1
|
Lerchenmüller C, Hastings MH, Rabolli CP, Betge F, Roshan M, Liu LX, Liu X, Heß C, Roh JD, Platt C, Bezzerides V, Busch M, Katus HA, Frey N, Most P, Rosenzweig A. CITED4 gene therapy protects against maladaptive cardiac remodeling after ischemia/reperfusion injury in mice. Mol Ther 2024; 32:3683-3694. [PMID: 39066479 PMCID: PMC11489533 DOI: 10.1016/j.ymthe.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiac signaling pathways functionally important in the heart's response to exercise often protect the heart against pathological stress, potentially providing novel therapeutic targets. However, it is important to determine which of these pathways can be feasibly targeted in vivo. Transgenic overexpression of exercise-induced CITED4 has been shown to protect against adverse remodeling after ischemia/reperfusion injury (IRI). Here we investigated whether somatic gene transfer of CITED4 in a clinically relevant time frame could promote recovery after IRI. Cardiac CITED4 gene delivery via intravenous AAV9 injections in wild type mice led to an approximately 3-fold increase in cardiac CITED4 expression. After 4 weeks, CITED4-treated animals developed physiological cardiac hypertrophy without adverse remodeling. In IRI, delivery of AAV9-CITED4 after reperfusion resulted in a 6-fold increase in CITED4 expression 1 week after surgery, as well as decreased apoptosis, fibrosis, and inflammatory markers, culminating in a smaller scar and improved cardiac function 8 weeks after IRI, compared with control mice receiving AAV9-GFP. Somatic gene transfer of CITED4 induced a phenotype suggestive of physiological cardiac growth and mitigated adverse remodeling after ischemic injury. These studies support the feasibility of CITED4 gene therapy delivered in a clinically relevant time frame to mitigate adverse ventricular remodeling after ischemic injury.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Chair of Gender Medicine, University of Zurich, 8006 Zurich, Switzerland; Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Margaret H Hastings
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Charles P Rabolli
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fynn Betge
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Mani Roshan
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Laura X Liu
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojun Liu
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Chiara Heß
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jason D Roh
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Colin Platt
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Vassilios Bezzerides
- Harvard Medical School, Boston, MA 02115, USA; Cardiology Department, Boston Children's Hospital, Boston, MA 02115, USA
| | - Martin Busch
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anthony Rosenzweig
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Jiang J, Ni L, Zhang X, Chatterjee E, Lehmann HI, Li G, Xiao J. Keeping the Heart Healthy: The Role of Exercise in Cardiac Repair and Regeneration. Antioxid Redox Signal 2023; 39:1088-1107. [PMID: 37132606 DOI: 10.1089/ars.2023.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Significance: Heart failure is often accompanied by a decrease in the number of cardiomyocytes. Although the adult mammalian hearts have limited regenerative capacity, the rate of regeneration is extremely low and decreases with age. Exercise is an effective means to improve cardiovascular function and prevent cardiovascular diseases. However, the molecular mechanisms of how exercise acts on cardiomyocytes are still not fully elucidated. Therefore, it is important to explore the role of exercise in cardiomyocytes and cardiac regeneration. Recent Advances: Recent advances have shown that the effects of exercise on cardiomyocytes are critical for cardiac repair and regeneration. Exercise can induce cardiomyocyte growth by increasing the size and number. It can induce physiological cardiomyocyte hypertrophy, inhibit cardiomyocyte apoptosis, and promote cardiomyocyte proliferation. In this review, we have discussed the molecular mechanisms and recent studies of exercise-induced cardiac regeneration, with a focus on its effects on cardiomyocytes. Critical Issues: There is no effective way to promote cardiac regeneration. Moderate exercise can keep the heart healthy by encouraging adult cardiomyocytes to survive and regenerate. Therefore, exercise could be a promising tool for stimulating the regenerative capability of the heart and keeping the heart healthy. Future Directions: Although exercise is an important measure to promote cardiomyocyte growth and subsequent cardiac regeneration, more studies are needed on how to do beneficial exercise and what factors are involved in cardiac repair and regeneration. Thus, it is important to clarify the mechanisms, pathways, and other critical factors involved in the exercise-mediated cardiac repair and regeneration. Antioxid. Redox Signal. 39, 1088-1107.
