1
|
Liu Y, Wang Q, Hou Z, Gao Y, Li P. Electroacupuncture Inhibits Ferroptosis by Modulating Iron Metabolism and Oxidative Stress to Alleviate Cerebral Ischemia-Reperfusion Injury. J Mol Neurosci 2025; 75:63. [PMID: 40317390 PMCID: PMC12049298 DOI: 10.1007/s12031-025-02355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025]
Abstract
Ischemic stroke (IS) is one of the leading causes of mortality and long-term disability worldwide. Electroacupuncture (EA) is commonly used in the treatment of IS, meaning that may reduce cerebral ischemia-reperfusion injury (CIRI). The middle cerebral artery occlusion/reperfusion (MCAO/R) rat models were created by the modified Zea Longa suture method. EA treatment was performed for 7 consecutive days at the acupoints Neiguan (PC6), Shuigou (GV26), and Sanyinjiao (SP6). The neurological function was assessed using the Zausinger six-point neurological deficiency score. The cerebral infarct volume was detected by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Hematoxylin and eosin (HE) staining was employed to observe the pathological changes in brain tissues. Prussian blue staining was employed to investigate iron deposition within the brain tissues. Transmission electron microscopy (TEM) was utilized to examine the morphological characteristics of mitochondria. Simultaneously, flow cytometry was utilized to detect the fluorescence intensity of reactive oxygen species (ROS). Assay kits were employed to measure the levels of Fe2+ and glutathione (GSH). Additionally, western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) assays were performed to evaluate the expression levels of proteins associated with ferroptosis. Compared with the MCAO/R group, both the MCAO/R + EA and MCAO/R + DFO groups exhibited significant improvements in neurological function following cerebral ischemia-reperfusion (CIR), attenuated the pathological brain tissue injury, and reduced the cerebral infarct volume and iron deposition in brain tissue. Furthermore, both the MCAO/R + EA and MCAO/R + DFO groups displayed a marked reduction in mitochondrial injury. There was a substantial decrease in Fe2+ and ROS levels, accompanied by a notable increase in GSH level and glutathione peroxidase 4 (GPX4) activity. Compared with the MCAO/R group, the levels of ferroportin1 (FPN1) protein and mRNA expression were significantly increased in the MCAO/R + EA and MCAO/R + DFO groups, and the expression levels of transferrin (TF), transferrin receptor 1 (TFR1), divalent metal transporter 1 (DMT1) protein and mRNA, as well as ferritin (FER) protein, were significantly decreased. EA inhibits ferroptosis by modulating iron metabolism and oxidative stress to alleviate CIRI, exerting neuroprotective effects.
Collapse
Affiliation(s)
- Yaoyao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qi Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ziwen Hou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ying Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Peng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
2
|
Liu CP, Zheng S, Zhang P, Chen GH, Zhang YY, Sun HL, Peng L. Decreased serum SLC7A11 and GPX4 levels may reflect disease severity of acute ischaemic stroke. Ann Clin Biochem 2025; 62:191-201. [PMID: 39632577 DOI: 10.1177/00045632241305927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
ObjectiveThis study aimed to examine the levels of solute carrier family seven number 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in the serum of patients with acute ischaemic stroke (AIS) and their relationship with disease severity.MethodsA total of 148 patients with AIS together with 148 healthy controls (HCs) were enrolled. The expression levels of SLC7A11 and GPX4 in serum were detected immediately as early as possible. Radiographic severity was detected by Alberta Stroke Program Early CT Score (ASPECTS). Disease severity was evaluated using modified Rankin Scale (mRS). High-sensitivity C-reactive protein (hs-CRP) and matrix metalloproteinase-9 (MMP-9) expression levels were also measured. A correlation analysis was conducted to determine the relationship between the expression levels of SLC7A11 and GPX4 with the clinical severity of the disease and the levels of hs-CRP and MMP-9. Furthermore, receiver operating characteristic (ROC) curve analysis was utilized to assess the potential of SLC7A11 and GPX4 as diagnostic markers.ResultsCompared to the HC group, the serum expression levels of SLC7A11 and GPX4 were significantly lower in the AIS group. Serum SLC7A11 levels were positively associated with serum GPX4 levels. The AIS group included 50 patients with mild neurological impairment, 52 with moderate neurological impairment, and 46 with severe neurological impairment. AIS patients with mild neurological impairment had drastically higher serum SLC7A11 and GPX4 levels compared with those with moderate neurological impairment. AIS patients with moderate neurological impairment showed significantly higher serum SLC7A11 and GPX4 concentrations compared with those with severe neurological impairment. ROC curve analysis demonstrated that both serum SLC7A11 and GPX4 may both act as potential indicators for evaluating of AIS disease severity. In addition, both serum SLC7A11 and GPX4 levels were positively correlated with ASPECTS. Both serum SLC7A11 and GPX4 levels were negatively associated with hs-CRP as well as MMP-9 levels. Serum SLC7A11 and GPX4 levels were significantly increased following comprehensive therapy.ConclusionsDecreased SLC7A11 and GPX4 levels may reflect disease severity of AIS.
