1
|
Alsaab HO, Alharbi FD, Alhibs AS, Alanazi NB, Alshehri BY, Saleh MA, Alshehri FS, Algarni MA, Almugaiteeb T, Uddin MN, Alzhrani RM. PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases. Pharmaceutics 2022; 14:pharmaceutics14122728. [PMID: 36559223 PMCID: PMC9786338 DOI: 10.3390/pharmaceutics14122728] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
- Correspondence: ; Tel.: +966-556047523
| | - Fatima D. Alharbi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alanoud S. Alhibs
- Department of Pharmacy, King Fahad Medical City, Riyadh 11564, Saudi Arabia
| | - Nouf B. Alanazi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bayan Y. Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Majed A. Algarni
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Turki Almugaiteeb
- Taqnia-Research Products Development Company, Riyadh 13244, Saudi Arabia
| | | | - Rami M. Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
2
|
Saxena J, Bisen M, Misra A, Srivastava VK, Kaushik S, Siddiqui AJ, Mishra N, Singh A, Jyoti A. Targeting COPD with PLGA-Based Nanoparticles: Current Status and Prospects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5058121. [PMID: 35309178 PMCID: PMC8933108 DOI: 10.1155/2022/5058121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is pulmonary emphysema characterized by blockage in the airflow resulting in the long-term breathing problem, hence a major cause of mortality worldwide. Excessive generation of free radicals and the development of chronic inflammation are the major two episodes underlying the pathogenesis of COPD. Currently used drugs targeting these episodes including anti-inflammatory, antioxidants, and corticosteroids are unsafe, require high doses, and pose serious side effects. Nanomaterial-conjugated drugs have shown promising therapeutic potential against different respiratory diseases as they are required in small quantities which lower overall treatment costs and can be effectively targeted to diseased tissue microenvironment hence having minimal side effects. Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) are safe as their breakdown products are easily metabolized in the body. Drugs loaded on the PLGA NPs have been shown to be promising agents as anticancer, antimicrobial, antioxidants, and anti-inflammatory. Surface modification of PLGA NPs can further improve their mechanical properties, drug loading potential, and pharmacological activities. In the present review, we have presented a brief insight into the pathophysiological mechanism underlying COPD and highlighted the role, potential, and current status of PLGA NPs loaded with drugs in the therapy of COPD.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Aditya Misra
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Neetu Mishra
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra 412115, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
3
|
Zheng D, Wang J, Li G, Sun Y, Deng Q, Li M, Song K, Zhao Z. Preliminary therapeutic and mechanistic evaluation of S-allylmercapto-N-acetylcysteine in the treatment of pulmonary emphysema. Int Immunopharmacol 2021; 98:107913. [PMID: 34218218 DOI: 10.1016/j.intimp.2021.107913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022]
Abstract
The objective of this work was to study the effects and mechanisms of S-allylmercapto-N-acetylcysteine (ASSNAC) in the treatment of pulmonary emphysema based on network pharmacology analysis and other techniques. Firstly, the potential targets associated with ASSNAC and COPD were integrated using public databases. Then, a protein-protein interaction network was constructed using String database and Cytoscape software. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed on DAVID platform. The molecular docking of ASSNAC with some key disease targets was implemented on the SwissDock platform. To verify the results of the network pharmacology, a pulmonary emphysema mice model was established and treated with ASSNAC. Besides, the expressions of the predicted targets were detected by immunohistochemistry, Western blot analysis or enzyme-linked immunosorbent assay. Results showed that 33 overlapping targets are achieved, including CXCL8, ICAM1, MAP2K1, PTGS2, ACE and so on. The critical pathways of ASSNAC against COPD involved arachidonic acid metabolism, chemokine pathway, MAPK pathway, renin-angiotensin system, and others. Pharmacodynamic experiments demonstrated that ASSNAC decreased the pulmonary emphysema and inflammation in the pulmonary emphysema mice. Therefore, these results confirm the perspective of network pharmacology in the target verification, and indicate the treatment potential of ASSNAC against COPD.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yueyue Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Qi Deng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Muhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Kaili Song
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
4
|
Singla E, Dharwal V, Naura AS. Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice. Inflamm Res 2020; 69:423-434. [PMID: 32144443 DOI: 10.1007/s00011-020-01333-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 02/26/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE AND DESIGN Gallic acid (GA) a naturally occurring phenolic compound, known to possess antioxidant/anti-inflammatory activities. The aim of the present work was to investigate the beneficial effects of GA against COPD-linked lung inflammation/emphysema by utilizing elastase (ET) and cigarette smoke (CS)-induced mice model. MATERIALS Male BALB/c mice were treated with ET (1U/mouse) or exposed to CS (9 cigarettes/day for 4 days). GA administration was started 7 days (daily) prior to ET/CS exposure. Broncho-alveolar lavage was analyzed for inflammatory cells and pro-inflammatory cytokines. Lung homogenate was assessed for MPO activity/GSH/MDA/protein carbonyls. Further, Lung tissue was subjected to semi-quantitative RT-PCR, immunoblotting, and histological analysis. RESULTS GA suppressed the ET-induced neutrophil infiltration, elevated MPO activity and production of pro-inflammatory cytokines (IL-6/TNF-α/IL-1β) at 24 h. Reduced inflammation was accompanied with normalization of redox balance as reflected by ROS/GSH/MDA/protein carbonyl levels. Further, GA suppressed phosphorylation of p65NF-κB and IκBα along with down-regulation of IL-1β/TNF-α/KC/MIP-2/GCSF genes. Furthermore, GA offered protection against ET-induced airspace enlargement and ameliorated MMP-2/MMP-9. Finally, GA suppressed the CS-induced influx of neutrophils and macrophages and blunted gene expression of TNF-α/MIP-2/KC. CONCLUSION Overall, our data show that GA effectively modulates pulmonary inflammation and emphysema associated with COPD pathogenesis in mice.
