortical impact to produce a neuroinflammatory response. The treatment groups received XFZY (9 g/kg and 18 g/kg), Vehicle group and Sham group were gavaged with equal volumes of saline. The modified neurologic severity score (mNSS) and the Morris water maze test were used to assess neurological deficits. Arachidonic acid (AA) levels in brain tissue were measured using tandem gas chromatography-mass spectrometry. TNF-α and IL-1β levels in injured ipsilateral brain tissue were detected by ELISA. AKT and mTOR expression were measured by western blot analysis. The results indicated that XFZY significantly enhanced spatial memory acquisition. XFZY (especially at a dose of 9 g/kg) markedly reduced the mNSS and levels of AA, TNF-α and IL-1β. Significant downregulation of AKT/mTOR/p70S6K proteins in brain tissues was observed after the administration of XFZY (especially at a dose of 9 g/kg). XFZY may be a promising therapeutic strategy for reducing inflammation in TBI.
Collapse
Affiliation(s)
- Zhihua Xing
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zian Xia
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Weijun Peng
- Department of traditional Chinese medicine, 2nd Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Jun Li
- Thyroid Tumour Internal Medicine Department, Cancer Hospital affiliated to Xiangya School of Medicine, Central South University, 410013 Changsha, China
| | - Chunhu Zhang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chunyan Fu
- Department of Pharmacy, Shaoyang Medical College Level Specialty School, 422000 Shaoyang, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Jiekun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yong Zou
- Department of Gerontology and Respiratory Diseases, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Rong Fan
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Weiping Liu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Xingui Xiong
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Wei Huang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chenxia Sheng
- Department of traditional Chinese medicine, 2nd Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| |
Collapse
|
39
|
Al-Ali H, Lemmon VP, Bixby JL. Phenotypic Screening of Small-Molecule Inhibitors: Implications for Therapeutic Discovery and Drug Target Development in Traumatic Brain Injury. Methods Mol Biol 2016; 1462:677-688. [PMID: 27604745 DOI: 10.1007/978-1-4939-3816-2_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The inability of central nervous system (CNS) neurons to regenerate damaged axons and dendrites following traumatic brain injury (TBI) creates a substantial obstacle for functional recovery. Apoptotic cell death, deposition of scar tissue, and growth-repressive molecules produced by glia further complicate the problem and make it challenging for re-growing axons to extend across injury sites. To date, there are no approved drugs for the treatment of TBI, accentuating the need for relevant leads. Cell-based and organotypic bioassays can better mimic outcomes within the native CNS microenvironment than target-based screening methods and thus should speed the discovery of therapeutic agents that induce axon or dendrite regeneration. Additionally, when used to screen focused chemical libraries such as small-molecule protein kinase inhibitors, these assays can help elucidate molecular mechanisms involved in neurite outgrowth and regeneration as well as identify novel drug targets. Here, we describe a phenotypic cellular (high content) screening assay that utilizes brain-derived primary neurons for screening small-molecule chemical libraries.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 331365, USA
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 331365, USA
- Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL, 331365, USA
- Departments of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 331365, USA
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 331365, USA.
- Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL, 331365, USA.
- Departments of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 331365, USA.
- Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, 1400 NW 10th Ave., DT 1205, Miami, FL, 331365, USA.
| |
Collapse
|
40
|
Chi OZ, Barsoum S, Vega-Cotto NM, Jacinto E, Liu X, Mellender SJ, Weiss HR. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia. Neuroscience 2015; 316:321-7. [PMID: 26742793 DOI: 10.1016/j.neuroscience.2015.12.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/18/2015] [Accepted: 12/23/2015] [Indexed: 01/08/2023]
Abstract
Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- O Z Chi
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - S Barsoum
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - N M Vega-Cotto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - E Jacinto
- Dept. of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - X Liu
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - S J Mellender
- Dept. of Anesthesiology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - H R Weiss
- Dept. of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
41
|
Butler CR, Boychuk JA, Smith BN. Effects of Rapamycin Treatment on Neurogenesis and Synaptic Reorganization in the Dentate Gyrus after Controlled Cortical Impact Injury in Mice. Front Syst Neurosci 2015; 9:163. [PMID: 26640431 PMCID: PMC4661228 DOI: 10.3389/fnsys.2015.00163] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/10/2015] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one consequence of traumatic brain injury (TBI). A prominent cell signaling pathway activated in animal models of both TBI and epilepsy is the mammalian target of rapamycin (mTOR). Inhibition of mTOR with rapamycin has shown promise as a potential modulator of epileptogenesis in several animal models of epilepsy, but cellular mechanisms linking mTOR expression and epileptogenesis are unclear. In this study, the role of mTOR in modifying functional hippocampal circuit reorganization after focal TBI induced by controlled cortical impact (CCI) was investigated. Rapamycin (3 or 10 mg/kg), an inhibitor of mTOR signaling, was administered by intraperitoneal injection beginning on the day of injury and continued daily until tissue collection. Relative to controls, rapamycin treatment reduced dentate granule cell area in the hemisphere ipsilateral to the injury two weeks post-injury. Brain injury resulted in a significant increase in doublecortin immunolabeling in the dentate gyrus ipsilateral to the injury, indicating increased neurogenesis shortly after TBI. Rapamycin treatment prevented the increase in doublecortin labeling, with no overall effect on Fluoro-Jade B staining in the ipsilateral hemisphere, suggesting that rapamycin treatment reduced posttraumatic neurogenesis but did not prevent cell loss after injury. At later times post-injury (8–13 weeks), evidence of mossy fiber sprouting and increased recurrent excitation of dentate granule cells was detected, which were attenuated by rapamycin treatment. Rapamycin treatment also diminished seizure prevalence relative to vehicle-treated controls after TBI. Collectively, these results support a role for adult neurogenesis in PTE development and suggest that suppression of epileptogenesis by mTOR inhibition includes effects on post-injury neurogenesis.