Collapse
Affiliation(s)
| | - Su Zheng
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Zhang
- Department of Acupuncture, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Guang-Hui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuan-Yuan Zhang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Hui-Lin Sun
- Department of Radiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Peng
- Shiyan Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Shiyan, China
| |
Collapse
|
3
|
Yang Y, Duan Y, Yue J, Yin Y, Ma Y, Wan X, Shao J. Exosomes: an innovative therapeutic target for cerebral ischemia-reperfusion injury. Front Pharmacol 2025; 16:1552500. [PMID: 40206077 PMCID: PMC11979243 DOI: 10.3389/fphar.2025.1552500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Ischemic stroke is caused by artery stenosis or occlusion, which reduces blood flow and may cause brain damage. Treatment includes restoring blood supply; however, ischemia-reperfusion can still aggravate tissue injury. Reperfusion injury can increase levels of reactive oxygen species, exacerbate mitochondrial dysfunction, create excessive autophagy and ferroptosis, and cause inflammation during microglial infiltration. Cerebral ischemia-reperfusion injury (CIRI) is a key challenge in the treatment of ischemic stroke. Currently, thrombolysis (e.g., rt-PA therapy) and mechanical thrombectomy are the primary treatments, but their application is restricted by narrow therapeutic windows (<4.5 h) and risks of hemorrhagic complications. Exosomes reduce CIRI by regulating oxidative stress, mitochondrial autophagy, inflammatory responses, and glial cell polarization. In addition, their noncellular characteristics provide a safer alternative to stem cell therapy. This article reviews the research progress of exosomes in CIRI in recent years.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yushan Duan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinxi Yue
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yue Yin
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohong Wan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Ma Y, Wang X, Li Y, Zhao J, Zhou X, Wang X. Mechanisms Associated with Mitophagy and Ferroptosis in Cerebral Ischemia-reperfusion Injury. J Integr Neurosci 2025; 24:26458. [PMID: 40152564 DOI: 10.31083/jin26458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke (IS) constitutes a major threat to human health. Vascular recanalization by intravenous thrombolysis and mechanical thrombolysis remain the most significant and effective methods for relief of ischemia. Key elements of these treatments include achieving blood-vessel recanalization, restoring brain-tissue reperfusion, and preserving the ischemic penumbra. However, in achieving the therapeutic goals of vascular recanalization, secondary damage to brain tissue from cerebral ischemia-reperfusion injury (CIRI) must also be addressed. Despite advancements in understanding the pathological processes associated with CIRI, effective interventions to prevent its onset and progression are still lacking. Recent research has indicated that mitophagy and ferroptosis are critical mechanisms in the development of CIRI, and significantly contribute to the onset and progression of IS and CIRI because of common targets and co-occurrence mechanisms. Therefore, exploring and summarizing the potential connections between mitophagy and ferroptosis during CIRI is crucial. In the present review, we mainly focused on the mechanisms of mitochondrial autophagy and ferroptosis, and their interaction, in the development of CIRI. We believe that the data show a strong relationship between mitochondrial autophagy and ferroptosis with interactive regulation. This information may underpin new potential approaches for the prevention and treatment of IS and subsequent CIRI.
Collapse
Affiliation(s)
- Yugang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xuebin Wang
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Yahui Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Gerontology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 250399 Jinan, Shandong, China
| | - Xue Zhou
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| |
Collapse
|
5
|
Zhou Y, Li J, Yuan Y, Zhang H, Luo X, Wang F, Tao Y, Yue J, Huang L, Wu L, Cao Y, Yu Q, He Q. Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis. CNS Neurosci Ther 2025; 31:e70286. [PMID: 39981761 PMCID: PMC11843251 DOI: 10.1111/cns.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Ferroptosis is a distinct form of cell death characterized by iron-dependent lipid peroxidation and plays a crucial role in the early brain injury (EBI) following subarachnoid hemorrhage (SAH). As a newly discovered endogenous ligand for the C-KIT receptor tyrosine kinase, meteorin-like protein (Metrnl) exerts regulatory functions in oxidative stress and protects against various diseases. However, the specific role of the Metrnl/C-KIT axis in neuronal ferroptosis during EBI following SAH remains to be elucidated. METHODS Sprague Dawley rats were used to establish the SAH model through endovascular perforation. r-Metrnl was administered intranasally 1 h after SAH. Metrnl shRNA, C-KIT inhibitor ISCK03, AMPK inhibitor dorsomorphin, and Nrf2 inhibitor ML385 were administered intracerebroventricularly or intraperitoneally before r-Metrnl treatment to explore the underlying mechanisms. Neurobehavioral assessments, immunofluorescence, western blot, ELISA, Fluoro-Jade C staining, transmission