1
|
Pien N, Di Francesco D, Copes F, Bartolf-Kopp M, Chausse V, Meeremans M, Pegueroles M, Jüngst T, De Schauwer C, Boccafoschi F, Dubruel P, Van Vlierberghe S, Mantovani D. Polymeric reinforcements for cellularized collagen-based vascular wall models: influence of the scaffold architecture on the mechanical and biological properties. Front Bioeng Biotechnol 2023; 11:1285565. [PMID: 38053846 PMCID: PMC10694796 DOI: 10.3389/fbioe.2023.1285565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
A previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW). The non-reinforced cellularized collagen-based model was used as a reference (COL). The effect of the scaffold's architecture on the resulting mechanical and biological properties of the reinforced collagen-based model were evaluated. SEM imaging showed the differences in scaffolds' architecture (fiber alignment, fiber diameter and pore size) at both the micro- and the macrolevel. The polymeric scaffold led to significantly improved mechanical properties for the reinforced collagen-based model (initial elastic moduli of 382.05 ± 132.01 kPa, 100.59 ± 31.15 kPa and 245.78 ± 33.54 kPa, respectively for SES, 3DP and MEW at day 7 of maturation) compared to the non-reinforced collagen-based model (16.63 ± 5.69 kPa). Moreover, on day 7, the developed collagen gels showed stresses (for strains between 20% and 55%) in the range of [5-15] kPa for COL, [80-350] kPa for SES, [20-70] kPa for 3DP and [100-190] kPa for MEW. In addition to the effect on the resulting mechanical properties, the polymeric tubes' architecture influenced cell behavior, in terms of proliferation and attachment, along with collagen gel compaction and extracellular matrix protein expression. The MEW reinforcement resulted in a collagen gel compaction similar to the COL reference, whereas 3DP and SES led to thinner and longer collagen gels. Overall, it can be concluded that 1) the selected processing technique influences the scaffolds' architecture, which in turn influences the resulting mechanical and biological properties, and 2) the incorporation of a polymeric reinforcement leads to mechanical properties closely matching those of native arteries.
Collapse
Affiliation(s)
- Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Marguerite Meeremans
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Tomasz Jüngst
- Department of Functional Materials in Medicine and Dentistry, Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany
| | - Catharina De Schauwer
- Faculty of Veterinary Medicine, Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Francesca Boccafoschi
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
2
|
Mitchell TC, Feng NL, Lam YT, Michael P, Santos M, Wise SG. Engineering vascular bioreactor systems to closely mimic physiological forces in vitro. TISSUE ENGINEERING PART B: REVIEWS 2022. [DOI: 10.1089/ten.teb.2022.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Timothy C Mitchell
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Nicolas L Feng
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Yuen Ting Lam
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Praveesuda Michael
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Miguel Santos
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| | - Steven G Wise
- The University of Sydney, 4334, School of Medical Sciences, Sydney, New South Wales, Australia,
| |
Collapse
|
3
|
Xu Y, Deng J, Hao S, Wang B. A Potential In Vitro 3D Cell Model to Study Vascular Diseases by Simulating the Vascular Wall Microenvironment and Its Application. Life (Basel) 2022; 12:427. [PMID: 35330178 PMCID: PMC8951029 DOI: 10.3390/life12030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Current in vitro vascular models are too simple compared with the real vascular environment. In this research, a novel in vitro 3D vascular disease model that simulated the vascular microenvironment was introduced. METHODS This model was mainly established by low shear stress and co-culture of endothelial cells and smooth muscle cells. Characterization and reproduction of the pathological state of the 3D model were determined. The effect of two clinical drugs was verified in this model. The difference of drug screening between a traditional oxidative-damaged cell model and this 3D model was determined by HPLC. RESULTS This model presented many disease markers of vascular diseases: abnormal cellular shape, higher endothelial cell apoptotic rate and smooth muscle cell migration rate, decreased superoxide dismutase level, and increased malondialdehyde and platelet-derived growth factor level. The drugs effectively reduced the disease indices and relieved the damage caused by low shear stress. Compared to the traditional oxidative-damaged cell model, this 3D model screened different active components of Salviae Miltiorrhizae extract, and it is closer to clinical studies. CONCLUSIONS These results suggest that the 3D vascular disease model is a more efficient and selective in vitro study and drug screening platform for vascular diseases than previously reported in vitro vascular disease models.