Collapse
Affiliation(s)
- Esha Singla
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
He Y, Liang Y, Han R, Lu WL, Mak JCW, Zheng Y. Rational particle design to overcome pulmonary barriers for obstructive lung diseases therapy. J Control Release 2019; 314:48-61. [PMID: 31644935 DOI: 10.1016/j.jconrel.2019.10.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
Pulmonary delivery of active drugs has been applied for the treatment of obstructive lung diseases, including asthma, chronic obstructive pulmonary disease and cystic fibrosis, for several decades and has achieved progress in symptom management by bronchodilator inhalation. However, substantial progress in anti-inflammation, prevention of airway remodeling and disease progression is limited, since the majority of the formulation strategies focus only on particle deposition, which is insufficient for pulmonary delivery of the drugs. The lack of knowledge on lung absorption barriers in obstructive lung diseases and on pathogenesis impedes the development of functional formulations by rational design. In this review, we describe the physiological structure and biological functions of the barriers in various regions of the lung, review the pathogenesis and functional changes of barriers in obstructive lung diseases, and examine the interaction of these barriers with particles to influence drug delivery efficiency. Subsequently, we review rational particle design for overcoming lung barriers based on excipients selection, particle size and surface properties, release properties and targeting ability. Additionally, useful particle fabrication strategies and commonly used drug carriers for pulmonary delivery in obstructive lung diseases are proposed in this article.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yingmin Liang
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Judith Choi Wo Mak
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
6
|
Zhang L, Zhang X, Li J, Beck-Broichsitter M, Muenster U, Wang X, Zhao J, Mao S. Optimization of budesonide-loaded large-porous microparticles for inhalation using quality by design approach. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Machida K, Kawayama T, Kinoshita M, Ichinose M, Tsuda T, Takata S, Koto H, Yoshida M, Ashihara Y, Kawashima M, Suna H, Inoue H. Imidafenacin, An Orally Active Muscarinic Receptor Antagonist, Improves Pulmonary Function In Patients With Chronic Obstructive Pulmonary Disease: A Multicenter, Randomized, Double-Blind, Placebo-Controlled 3×3 Crossover Phase II Trial. Int J Chron Obstruct Pulmon Dis 2019; 14:2175-2184. [PMID: 31571853 PMCID: PMC6757323 DOI: 10.2147/copd.s223002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background Although long-acting muscarinic receptor antagonists are central to the management of chronic obstructive pulmonary disease (COPD), inhaled medicines may have technical difficulty in some patients and adherence barriers. Methods A multicenter, randomized, double-blind, placebo-controlled 3×3 crossover Phase II trial was performed to evaluate the efficacy and safety of oral administration of the antimuscarinic agent imidafenacin in patients with COPD. Twenty-seven male COPD patients with % forced expiratory volume in 1 s (FEV1) ≥30% and <80% predicted were randomized to single oral dose of imidafenacin 0.1 mg, imidafenacin 0.2 mg, or placebo. Results Maximum change in FEV1 with both doses of imidafenacin significantly improved from baseline to 24 hrs after administration when compared with a placebo. Area under the curve in FEV1 during 24 hrs after administration with 0.2 mg, but not 0.1 mg dose, was significantly improved when compared with a placebo, and the improvement was significantly based on dose-dependent manners. Plasma imidafenacin level was positively correlated with change in FEV1. All subjects with both doses of imidafenacin completed without moderate nor severe adverse events. Conclusion A single oral dose of imidafenacin 0.1 mg or imidafenacin 0.2 mg may contribute to the improvement of pulmonary function with excellent safety and tolerability in patients with COPD. Trial registration JapicCTI-121760 (Japan Pharmaceutical Information Center – Clinical Trials Information [JapicCTI]; http://www.clinicaltrials.jp/user/cteSearch_e.jsp).