Collapse
Affiliation(s)
- Jizong Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Lingyan Ni
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xinxin Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Emeli Chatterjee
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - H Immo Lehmann
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
3
|
Schulman-Geltzer EB, Collins HE, Hill BG, Fulghum KL. Coordinated Metabolic Responses Facilitate Cardiac Growth in Pregnancy and Exercise. Curr Heart Fail Rep 2023; 20:441-450. [PMID: 37581772 PMCID: PMC10589193 DOI: 10.1007/s11897-023-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW Pregnancy and exercise are systemic stressors that promote physiological growth of the heart in response to repetitive volume overload and maintenance of cardiac output. This type of remodeling is distinct from pathological hypertrophy and involves different metabolic mechanisms that facilitate growth; however, it remains unclear how metabolic changes in the heart facilitate growth and if these processes are similar in both pregnancy- and exercise-induced cardiac growth. RECENT FINDINGS The ability of the heart to metabolize a myriad of substrates balances cardiac demands for energy provision and anabolism. During pregnancy, coordination of hormonal status with cardiac reductions in glucose oxidation appears important for physiological growth. During exercise, a reduction in cardiac glucose oxidation also appears important for physiological growth, which could facilitate shuttling of glucose-derived carbons into biosynthetic pathways for growth. Understanding the metabolic underpinnings of physiological cardiac growth could provide insight to optimize cardiovascular health and prevent deleterious remodeling, such as that which occurs from postpartum cardiomyopathy and heart failure. This short review highlights the metabolic mechanisms known to facilitate pregnancy-induced and exercise-induced cardiac growth, both of which require changes in cardiac glucose metabolism for the promotion of growth. In addition, we mention important similarities and differences of physiological cardiac growth in these models as well as discuss current limitations in our understanding of metabolic changes that facilitate growth.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Helen E Collins
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kyle L Fulghum
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA.
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Choobineh S, Borjian Fard M, Soori R, Mazaheri Z. Telocytes response to cardiac growth induced by resistance exercise training and endurance exercise training in adult male rats. J Physiol Sci 2023; 73:12. [PMID: 37301825 PMCID: PMC10716977 DOI: 10.1186/s12576-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Telocytes are interstitial cells found in different tissues, including cardiac stem cell niches. The purpose of this study was to investigate the response of the telocytes to the cardiac growth that occurs in response to resistance and endurance exercise trainings using rats distributed into control, endurance, and resistance training groups. Results revealed that the ratio of heart weight to body weight, cardiomycyte number, cardiomyocyte area, thickness of the left ventricular wall were significantly higher in the training groups compared to the control group. We observed increment in the cardiomyocytes surface area and thickness of the left ventricular wall in the resistance-training group than endurance-training group. We conclude that both resistance and endurance exercise trainings will lead to an increased number of cardiac telocytes, consequently, promote activity of the cardiac stem cells, and results in physiological cardiac growth, and this response does not seem to depend on the type of exercise.