Collapse
Affiliation(s)
- Yingqian Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Y.X.); (S.H.)
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Jia Deng
- Chongqing Key Laboratory of Natural Medicine Research, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Y.X.); (S.H.)
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (Y.X.); (S.H.)
| |
Collapse
|
4
|
Khalighi S, Saadatmand M. Bioprinting a thick and cell-laden partially oxidized alginate-gelatin scaffold with embedded micro-channels as future soft tissue platform. Int J Biol Macromol 2021; 193:2153-2164. [PMID: 34800519 DOI: 10.1016/j.ijbiomac.2021.11.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022]
Abstract
Despite all the advancements in tissue engineering, one of the unsolved challenges is the mass transfer limitation. Therefore, the subject of pre-vascularization in the engineered tissues gets more attention to avoid necrotic core formation. In this study, we considered a design for interconnected channels with a muscle tissue-like structure, in silico and in vitro. A sequence of simple steps make it possible for us to use the same material, gelatin, as both a sacrificial material and one of the main components of the scaffold simultaneously. We defined a new approach to quantify the repeatability of a new combination of hydrogels (Partially Oxidized Alginate + Gelatin) for extrusion-based bioprinting. Additionally, the mechanical properties, hydrogel porosity, degradation time, and swelling ratio were also evaluated. Based on all these test results, the scaffold with the optimum properties was chosen for the bioprinting of adipose derived mesenchymal stem cells (ADMSCs) in the scaffolds with and without the channels. This bioprinted scaffold with microchannels showed promising mimicry of the microenvironment, leading to higher survival and proliferation rates of the cells by up to 250%. Based on these results, it has the potential to serve as a platform for further research in vascularization, healthy/disease modelling, and stem cell differentiation.
Collapse
Affiliation(s)
- Sadaf Khalighi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
5
|
Hosseini V, Mallone A, Mirkhani N, Noir J, Salek M, Pasqualini FS, Schuerle S, Khademhosseini A, Hoerstrup SP, Vogel V. A Pulsatile Flow System to Engineer Aneurysm and Atherosclerosis Mimetic Extracellular Matrix. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000173. [PMID: 32596117 PMCID: PMC7312268 DOI: 10.1002/advs.202000173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Alterations of blood flow patterns strongly correlate with arterial wall diseases such as atherosclerosis and aneurysm. Here, a simple, pumpless, close-loop, easy-to-replicate, and miniaturized flow device is introduced to concurrently expose 3D engineered vascular smooth muscle tissues to high-velocity pulsatile flow versus low-velocity disturbed flow conditions. Two flow regimes are distinguished, one that promotes elastin and impairs collagen I assembly, while the other impairs elastin and promotes collagen assembly. This latter extracellular matrix (ECM) composition shares characteristics with aneurysmal or atherosclerotic tissue phenotypes, thus recapitulating crucial hallmarks of flow-induced tissue morphogenesis in vessel walls. It is shown that the mRNA levels of ECM of collagens and elastin are not affected by the differential flow conditions. Instead, the differential gene expression of matrix metalloproteinase (MMP) and their inhibitors (TIMPs) is flow-dependent, and thus drives the alterations in ECM composition. In further support, treatment with doxycycline, an MMP inhibitor and a clinically used drug to treat vascular diseases, halts the effect of low-velocity flow on the ECM remodeling. This illustrates how the platform can be exploited for drug efficacy studies by providing crucial mechanistic insights into how different therapeutic interventions may affect tissue growth and ECM assembly.