Collapse
Affiliation(s)
- Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky Lexington, KY, USA
| | - Jeffery A Boychuk
- Department of Physiology, College of Medicine, University of Kentucky Lexington, KY, USA ; Epilepsy Center, University of Kentucky Lexington, KY, USA ; Center for Advanced Translational Stroke Science, University of Kentucky Lexington, KY, USA
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky Lexington, KY, USA ; Epilepsy Center, University of Kentucky Lexington, KY, USA ; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky Lexington, KY, USA
| |
Collapse
|
42
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
43
|
Berry M, Ahmed Z, Morgan-Warren P, Fulton D, Logan A. Prospects for mTOR-mediated functional repair after central nervous system trauma. Neurobiol Dis 2015; 85:99-110. [PMID: 26459109 DOI: 10.1016/j.nbd.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/09/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023] Open
Abstract
Recent research has suggested that the growth of central nervous system (CNS) axons during development is mediated through the PI3K/Akt/mammalian target of rapamycin (mTOR) intracellular signalling axis and that suppression of activity in this pathway occurs during maturity as levels of the phosphatase and tensin homologue (PTEN) rise and inhibit PI3K activation of mTOR, accounting for the failure of axon regeneration in the injured adult CNS. This hypothesis is supported by findings confirming that suppression of PTEN in experimental adult animals promotes impressive axon regeneration in the injured visual and corticospinal motor systems. This review focuses on these recent developments, discussing the therapeutic potential of a mTOR-based treatment aimed at promoting functional recovery in CNS trauma patients, recognising that to fulfil this ambition, the new therapy should aim to promote not only axon regeneration but also remyelination of regenerated axons, neuronal survival and re-innervation of denervated targets through accurate axonal guidance and synaptogenesis, all with minimal adverse effects. The translational challenges presented by the implementation of this new axogenic therapy are also discussed.
Collapse
Affiliation(s)
- Martin Berry
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Peter Morgan-Warren
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Daniel Fulton
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
44
|
Nikolaeva I, Crowell B, Valenziano J, Meaney D, D'Arcangelo G. Beneficial Effects of Early mTORC1 Inhibition after Traumatic Brain Injury. J Neurotrauma 2015; 33:183-93. [PMID: 26122481 DOI: 10.1089/neu.2015.3899] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) signaling pathway mediates many aspects of cell growth and regeneration and is upregulated after moderate to severe traumatic brain injury (TBI). The significance of this increased signaling event for recovery of brain function is presently unclear. We analyzed the time course and cell specificity of mTORC1 signal activation in the mouse hippocampus after moderate controlled cortical impact (CCI) and identified an early neuronal peak of activity that occurs within a few hours after injury. We suppressed this peak activity by a single injection of the mTORC1 inhibitor rapamycin 1 h after CCI and showed that this acute treatment significantly diminishes the extent of neuronal death, astrogliosis, and cognitive impairment 1-3 days after injury. Our findings suggest that the early neuronal peak of mTORC1 activity after TBI is deleterious to brain function, and that acute, early intervention with mTORC1 inhibitors after injury may represent an effective form of treatment to improve recovery in human patients.