Collapse
Affiliation(s)
- Siroos Choobineh
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Mahboobeh Borjian Fard
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Zohreh Mazaheri
- Basic Medical Science Research Center, Histogenotech Company, Tehran, Iran
| |
Collapse
|
5
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Qiu Y, Pan X, Chen Y, Xiao J. Hallmarks of exercised heart. J Mol Cell Cardiol 2021; 164:126-135. [PMID: 34914934 DOI: 10.1016/j.yjmcc.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
The benefits of exercise in humans on the heart have been well recognized for many years. Long-term endurance exercise training can induce physiologic cardiac hypertrophy with normal or enhanced heart function, and provide protective benefits in preventing heart failure. The heart-specific responses that occur during exercise are complex and highly variable. This review mainly focuses on the current understanding of the structural and functional cardiac adaptations to exercise as well as molecular pathways and signaling proteins responsible for these changes. Here, we summarize eight tentative hallmarks that represent common denominators of the exercised heart. These hallmarks are: cardiomyocyte growth, cardiomyocyte fate reprogramming, angiogenesis and lymphangiogenesis, mitochondrial remodeling, epigenetic alteration, enhanced endothelial function, quiescent cardiac fibroblast, and improved cardiac metabolism. A major challenge is to explore the underlying molecular mechanisms for cardio-protective effects of exercise, and to identify therapeutic targets for heart diseases.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xue Pan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yiwen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Targets identified from exercised heart: killing multiple birds with one stone. NPJ Regen Med 2021; 6:23. [PMID: 33837221 PMCID: PMC8035363 DOI: 10.1038/s41536-021-00128-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a major cause of mortality worldwide, which are mainly driven by factors such as aging, sedentary lifestyle, and excess alcohol use. Exercise targets several molecules and protects hearts against many of these physiological and pathological stimuli. Accordingly, it is widely recognized as an effective therapeutic strategy for CVD. To investigate the molecular mechanism of exercise in cardiac protection, we identify and describe several crucial targets identified from exercised hearts. These targets include insulin-like growth factor 1 (IGF1)-phosphatidylinositol 3 phosphate kinase (PI3K)/protein kinase B (AKT), transcription factor CCAAT/enhancer-binding protein β (C/EBPβ), cardiac microRNAs (miRNAs, miR-222 and miR-17-3p etc.), exosomal-miRNAs (miR-342, miR-29, etc.), Sirtuin 1 (SIRT1), and nuclear factor erythroid 2‑related factor/metallothioneins (Nrf2/Mts). Targets identified from exercised hearts can alleviate injury via multiple avenues, including: (1) promoting cardiomyocyte proliferation; (2) facilitating cardiomyocyte growth and physiologic hypertrophy; (3) elevating the anti-apoptotic capacity of cardiomyocytes; (4) improving vascular endothelial function; (5) inhibiting pathological remodeling and fibrosis; (6) promoting extracellular vesicles (EVs) production and exosomal-molecules transfer. Exercise is one treatment (‘stone’), which is cardioprotective via multiple avenues (‘birds’), and is considered ‘killing multiple birds with one stone’ in this review. Further, we discuss the potential application of EV cargos in CVD treatment. We provide an outline of targets identified from the exercised heart and their mechanisms, as well as novel ideas for CVD treatment, which may provide novel direction for preclinical trials in cardiac rehabilitation.
Collapse
|
9
|
Gilbert MJH, Farrell AP. The thermal acclimation potential of maximum heart rate and cardiac heat tolerance in Arctic char (Salvelinus alpinus), a northern cold-water specialist. J Therm Biol 2020; 95:102816. [PMID: 33454044 DOI: 10.1016/j.jtherbio.2020.102816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/30/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Increasing heart rate (ƒH) is a central, if not primary mechanism used by fishes to support their elevated tissue oxygen consumption during acute warming. Thermal acclimation can adjust this acute response to improve cardiac performance and heat tolerance under the prevailing temperatures. We predict that such acclimation will be particularly important in regions undergoing rapid environmental change such as the Arctic. Therefore, we acclimated Arctic char (Salvelinus alpinus), a high latitude, cold-adapted salmonid, to ecologically relevant temperatures (2, 6, 10, 14 and 18 °C) and examined how thermal acclimation influenced their cardiac heat tolerance by measuring the maximum heart rate (ƒHmax) response to acute warming. As expected, acute warming increased ƒHmax in all Arctic char before ƒHmax reached a peak and then became arrhythmic. The peak ƒHmax, and the temperature at which peak ƒHmax (Tpeak) and that at which arrhythmia first occurred (Tarr) all increased progressively (+33%, 49% and 35%, respectively) with acclimation temperature from 2 to 14 °C. When compared at the same test temperature ƒHmax also decreased by as much as 29% with increasing acclimation temperature, indicating significant thermal compensation. The upper temperature at which fish first lost their equilibrium (critical thermal maximum: CTmax) also increased with acclimation temperature, albeit to a lesser extent (+11%). Importantly, Arctic char experienced mortality after several weeks of acclimation at 18 °C and survivors did not have elevated cardiac thermal tolerance. Collectively, these findings suggest that if wild Arctic char have access to suitable temperatures (<18 °C) for a sufficient duration, warm acclimation can potentially mitigate some of the cardiorespiratory impairments previously documented during acute heat exposure.