Collapse
Affiliation(s)
- Vahid Hosseini
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
- Present address:
Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Anna Mallone
- Institute for Regenerative Medicine (IREM)University of Zurich and Wyss Translational Center ZurichZurich8952Switzerland
| | - Nima Mirkhani
- Responsive Biomedical Systems LabInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Jerome Noir
- Institute of GeophysicsDepartment of Earth SciencesETH ZurichZurich8092Switzerland
| | - Mehdi Salek
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyBostonMA02139USA
| | - Francesco Silvio Pasqualini
- Institute for Regenerative Medicine (IREM)University of Zurich and Wyss Translational Center ZurichZurich8952Switzerland
- Synthetic Physiology LaboratoryDepartment of Civil Engineering and ArchitectureUniversity of PaviaPavia27100Italy
| | - Simone Schuerle
- Responsive Biomedical Systems LabInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM)University of Zurich and Wyss Translational Center ZurichZurich8952Switzerland
| | - Viola Vogel
- Laboratory of Applied MechanobiologyInstitute of Translational MedicineDepartment of Health Sciences and TechnologyETH ZurichZurich8093Switzerland
| |
Collapse
|
6
|
Pennings I, van Haaften EE, Jungst T, Bulsink JA, Rosenberg AJWP, Groll J, Bouten CVC, Kurniawan NA, Smits AIPM, Gawlitta D. Layer-specific cell differentiation in bi-layered vascular grafts under flow perfusion. Biofabrication 2019; 12:015009. [PMID: 31553965 DOI: 10.1088/1758-5090/ab47f0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioengineered grafts have the potential to overcome the limitations of autologous and non-resorbable synthetic vessels as vascular substitutes. However, one of the challenges in creating these living grafts is to induce and maintain multiple cell phenotypes with a biomimetic organization. Our biomimetic grafts with heterotypic design hold promises for functional neovessel regeneration by guiding the layered cellular and tissue organization into a native-like structure. In this study, a perfusable two-compartment bioreactor chamber was designed for the further maturation of these vascular grafts, with a compartmentalized exposure of the graft's luminal and outer layer to cell-specific media. We used the system for a co-culture of endothelial colony forming cells and multipotent mesenchymal stromal cells (MSCs) in the vascular grafts, produced by combining electrospinning and melt electrowriting. It was demonstrated that the targeted cell phenotypes (i.e. endothelial cells (ECs) and vascular smooth muscle cells (vSMCs), respectively) could be induced and maintained during flow perfusion. The confluent luminal layer of ECs showed flow responsiveness, as indicated by the upregulation of COX-2, KLF2, and eNOS, as well as through stress fiber remodeling and cell elongation. In the outer layer, the circumferentially oriented, multi-layered structure of MSCs could be successfully differentiated into vSM-like cells using TGFβ, as indicated by the upregulation of αSMA, calponin, collagen IV, and (tropo)elastin, without affecting the endothelial monolayer. The cellular layers inhibited diffusion between the outer and the inner medium reservoirs. This implies tightly sealed cellular layers in the constructs, resulting in truly separated bioreactor compartments, ensuring the exposure of the inner endothelium and the outer smooth muscle-like layer to cell-specific media. In conclusion, using this system, we successfully induced layer-specific cell differentiation with a native-like cell organization. This co-culture system enables the creation of biomimetic neovessels, and as such can be exploited to investigate and improve bioengineered vascular grafts.
Collapse
Affiliation(s)
- Iris Pennings
- Department of Oral and Maxillofacial Surgery & Special Dental Care, UMC Utrecht, Utrecht University, Utrecht, The Netherlands. Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hu Q, Wu C, Zhang H. Preparation and Optimization of a Biomimetic Triple-Layered Vascular Scaffold Based on Coaxial Electrospinning. Appl Biochem Biotechnol 2019; 190:1106-1123. [PMID: 31705366 DOI: 10.1007/s12010-019-03147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Electrospinning is a promising method for preparing bionic vascular scaffolds. In particular, coaxial electrospinning can encapsulate polymer materials in biological materials and provide vascular scaffolds with good biomechanical properties. However, it is difficult to produce a stable Taylor cone during the coaxial electrospinning process. Moreover, glutaraldehyde cross-linked natural biomaterials are cytotoxic. To address these issues, a novel electrospinning process is proposed in this report. A non-ionic surfactant (Tween 80) was added to poly(lactic-co-glycolic acid) electrospinning solution and gelatin-collagen electrospinning solution, which prevented the interfacial effect of coaxial electrospinning due to different core/shell solutions. The as-prepared materials were then cross-linked with the non-toxic coupling agents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide (EDC/NHS). By comparing the biomechanical properties of EDC/NHS cross-linked vascular scaffold with glutaraldehyde vapor-cross-linked vascular scaffold, it was found that the fracture strain and biological performance of EDC/NHS cross-linked vascular scaffold were better than those of the glutaraldehyde cross-linked scaffold. Finally, a three-layer bionic vascular scaffold was prepared by the proposed electrospinning process. Biomechanical performance tests were carried out and the prepared scaffold was found to meet the requirements of tissue-engineered blood vessels. The research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Chuang Wu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200444, China. .,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Copes