Collapse
Affiliation(s)
- Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University, Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tohru Tsuda
- Kirigaoka Tsuda Hospital, Kitakyushu 802-0052 Japan
| | - Shohei Takata
- Division of Respiratory Medicine, National Hospital Organization Fukuoka-Higashi Medical Center, Koga 811-3195, Japan
| | - Hiroshi Koto
- Division of Respiratory Medicine, Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka 815-8588, Japan
| | - Makoto Yoshida
- Division of Respiratory Medicine, National Hospital Organization Fukuoka Hospital, Fukuoka 811-1394, Japan
| | - Yoshinori Ashihara
- Division of Respiratory Medicine, Oita Nakamura Hospital, Oita 870-0022, Japan
| | | | - Hideaki Suna
- ONO Pharmaceutical Co. Ltd., Osaka 541-8564, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
8
|
Chen J, Tang Y, Liu Y, Dou Y. Nucleic Acid-Based Therapeutics for Pulmonary Diseases. AAPS PharmSciTech 2018; 19:3670-3680. [PMID: 30338490 PMCID: PMC7101845 DOI: 10.1208/s12249-018-1183-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics present huge potential in the treatment
of pulmonary diseases ranging from lung cancer to asthma and chronic pulmonary
diseases, which are often fatal and widely prevalent. The susceptibility of nucleic
acids to degradation and the complex structure of lungs retard the effective
pulmonary delivery of nucleic acid drug. To overcome these barriers, different
strategies have been exploited to increase the delivery efficiency using chemically
synthesized nucleic acids, vector encapsulation, proper formulation, and
administration route. However, several limitations regarding off-target effects and
immune stimulation of nucleic acid drugs hamper their translation into the clinical
practice. Therefore, their successful clinical application will ultimately rely on
well-developed carriers and methods to ensure safety and efficacy. In this review,
we provide a comprehensive overview of the nucleic acid application for pulmonary
diseases, covering action mechanism of the nucleic acid drugs, the novel delivery
systems, and the current formulation for the administration to lungs. The latest
advances of nucleic acid drugs under clinical evaluation to treat pulmonary
disorders will also be detailed.
Collapse
|
9
|
Sun X, Dong Z, Li N, Feng X, Liu Y, Li A, Zhu X, Li C, Zhao Z. Nucleosides isolated from Ophiocordyceps sinensis inhibit cigarette smoke extract-induced inflammation via the SIRT1-nuclear factor-κB/p65 pathway in RAW264.7 macrophages and in COPD mice. Int J Chron Obstruct Pulmon Dis 2018; 13:2821-2832. [PMID: 30237706 PMCID: PMC6136406 DOI: 10.2147/copd.s172579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Ophiocordyceps sinensis (C. sinensis) extracts have been found to have a therapeutic effect on patients with chronic obstructive pulmonary disease (COPD). Silent information regulator 1 (SIRT1) plays an important role in the regulation of inflammatory mediators and correlates with lung function and COPD exacerbations. The objective of this work was to explore the anti-inflammatory effect and preliminary pathways of nucleosides from cultured C. sinensis on RAW264.7 macrophages and COPD mice. Materials and methods The nucleosides were extracted from cultured C. sinensis powder and further purified by macroporous resin D101 and glucan G10 columns. Inflammation and oxidative stress models in RAW264.7 macrophages and in mice were established by injection of cigarette smoke extract (CSE). We then examined how the isolated nucleosides regulated the production of the associated inflammatory mediators in vitro and in vivo by enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and Western blot. Results The nucleosides inhibited inflammatory mediator expression of tumor necrosis factor-α, interleukin-6, interleukin-1β, and nitric oxide in both the CSE-stimulated RAW264.7 macrophages and mice. Moreover, the nucleosides elevated SIRT1 activation and suppressed nuclear factor-κB (NF-κB)/p65 activation in vitro and in vivo. Nucleoside treatment significantly decreased the levels of the inflammatory mediators in the bronchoalveolar lavage fluid (BALF) and serum of the CSE-induced mice. The nucleosides also altered the recruitment of inflammatory cells in BALF and improved characteristic features of the lungs in the CSE-induced mice. Conclusion These results show that the nucleosides suppressed COPD inflammation through the SIRT1–NF-κB/p65 pathway, suggesting that the nucleosides may be partly responsible for the therapeutic effects of cultured C. sinensis on COPD patients.