Collapse
Affiliation(s)
- Matthew J H Gilbert
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, #4200 - 6270, University Blvd, Vancouver, BC, V6T 1Z4, Canada; Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Nogueira-Ferreira R, Ferreira R, Padrão AI, Oliveira P, Santos M, Kavazis AN, Vitorino R, Moreira-Gonçalves D. One year of exercise training promotes distinct adaptations in right and left ventricle of female Sprague-Dawley rats. J Physiol Biochem 2019; 75:561-572. [PMID: 31620967 DOI: 10.1007/s13105-019-00705-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 09/04/2019] [Indexed: 01/15/2023]
Abstract
Aerobic exercise training induces a unique cardioprotective phenotype, but it is becoming clear that it does not promote the same structural, functional, and molecular adaptations in both ventricles. In the present study, we aimed to better characterize and compare the molecular pathways involved in the exercise-induced remodeling of both ventricles. Female Sprague-Dawley rats were randomly assigned to control and exercise groups. Animals in the exercise group were submitted to low-intensity treadmill exercise for 54 weeks. After the experimental period, biventricular hemodynamic analysis was performed and right and left ventricles were harvested for morphological and biochemical analyses. Data showed that long-term low-intensity exercise training improves cardiac function, especially left ventricular diastolic function; however, the expression of connexin-43, CCAAT-enhancer binding protein β, and c-kit did not change in none of the ventricles. In the right ventricle, long-term exercise training induced an increase of manganese superoxide dismutase and sirtuin 3 protein expression, suggestive of improved antioxidant capacity. Our results also support that long-term aerobic exercise training imposes greater metabolic remodeling to the right ventricle, mainly by increasing mitochondrial ability to produce ATP, with no association to estrogen-related receptor α regulation.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Rita Ferreira
- QOPNA & LAQV, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana Isabel Padrão
- QOPNA & LAQV, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Paula Oliveira
- CITAB, Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-911, Vila Real, Portugal
| | - Manuel Santos
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal. .,CIAFEL, Faculdade de Desporto, Universidade do Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.
| |
Collapse
|
11
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
12
|
Naderi N, Hemmatinafar M, Gaeini AA, Bahramian A, Ghardashi-Afousi A, Kordi MR, Darbandi-Azar A, Karimzade F, Mohebbi H, Barati M. High-intensity interval training increase GATA4, CITED4 and c-Kit and decreases C/EBPβ in rats after myocardial infarction. Life Sci 2019; 221:319-326. [PMID: 30802510 DOI: 10.1016/j.lfs.2019.02.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
AIM Myocardial infarction (MI), an important cause of morbidity and mortality, can be followed by left ventricular dysfunction and cardiomyocyte loss. Cardiac repair mechanisms may subsequently improve left ventricular function. Exercise training has been suggested to have cardioprotective effects against MI damage, but detailed knowledge is lacking on the effects of different types and intensities of exercise training on molecular targets of cardiomyocyte regeneration. MAIN METHODS MI was induced in male Wistar rats by ligating the left anterior descending coronary artery. After MI induction, the rats were randomly assigned to one of five groups: sham operated, and experimental MI followed by no exercise, or low, moderate or high intensity exercise Cardiac function and infarct size were assessed by echocardiography and Evans blue/TTC staining, respectively. The expression of mRNA markers and proteins associated with myocardial regeneration was measured with RT-PCR and western blotting. KEY FINDINGS Exercise training at different intensities improved cardiac function and levels of stem cell and cardiomyocyte markers, and reduced infarct size. mRNA levels of GATA4, Nkx2.5 and c-Kit and protein expression of Nkx2.5 and c-Kit were significantly increased in all MI-exercise groups. The high-intensity exercise group had greater increases than the low and moderate intensity exercise groups. In the high-intensity exercise group, Sca-1 and CITED4 increased more than in the low-intensity exercise group. C/EBPβ mRNA and protein levels decreased after exercise training, with greater reductions in the high-intensity exercise group than the low- or moderate-intensity groups. SIGNIFICANCE The findings suggest that by targeting cardiogenesis, high-intensity training can exert cardioprotective effects against cardiac dysfunction in an experimental model of MI.