Collapse
Affiliation(s)
- Ina Nikolaeva
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey.,2 Graduate Program in Molecular Bioscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| | - Beth Crowell
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| | - Julia Valenziano
- 3 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - David Meaney
- 3 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Gabriella D'Arcangelo
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey.,2 Graduate Program in Molecular Bioscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| |
Collapse
|
45
|
Wang ZY, Lin JH, Muharram A, Liu WG. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis. Apoptosis 2014; 19:933-45. [PMID: 24623173 DOI: 10.1007/s10495-014-0976-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1 expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increased Bcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical University, Fuzhou, 086-350001, China
| | | | | | | |
Collapse
|
46
|
Zhu X, Park J, Golinski J, Qiu J, Khuman J, Lee CCH, Lo EH, Degterev A, Whalen MJ. Role of Akt and mammalian target of rapamycin in functional outcome after concussive brain injury in mice. J Cereb Blood Flow Metab 2014; 34:1531-9. [PMID: 24938400 PMCID: PMC4158669 DOI: 10.1038/jcbfm.2014.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 11/09/2022]
Abstract
Akt (protein kinase B) and mammalian target of rapamycin (mTOR) have been implicated in the pathogenesis of cell death and cognitive outcome after cerebral contusion in mice; however, a role for Akt/mTOR in concussive brain injury has not been well characterized. In a mouse closed head injury (CHI) concussion traumatic brain injury (TBI) model, phosphorylation of Akt (p-Akt), mTOR (p-mTOR), and S6RP (p-S6RP) was increased by 24 hours in cortical and hippocampal brain homogenates (P<0.05 versus sham for each), and p-S6RP was robustly induced in IBA-1+ microglia and glial fibrillary acidic protein-positive (GFAP+) astrocytes. Pretreatment with inhibitors of Akt or mTOR individually by the intracerebroventricular route reduced phosphorylation of their respective direct substrates FOXO1 (P<0.05) or S6RP (P<0.05) after CHI, confirming the activity of inhibitors. Rapamycin pretreatment significantly worsened hidden platform (P<0.01) and probe trial (P<0.05) performance in CHI mice. Intracerebroventricular administration of necrostatin-1 (Nec-1) before CHI increased hippocampal Akt and S6RP phosphorylation and improved place learning (probe trials, P<0.001 versus vehicle), whereas co-administration of rapamycin or Akt inhibitor with Nec-1 eliminated improved probe trial performance. These data suggest a beneficial role for Akt/mTOR signaling after concussion TBI independent of cell death that may contribute to improved outcome by Nec-1.
Collapse
Affiliation(s)
- Xiaoxia Zhu
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [3] Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Juyeon Park
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Julianne Golinski
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jianhua Qiu
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jugta Khuman
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christopher C H Lee
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eng H Lo
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University, Boston, Massachusetts, USA
| | - Michael J Whalen
- 1] Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA [2] Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
47
|
Chen S, Gu C, Xu C, Zhang J, Xu Y, Ren Q, Guo M, Huang S, Chen L. Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. J Neurochem 2013; 128:256-266. [PMID: 24111524 DOI: 10.1111/jnc.12474] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Celastrol, a plant-derived triterpene, has shown neuroprotective effects in various disease models. However, little is known regarding the effect of celastrol on Cd-induced neurotoxicity. Here, we show that celastrol protected against Cd-induced apoptotic cell death in neuronal cells. This is supported by the findings that celastrol strikingly attenuated Cd-induced viability reduction, morphological change, nuclear fragmentation, and condensation, as well as activation of caspase-3 in neuronal cells. Concurrently, celastrol remarkably blocked Cd-induced phosphorylation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinases 1/2 and p38, in neuronal cells. Inhibition of JNK by SP600125 or over-expression of dominant negative c-Jun potentiated celastrol protection against Cd-induced cell death. Furthermore, pre-treatment with celastrol prevented Cd down-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and activation of phosphoinositide 3'-kinase/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling in neuronal cells. Over-expression of wild-type PTEN enhanced celastrol inhibition of Cd-activated Akt/mTOR signaling and cell death in neuronal cells. The findings indicate that celastrol prevents Cd-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. Our results strongly suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders. Celastrol, a plant-derived triterpene, has shown neuroprotective effects. However, little is known regarding the effect of celastrol on cadmium (Cd) neurotoxicity. This study underscores that celastrol prevents Cd-induced neuronal apoptosis via inhibiting activation of JNK (c-Jun N-terminal kinase) and Akt/mTOR network. Celastrol suppresses Cd-activated Akt/mTOR pathway by elevating PTEN (phosphatase and tensin homolog). The findings suggest that celastrol may be exploited for the prevention of Cd-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Sujuan Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chenjian Gu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chong Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinfei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yijiao Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qian Ren