Collapse
Affiliation(s)
- Xiao Sun
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Zhonghua Dong
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Nan Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Xiuli Feng
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Yan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Chunyan Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China,
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China, .,Shandong Engineering and Technology Research Center for Jujube Food and Drug, Jinan, People's Republic of China, .,Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, Jinan, People's Republic of China,
| |
Collapse
|
10
|
Liao Y, Guo Y, Li S, Wang L, Tang Y, Li T, Chen W, Zhong G, Song G. Structure-based design and structure-activity relationships of 1,2,3,4-tetrahydroisoquinoline derivatives as potential PDE4 inhibitors. Bioorg Med Chem Lett 2018; 28:1188-1193. [DOI: 10.1016/j.bmcl.2018.02.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 11/26/2022]
|
11
|
Dharwal V, Naura AS. PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochem Pharmacol 2018; 150:24-34. [PMID: 29355504 DOI: 10.1016/j.bcp.2018.01.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
COPD is associated with high morbidity and mortality and no effective treatment is available till date. We have previously reported that PARP-1 plays an important role in the establishment of airway inflammation associated with asthma and ALI. In the present work, we have evaluated the beneficial effects of PARP-1 inhibition on COPD pathogenesis utilizing elastase induced mouse model of the disease. Our data show that PARP-1 inhibition by olaparib significantly reduced the elastase-induced recruitment of inflammatory cells particularly neutrophils in the lungs of mice when administered at a dose of 5 mg/kg b.wt (i.p.). Reduction in the lung inflammation was associated with suppressed myeloperoxidase activity. Further, the drug restored the redox status in the lung tissues towards normal as reflected by the levels of ROS, GSH and MDA. Olaparib administration prior to elastase instillation blunted the phosphorylation of P65-NF-κB at Ser 536 without altering phosphorylation of its inhibitor IκBα in the lungs. Furthermore, olaparib down regulated the elastase-induced expression of NF-κB dependent pro-inflammatory cytokines (TNF-A, IL-6), chemokine (MIP-2) and growth factor (GCSF) severely both at the mRNA and protein levels. Additionally, PARP-1 heterozygosity suppressed the recruitment of inflammatory cells and production of TNF-A, IL-6, MIP-2 and GCSF in the BALF to the similar extent as exhibited by olaparib administration. Finally, PARP-1 inhibition by olaparib or gene deletion protected against elastase-induced emphysema markedly. Overall, our data strongly suggest that PARP-1 plays a critical role in elastase induced lung inflammation and emphysema, and thus may be a new drug target candidate in COPD.
Collapse
Affiliation(s)
- Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
12
|
Kaieda A, Takahashi M, Takai T, Goto M, Miyazaki T, Hori Y, Unno S, Kawamoto T, Tanaka T, Itono S, Takagi T, Hamada T, Shirasaki M, Okada K, Snell G, Bragstad K, Sang BC, Uchikawa O, Miwatashi S. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors. Bioorg Med Chem 2018; 26:647-660. [PMID: 29291937 DOI: 10.1016/j.bmc.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.
Collapse
Affiliation(s)
- Akira Kaieda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Masashi Takahashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takafumi Takai
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Goto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Miyazaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuri Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoko Unno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Tanaka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Sachiko Itono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Terufumi Takagi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Teruki Hamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Mikio Shirasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kengo Okada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Gyorgy Snell
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Ken Bragstad
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Bi-Ching Sang
- Takeda California, 10410 Science Center Drive, San Diego, CA 92121, United States
| | - Osamu Uchikawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Seiji Miwatashi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
13
|
Sethi GS, Dharwal V, Naura AS. Poly(ADP-Ribose)Polymerase-1 in Lung Inflammatory Disorders: A Review. Front Immunol 2017; 8:1172. [PMID: 28974953 PMCID: PMC5610677 DOI: 10.3389/fimmu.2017.01172] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Asthma, acute lung injury (ALI), and chronic obstructive pulmonary disease (COPD) are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribose)polymerases (PARPs) are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress-PARP-1-NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.
Collapse
Affiliation(s)
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2415-2427. [PMID: 27381067 DOI: 10.1016/j.nano.2016.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI.
| | - Taehong Min
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD; Genentech, 1 DNA Way, San Francisco, CA
| | - Manish Bodas
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI
| | - Aakruti Gorde
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Indrajit Roy
- Department of Chemistry, State University of New York, Buffalo, NY
| |
Collapse
|
15
|
Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases. Pharmacol Ther 2016; 169:113-123. [PMID: 27153991 DOI: 10.1016/j.pharmthera.2016.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels.
Collapse
|