Collapse
Affiliation(s)
- Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Fellowship in Heart Failure and Transplantation, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz, Islamic Republic of Iran.
| | - Abbas Ali Gaeini
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran
| | - Aida Bahramian
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Guilan, Rasht, Islamic Republic of Iran
| | - Alireza Ghardashi-Afousi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran.
| | - Mohammad Reza Kordi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, Islamic Republic of Iran
| | - Amir Darbandi-Azar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fariba Karimzade
- Cellular and Molecular Research Center, Neuroscience, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamid Mohebbi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Guilan, Rasht, Islamic Republic of Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
13
|
Zhang Q, Qi H, Cao Y, Shi P, Song C, Ba L, Chen Y, Gao J, Li S, Li B, Sun H. Activation of transient receptor potential vanilloid 3 channel (TRPV3) aggravated pathological cardiac hypertrophy via calcineurin/NFATc3 pathway in rats. J Cell Mol Med 2018; 22:6055-6067. [PMID: 30299584 PMCID: PMC6237578 DOI: 10.1111/jcmm.13880] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/13/2018] [Indexed: 12/23/2022] Open
Abstract
Cardiac hypertrophy is a compensatory response to mechanical stimuli and neurohormonal factors, ultimately progresses to heart failure. The proteins of some transient receptor potential (TRP) channels, Ca2+‐permeable nonselective cation channel, are highly expressed in cardiomyocytes, and associated with the occurrence of cardiac hypertrophy. Transient receptor potential vanilloid 3 (TRPV3) is a member of TRP, however, the functional role of TRPV3 in cardiac hypertrophy remains unclear. TRPV3 was elevated in pathological cardiac hypertrophy, but not in swimming exercise‐induced physiological cardiac hypertrophy in rats. TRPV3 expression was also increased in Ang II–induced cardiomyocyte hypertrophy in vitro, which was remarkably increased by carvacrol (a nonselective TRPV channel agonist), and reduced by ruthenium red (a nonselective TRPV channel antagonist). Interestingly, we found that activated TRPV3 in Ang II–induced cardiomyocyte hypertrophy was accompanied with increasing intracellular calcium concentration, promoting calcineurin, and phosphorylated CaMKII protein expression, and enhancing NFATc3 nuclear translocation. However, blocking or knockdown of TRPV3 could inhibit the expressions of calcineurin, phosphorylated CaMKII and NFATc3 protein by Western blot. In conclusion, the activation of TRPV3 aggravated pathological cardiac hypertrophy through calcineurin/NFATc3 signalling pathway and correlated with the protein expression levels of calcineurin, phosphorylated CaMKII and NFATc3, revealing that TRPV3 might be a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yunping Chen
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Jingquan Gao
- Department of Nursing, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Shuzhi Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| |
Collapse
|
14
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|
15
|
Bei Y, Tao L, Cretoiu D, Cretoiu SM, Xiao J. MicroRNAs Mediate Beneficial Effects of Exercise in Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1000:261-280. [PMID: 29098626 DOI: 10.1007/978-981-10-4304-8_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs, miRs), a group of small non-coding RNAs, repress gene expressions at posttranscriptional level in most cases and are involved in cardiovascular physiology and disease pathogenesis. Increasing evidence has proved that miRNAs are potential regulators of exercise induced cardiac growth and mediate the benefits of exercise in a variety of cardiovascular diseases. In this chapter, we will review the regulatory effects of miRNAs in cardiac adaptations to exercise, and summarize their cardioprotective effects against myocardial infarction, ischemia/reperfusion injury, heart failure, diabetic cardiomyopathy, atherosclerosis, hypertension, and pulmonary hypertension. Also, we will introduce circulating miRNAs in response to acute and chronic exercise. Therefore, miRNAs may serve as novel therapeutic targets and potential biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Dragos Cretoiu
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania.,Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, 050474, Romania
| | - Sanda Maria Cretoiu
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania.,Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, 050474, Romania
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
16
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
17
|
Vujic A, Lerchenmüller C, Wu TD, Guillermier C, Rabolli CP, Gonzalez E, Senyo SE, Liu X, Guerquin-Kern JL, Steinhauser ML, Lee RT, Rosenzweig A. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 2018; 9:1659. [PMID: 29695718 PMCID: PMC5916892 DOI: 10.1038/s41467-018-04083-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022] Open
Abstract