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Min Guo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Los Angeles, USA
| | - Long Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
48
|
del Olmo-Aguado S, Núñez-Álvarez C, Ji D, Manso AG, Osborne NN. RTP801 immunoreactivity in retinal ganglion cells and its down-regulation in cultured cells protect them from light and cobalt chloride. Brain Res Bull 2013; 98:132-44. [PMID: 23978538 DOI: 10.1016/j.brainresbull.2013.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
RTP801, a stress-related protein, is activated by adverse environmental conditions and inhibits the activity of mammalian target of rapamycin (mTOR) in promoting oxidative stress-dependent cell death. RTP801 exists both in the mammalian retina and the lens of the eye. Here, we observed RTP801 immunoreactivity in some retinal ganglion cells. Intravitreal injection of cobalt chloride (CoCl2) to mimick hypoxia influenced retinal GFAP (glial fibrillary acidic protein) and heme oxygenase-1 (HO-1) levels, but did not affect RTP801 immunoreactivity or mRNA content relative to GAPDH. However, RTP801 mRNA was elevated when compared with Brn3a mRNA, suggesting that RTP801 is activated in stressed Brn3a retinal ganglion cells. In cultures of RGC-5 cells, RTP801 immunoreactivity was located in the cytoplasm and partly present in the mitochondria. An insult of blue light or CoCl2 increased RTP801 expression, which was accompanied by cell death. However, in cultures where RTP801 mRNA was down-regulated, the negative influence of blue light and CoCl2 was blunted. Rapamycin nullified the CoCl2-induced up-regulation of RTP801 and attenuated cell death. Moreover, rapamycin was non-toxic to RGC-5 cells, even at a high concentration (10μM). The protective effect of rapamycin on RGC-5 cells caused by the inhibition of RTP801 suggests that rapamycin might attenuate retinal ganglion cell death in situ, as in glaucoma.
Collapse
Affiliation(s)
- Susana del Olmo-Aguado
- Fundación de Investigación Oftalmológica, Avda. Doctores Fernández-Vega 34, E-33012 Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
49
|
Al-Ali H, Schürer SC, Lemmon VP, Bixby JL. Chemical interrogation of the neuronal kinome using a primary cell-based screening assay. ACS Chem Biol 2013; 8:1027-36. [PMID: 23480631 DOI: 10.1021/cb300584e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A fundamental impediment to functional recovery from spinal cord injury (SCI) and traumatic brain injury is the lack of sufficient axonal regeneration in the adult central nervous system. There is thus a need to develop agents that can stimulate axon growth to re-establish severed connections. Given the critical role played by protein kinases in regulating axon growth and the potential for pharmacological intervention, small molecule protein kinase inhibitors present a promising therapeutic strategy. Here, we report a robust cell-based phenotypic assay, utilizing primary rat hippocampal neurons, for identifying small molecule kinase inhibitors that promote neurite growth. The assay is highly reliable and suitable for medium-throughput screening, as indicated by its Z'-factor of 0.73. A focused structurally diverse library of protein kinase inhibitors was screened, revealing several compound groups with the ability to strongly and consistently promote neurite growth. The best performing bioassay hit robustly and consistently promoted axon growth in a postnatal cortical slice culture assay. This study can serve as a jumping-off point for structure activity relationship (SAR) and other drug discovery approaches toward the development of drugs for treating SCI and related neurological pathologies.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Stephan C. Schürer
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Vance P. Lemmon
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - John L. Bixby
- Miami Project to Cure Paralysis, ‡Center for Computational Sciences, and Departments of §Neurological Surgery and ∥Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
50
|
Kaeberlein M. mTOR Inhibition: From Aging to Autism and Beyond. SCIENTIFICA 2013; 2013:849186. [PMID: 24379984 PMCID: PMC3860151 DOI: 10.1155/2013/849186] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/27/2013] [Indexed: 05/10/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved protein that regulates growth and proliferation in response to environmental and hormonal cues. Broadly speaking, organisms are constantly faced with the challenge of interpreting their environment and making a decision between "grow or do not grow." mTOR is a major component of the network that makes this decision at the cellular level and, to some extent, the tissue and organismal level as well. Although overly simplistic, this framework can be useful when considering the myriad functions ascribed to mTOR and the pleiotropic phenotypes associated with genetic or pharmacological modulation of mTOR signaling. In this review, I will consider mTOR function in this context and attempt to summarize and interpret the growing body of literature demonstrating interesting and varied effects of mTOR inhibitors. These include robust effects on a multitude of age-related parameters and pathologies, as well as several other processes not obviously linked to aging or age-related disease.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, 1959 NE Pacific Street, D-514, Seattle, WA 98195-7470, USA
- *Matt Kaeberlein:
| |
Collapse
|