F, Pien N, Van Vlierberghe S, Boccafoschi F, Mantovani D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front Bioeng Biotechnol 2019; 7:166. [PMID: 31355194 PMCID: PMC6639767 DOI: 10.3389/fbioe.2019.00166] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) account for the 31% of total death per year, making them the first cause of death in the world. Atherosclerosis is at the root of the most life-threatening CVDs. Vascular bypass/replacement surgery is the primary therapy for patients with atherosclerosis. The use of polymeric grafts for this application is still burdened by high-rate failure, mostly caused by thrombosis and neointima hyperplasia at the implantation site. As a solution for these problems, the fast re-establishment of a functional endothelial cell (EC) layer has been proposed, representing a strategy of crucial importance to reduce these adverse outcomes. Implant modifications using molecules and growth factors with the aim of speeding up the re-endothelialization process has been proposed over the last years. Collagen, by virtue of several favorable properties, has been widely studied for its application in vascular graft enrichment, mainly as a coating for vascular graft luminal surface and as a drug delivery system for the release of pro-endothelialization factors. Collagen coatings provide receptor-ligand binding sites for ECs on the graft surface and, at the same time, act as biological sealants, effectively reducing graft porosity. The development of collagen-based drug delivery systems, in which small-molecule and protein-based drugs are immobilized within a collagen scaffold in order to control their release for biomedical applications, has been widely explored. These systems help in protecting the biological activity of the loaded molecules while slowing their diffusion from collagen scaffolds, providing optimal effects on the targeted vascular cells. Moreover, collagen-based vascular tissue engineering substitutes, despite not showing yet optimal mechanical properties for their use in the therapy, have shown a high potential as physiologically relevant models for the study of cardiovascular therapeutic drugs and diseases. In this review, the current state of the art about the use of collagen-based strategies, mainly as a coating material for the functionalization of vascular graft luminal surface, as a drug delivery system for the release of pro-endothelialization factors, and as physiologically relevant in vitro vascular models, and the future trend in this field of research will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Nele Pien
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Francesca Boccafoschi
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec City, QC, Canada
| |
Collapse
|
9
|
A Novel Biodegradable Multilayered Bioengineered Vascular Construct with a Curved Structure and Multi-Branches. MICROMACHINES 2019; 10:mi10040275. [PMID: 31022873 PMCID: PMC6523450 DOI: 10.3390/mi10040275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 12/18/2022]
Abstract
Constructing tissue engineered vascular grafts (TEVG) is of great significance for cardiovascular research. However, most of the fabrication techniques are unable to construct TEVG with a bifurcated and curved structure. This paper presents multilayered biodegradable TEVGs with a curved structure and multi-branches. The technique combined 3D printed molds and casting hydrogel and sacrificial material to create vessel-mimicking constructs with customizable structural parameters. Compared with other fabrication methods, the proposed technique can create more native-like 3D geometries. The diameter and wall thickness of the fabricated constructs can be independently controlled, providing a feasible approach for TEVG construction. Enzymatically-crosslinked gelatin was used as the material of the constructs. The mechanical properties and thermostability of the constructs were evaluated. Fluid-structure interaction simulations were conducted to examine the displacement of the construct’s wall when blood flows through it. Human umbilical vein endothelial cells (HUVECs) were seeded on the inner channel of the constructs and cultured for 72 h. The cell morphology was assessed. The results showed that the proposed technique had good application potentials, and will hopefully provide a novel technological approach for constructing integrated vasculature for tissue engineering.
Collapse
|
10
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Gold K, Gaharwar AK, Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials 2019; 196:2-17. [PMID: 30072038 PMCID: PMC6344330 DOI: 10.1016/j.biomaterials.2018.07.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023]
Abstract
Most biomedical and pharmaceutical research of the human vascular system aims to unravel the complex mechanisms that drive disease progression from molecular to organ levels. The knowledge gained can then be used to innovate diagnostic and treatment strategies which can ultimately be determined precisely for patients. Despite major advancements, current modeling strategies are often limited at identifying, quantifying, and dissecting specific cellular and molecular targets that regulate human vascular diseases. Therefore, development of multiscale modeling approaches are needed that can advance our knowledge and facilitate the design of next-generation therapeutic approaches in vascular diseases. This article critically reviews animal models, static in vitro systems, and dynamic in vitro culture systems currently used to model vascular diseases. A leading emphasis on the potential of emerging approaches, specifically organ-on-a-chip and three-dimensional (3D) printing, to recapitulate the innate human vascular physiology and anatomy is described. The applications of these approaches and future outlook in designing and screening novel therapeutics are also presented.