Loss of cardiomyocytes is a major cause of heart failure, and while the adult heart has a limited capacity for cardiomyogenesis, little is known about what regulates this ability or whether it can be effectively harnessed. Here we show that 8 weeks of running exercise increase birth of new cardiomyocytes in adult mice (~4.6-fold). New cardiomyocytes are identified based on incorporation of 15N-thymidine by multi-isotope imaging mass spectrometry (MIMS) and on being mononucleate/diploid. Furthermore, we demonstrate that exercise after myocardial infarction induces a robust cardiomyogenic response in an extended border zone of the infarcted area. Inhibition of miR-222, a microRNA increased by exercise in both animal models and humans, completely blocks the cardiomyogenic exercise response. These findings demonstrate that cardiomyogenesis can be activated by exercise in the normal and injured adult mouse heart and suggest that stimulation of endogenous cardiomyocyte generation could contribute to the benefits of exercise. The adult mammalian heart has a limited cardiomyogenic capacity. Here the authors show that intensive exercise leads to a 4.6-fold increase in murine cardiomyocyte proliferation requiring the expression of miR-222, and that exercise induces an extended cardiomyogenic response in the murine heart after infarction.
Collapse
Affiliation(s)
- Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Carolin Lerchenmüller
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ting-Di Wu
- Institut Curie, PSL Research University, INSERM, U1196, 91405, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, UMR 9187, 91405, Orsay, France
| | - Christelle Guillermier
- Harvard Medical School, Boston, MA, 02115, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, MA, 02138, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Charles P Rabolli
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA
| | - Emilia Gonzalez
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaojun Liu
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Luc Guerquin-Kern
- Institut Curie, PSL Research University, INSERM, U1196, 91405, Orsay, France.,Université Paris-Sud, Université Paris-Saclay, CNRS, UMR 9187, 91405, Orsay, France
| | - Matthew L Steinhauser
- Harvard Medical School, Boston, MA, 02115, USA.,Center for NanoImaging, Brigham and Women's Hospital, Cambridge, MA, 02138, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Anthony Rosenzweig
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Wang L, Meng X, Li G, Zhou Q, Xiao J. Circular RNAs in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:191-204. [DOI: 10.1007/978-981-13-1426-1_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Gibb AA, Epstein PN, Uchida S, Zheng Y, McNally LA, Obal D, Katragadda K, Trainor P, Conklin DJ, Brittian KR, Tseng MT, Wang J, Jones SP, Bhatnagar A, Hill BG. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation 2017; 136:2144-2157. [PMID: 28860122 PMCID: PMC5704654 DOI: 10.1161/circulationaha.117.028274] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Exercise promotes metabolic remodeling in the heart, which is associated with physiological cardiac growth; however, it is not known whether or how physical activity–induced changes in cardiac metabolism cause myocardial remodeling. In this study, we tested whether exercise-mediated changes in cardiomyocyte glucose metabolism are important for physiological cardiac growth. Methods: We used radiometric, immunologic, metabolomic, and biochemical assays to measure changes in myocardial glucose metabolism in mice subjected to acute and chronic treadmill exercise. To assess the relevance of changes in glycolytic activity, we determined how cardiac-specific expression of mutant forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase affect cardiac structure, function, metabolism, and gene programs relevant to cardiac remodeling. Metabolomic and transcriptomic screenings were used to identify metabolic pathways and gene sets regulated by glycolytic activity in the heart. Results: Exercise acutely decreased glucose utilization via glycolysis by modulating circulating substrates and reducing phosphofructokinase activity; however, in the recovered state following exercise adaptation, there was an increase in myocardial phosphofructokinase activity and glycolysis. In mice, cardiac-specific expression of a kinase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase transgene (GlycoLo mice) lowered glycolytic rate and regulated the expression of genes known to promote cardiac growth. Hearts of GlycoLo mice had larger myocytes, enhanced cardiac function, and higher capillary-to-myocyte ratios. Expression of phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in the heart (GlycoHi mice) increased glucose utilization and promoted a more pathological form of hypertrophy devoid of transcriptional activation of the physiological cardiac growth program. Modulation of phosphofructokinase activity was sufficient to regulate the glucose–fatty acid cycle in the heart; however, metabolic inflexibility caused by invariantly low or high phosphofructokinase activity caused modest mitochondrial damage. Transcriptomic analyses showed that glycolysis regulates the expression of key genes involved in cardiac metabolism and remodeling. Conclusions: Exercise-induced decreases in glycolytic activity stimulate physiological cardiac remodeling, and metabolic flexibility is important for maintaining mitochondrial health in the heart.