Collapse
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Material Sciences, Texas A&M University, College Station, TX, 77843, USA; Center for Remote Health and Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA.
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Yong KW, Choi JR, Mohammadi M, Mitha AP, Sanati-Nezhad A, Sen A. Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int 2018; 2018:8179075. [PMID: 30402112 PMCID: PMC6196793 DOI: 10.1155/2018/8179075] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Ischemic diseases such as myocardial infarction, ischemic stroke, and critical limb ischemia are immense public health challenges. Current pharmacotherapy and surgical approaches are insufficient to completely heal ischemic diseases and are associated with a considerable risk of adverse effects. Alternatively, human mesenchymal stem cells (hMSCs) have been shown to exhibit immunomodulation, angiogenesis, and paracrine secretion of bioactive factors that can attenuate inflammation and promote tissue regeneration, making them a promising cell source for ischemic disease therapy. This review summarizes the pathogenesis of ischemic diseases, discusses the potential therapeutic effects and mechanisms of hMSCs for these diseases, and provides an overview of challenges of using hMSCs clinically for treating ischemic diseases.
Collapse
Affiliation(s)
- Kar Wey Yong
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehdi Mohammadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Alim P. Mitha
- Department of Clinical Neurosciences, Foothills Medical Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Center of Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Center of Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
13
|
Bouten CVC, Smits AIPM, Baaijens FPT. Can We Grow Valves Inside the Heart? Perspective on Material-based In Situ Heart Valve Tissue Engineering. Front Cardiovasc Med 2018; 5:54. [PMID: 29896481 PMCID: PMC5987128 DOI: 10.3389/fcvm.2018.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
In situ heart valve tissue engineering using cell-free synthetic, biodegradable scaffolds is under development as a clinically attractive approach to create living valves right inside the heart of a patient. In this approach, a valve-shaped porous scaffold "implant" is rapidly populated by endogenous cells that initiate neo-tissue formation in pace with scaffold degradation. While this may constitute a cost-effective procedure, compatible with regulatory and clinical standards worldwide, the new technology heavily relies on the development of advanced biomaterials, the processing thereof into (minimally invasive deliverable) scaffolds, and the interaction of such materials with endogenous cells and neo-tissue under hemodynamic conditions. Despite the first positive preclinical results and the initiation of a small-scale clinical trial by commercial parties, in situ tissue formation is not well understood. In addition, it remains to be determined whether the resulting neo-tissue can grow with the body and preserves functional homeostasis throughout life. More important yet, it is still unknown if and how in situ tissue formation can be controlled under conditions of genetic or acquired disease. Here, we discuss the recent advances of material-based in situ heart valve tissue engineering and highlight the most critical issues that remain before clinical application can be expected. We argue that a combination of basic science - unveiling the mechanisms of the human body to respond to the implanted biomaterial under (patho)physiological conditions - and technological advancements - relating to the development of next generation materials and the prediction of in situ tissue growth and adaptation - is essential to take the next step towards a realistic and rewarding translation of in situ heart valve tissue engineering.
Collapse
Affiliation(s)
- Carlijn V. C. Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anthal I. P. M. Smits
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Frank P. T. Baaijens
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
14
|
Modarres HP, Janmaleki M, Novin M, Saliba J, El-Hajj F, RezayatiCharan M, Seyfoori A, Sadabadi H, Vandal M, Nguyen MD, Hasan A, Sanati-Nezhad A. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain. J Control Release 2018; 273:108-130. [PMID: 29378233 DOI: 10.1016/j.jconrel.2018.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Mana Novin
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - John Saliba
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mahdi RezayatiCharan
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Seyfoori
- Breast Cancer Research Center (BCRC), ACECR, Tehran, Iran; School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Sadabadi
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada
| | - Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Anwarul Hasan
- Biomedical Engineering, Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
15
|
Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med 2017; 2:18. [PMID: 29302354 PMCID: PMC5677971 DOI: 10.1038/s41536-017-0023-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Valentina Bonito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
16
|
Gaspar D, Zeugolis DI. Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discov Today 2016; 21:1341-1344. [DOI: 10.1016/j.drudis.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|