Collapse
Affiliation(s)
- Andrew A Gibb
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Department of Physiology (A.A.G., B.G.H.)
| | | | | | - Yuting Zheng
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Lindsey A McNally
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Detlef Obal
- Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Department of Anesthesiology (D.O.)
| | - Kartik Katragadda
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Patrick Trainor
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Daniel J Conklin
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Kenneth R Brittian
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | | | - Jianxun Wang
- University of Louisville, KY. Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (J.W.)
| | - Steven P Jones
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Aruni Bhatnagar
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.)
| | - Bradford G Hill
- Institute of Molecular Cardiology (A.A.G., Y.Z., L.A.M., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.) .,Diabetes and Obesity Center (A.A.G., Y.Z., L.A.M., D.O., K.K., P.T., D.J.C., K.R.B., S.P.J., A.B., B.G.H.).,Department of Physiology (A.A.G., B.G.H.)
| |
Collapse
|
20
|
Bei Y, Fu S, Chen X, Chen M, Zhou Q, Yu P, Yao J, Wang H, Che L, Xu J, Xiao J. Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury. J Cell Mol Med 2017; 21:1648-1655. [PMID: 28304151 PMCID: PMC5542911 DOI: 10.1111/jcmm.13078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
The adult heart retains a limited ability to regenerate in response to injury. Although exercise can reduce cardiac ischaemia/reperfusion (I/R) injury, the relative contribution of cardiac cell proliferation including newly formed cardiomyocytes remains unclear. A 4-week swimming murine model was utilized to induce cardiac physiological growth. Simultaneously, the antineoplastic agent 5-fluorouracil (5-FU), which acts during the S phase of the cell cycle, was given to mice via intraperitoneal injections. Using EdU and Ki-67 immunolabelling, we showed that exercise-induced cardiac cell proliferation was blunted by 5-FU. In addition, the growth of heart in size and weight upon exercise was unaltered, probably due to the fact that exercise-induced cardiomyocyte hypertrophy was not influenced by 5-FU as demonstrated by wheat germ agglutinin staining. Meanwhile, the markers for pathological hypertrophy, including ANP and BNP, were not changed by either exercise or 5-FU, indicating that physiological growth still developed in the presence of 5-FU. Furthermore, we showed that CITED4, a key regulator for cardiomyocyte proliferation, was blocked by 5-FU. Meanwhile, C/EBPβ, a transcription factor responsible for both cellular proliferation and hypertrophy, was not altered by treatment with 5-FU. Importantly, the effects of exercise in reducing cardiac I/R injury could be abolished when cardiac cell proliferation was attenuated in mice treated with 5-FU. In conclusion, cardiac cell proliferation is not necessary for exercise-induced cardiac physiological growth, but it is required for exercise-associated protection against I/R injury.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| | - Siyi Fu
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| | - Xiangming Chen
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
- Department of Clinical laboratoryNanxiang Hospital of JiadingShanghaiChina
| | - Mei Chen
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
- Department of GeriatricsXuhui Central HospitalShanghai Clinical CenterChinese Academy of ScienceShanghaiChina
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| | - Pujiao Yu
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Jianhua Yao
- Department of CardiologyShanghai Yangpu District HospitalTongji University School of MedicineShanghaiChina
| | - Hongbao Wang
- Department of CardiologyShanghai Yangpu District HospitalTongji University School of MedicineShanghaiChina
| | - Lin Che
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Jiahong Xu
- Department of CardiologyTongji HospitalTongji University School of MedicineShanghaiChina
| | - Junjie Xiao
- Cardiac Regeneration and Ageing LabSchool of Life ScienceShanghai UniversityShanghaiChina
| |
Collapse
|
21
|
Arrieta A, Blackwood EA, Glembotski CC. ER Protein Quality Control and the Unfolded Protein Response in the Heart. Curr Top Microbiol Immunol 2017; 414:193-213. [PMID: 29026925 DOI: 10.1007/82_2017_54] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac myocytes are the cells responsible for the robust ability of the heart to pump blood throughout the circulatory system. Cardiac myocytes grow in response to a variety of physiological and pathological conditions; this growth challenges endoplasmic reticulum-protein quality control (ER-PQC), a major feature of which includes the unfolded protein response (UPR). ER-PQC and the UPR in cardiac myocytes growing under physiological conditions, including normal development, exercise, and pregnancy, are sufficient to support hypertrophic growth of each cardiac myocyte. However, the ER-PQC and UPR are insufficient to respond to the challenge of cardiac myocyte growth under pathological conditions, including myocardial infarction and heart failure. In part, this insufficiency is due to a continual decline in the expression levels of important adaptive UPR components as a function of age and during myocardial pathology. This chapter will discuss the physiological and pathological conditions unique to the heart that involves ER-PQC, and whether the UPR is adaptive or maladaptive under these circumstances.
Collapse
Affiliation(s)
- A Arrieta
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - E A Blackwood
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - C C Glembotski
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
22
|
Xiao J, Chen P, Qu Y, Yu P, Yao J, Wang H, Fu S, Bei Y, Chen Y, Che L, Xu J. Telocytes in exercise-induced cardiac growth. J Cell Mol Med 2016; 20:973-9. [PMID: 26987685 PMCID: PMC4831349 DOI: 10.1111/jcmm.12815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022] Open
Abstract
Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise‐induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet‐derived growth factor (PDGF) receptor‐α and CD34/PDGF receptor‐β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Ping Chen
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Department of Geriatrics, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Yi Qu
- Department of Geriatrics, Xuhui Central Hospital, Shanghai Clinical Center, Chinese Academy of Science, Shanghai, China
| | - Pujiao Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbao Wang
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyi Fu
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yan Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Bei Y, Zhou Q, Sun Q, Xiao J. Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol 2016; 55:14-21. [PMID: 26826525 DOI: 10.1016/j.semcdb.2016.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/24/2016] [Indexed: 02/08/2023]
Abstract
Telocytes (TCs) are a novel type of stromal cells reported by Popescu's group in 2010. The unique feature that distinguishes TCs from other "classical" stromal cells is their extremely long and thin telopodes (Tps). As evidenced by electron microscopy, TCs are widely distributed in almost all tissues and organs. TCs contribute to form a three-dimensional interstitial network and play as active regulators in intercellular communication via homocellular/heterocellular junctions or shed vesicles. Interestingly, increasing evidence suggests the potential role of TCs in regenerative medicine. Although the heart retains some limited endogenous regenerative capacity, cardiac regenerative and repair response is however insufficient to make up the loss of cardiomyocytes upon injury. Developing novel strategies to increase cardiomyocyte renewal and repair is of great importance for the treatment of cardiac diseases. In this review, we focus on the role of TCs in cardiac regeneration and repair. We particularly describe the intercellular communication between TCs and cardiomyocytes, stem/progenitor cells, endothelial cells, and fibroblasts. Also, we discuss the current knowledge about TCs in cardiac repair after myocardial injury, as well as their potential roles in cardiac development and aging. TC-based therapy or TC-derived exosome delivery might be used as novel therapeutic strategies to promote cardiac regeneration and repair.
Collapse
Affiliation(s)
- Yihua Bei
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qiulian Zhou
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Qi Sun
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Regeneration and Aging Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|