electron microscopy, and Nissl staining were conducted to evaluate the effects. Additionally, primary neuron culture with hemoglobin (Hb) stimulation was used for in vitro studies. RESULTS Phosphorylated C-KIT and endogenous Metrnl levels were upregulated after SAH. Knockdown of Metrnl aggravated neurobehavioral deficits and neuronal ferroptosis, whereas r-Metrnl treatment showed a protective effect. Mechanistically, r-Metrnl significantly increased the protein levels of SLC7A11, GPX4, FTH, FSP1, and GSH, whereas it decreased the levels of ACSL4, 4HNE, and MDA in the ipsilateral hemisphere 24 h after SAH. Also, r-Metrnl reduced mitochondrial shrinkage, increased mitochondrial crista, and decreased membrane density. However, the beneficial effects of r-Metrnl were partially reversed by ISCK03, dorsomorphin, or ML385 treatment both in vivo and in vitro. CONCLUSIONS Our study demonstrated that r-Metrnl reduced neuronal ferroptosis and improved neurological outcomes after SAH by modulating the C-KIT/AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- You Zhou
- Department of Critical Care Medicine, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiani Li
- Department of Neurology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Feng Wang
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Lei Wu
- Department of NeurologyGuangdong Second Provincial General HospitalGuangzhouGuangdongChina
| | - Yunxing Cao
- Department of Critical Care Medicine, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
| | - Qiuguang He
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Liu J, Zhao W, Kang J, Li X, Han L, Hu Z, Zhou J, Meng X, Gao X, Zhang Y, Gu Y, Liu X, Chen X. Halcinonide activates smoothened to ameliorate ischemic stroke injury. Life Sci 2025; 361:123324. [PMID: 39710062 DOI: 10.1016/j.lfs.2024.123324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The Shh pathway may shed new light on developing new cell death inhibitors for the therapy of ischemic stroke. We aimed to examine whether the Shh co-reporter SMO or its agonist halcinonide can upregulate Bcl-2 to suppress neuronal cell death, ultimately improving behavioral deficits and reducing cerebral infarction in an ischemic stroke model. METHODS Halcinonide or genetic manipulation of SMO was conducted in PC12 cells to examine their impacts on oxidative or OGD/R stress, and the chemical, along with AAV-SMO or AAV-EGFP were tested in MCAO rats to investigate their potential protective effects against neuronal damages due to cerebral I/R injury. The amounts or activities of L-LA, LDH, ROS, MDA, SOD, MPO, GSSG, and GSH were detected using the corresponding biochemical kits. The levels of TNF-α and IL-6 were analyzed by ELISA. RESULTS The results show that halcinonide alleviated neurological score and cerebral infarction, and the abnormal changes in L-LA, LDH, MDA, SOD, MPO, GSH, GSSG, TNF-α, and IL-6 were also reversed in MCAO rats. Through expression or knockout of SMO, we discovered that SMO worked similarly to halcinonide, protecting neuronal cells from oxidative or OGD/R stress, and AAV-SMO prevented cerebral damages of MCAO rats caused by ischemia and reperfusion. Halcinonide inhibited Bcl-2/Bax-mediated apoptosis, at least partially by promoting the Shh signaling pathway through enhancing SMO expression in vivo and in vitro. CONCLUSION This study identified a new target and a candidate chemical for therapy of ischemic stroke, hopefully reducing its morbidity and mortality.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; School of Basic Medical Sciences, University of South China, Hengyang, Hunan 421001, PR China.
| | - Wenyang Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jia Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Liang Han
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Zhuozhou Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xinrui Meng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaoshan Gao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Yixuan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Youquan Gu
- Department of Neurology, First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China.
| | - Xinping Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, PR China; Southeast Research Institute, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Wang R, Nie W, Yan X, Luo K, Zhang Q, Wang T, Lu E, Chen Y, Luo Y, Zhang Z, Wang H, Zhao J, Sha X. Biomimetic Nanomotors for Deep Ischemia Penetration and Ferroptosis Inhibition in Neuroprotective Therapy of Ischemic Stroke. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409176. [PMID: 39600046 DOI: 10.1002/adma.202409176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Nerve injury represents the primary reason of mortality and disability in ischemic stroke, but effective drug delivery to the region of cerebral ischemia and hypoxia poses a significant challenge in neuroprotective treatment. To address these clinical challenges, a biomimetic nanomotor, Pt@LF is designed, to facilitate deep delivery of neuroprotective agents and inhibit ferroptosis in ischemic stroke. Pt@LF traverses the blood-brain barrier (BBB) and penetrates into deep cerebral ischemic-hypoxic areas due to the active targeting capacity of apo-lactoferrin (Apo-LF) and the self-propelling motion properties of nanomotors. Subsequently, Pt@LF loosens thrombus and alleviates the "no reflow" phenomenon via mechanical thrombolysis. Thanks to the various enzyme-like abilities and multi-target ferroptosis inhibition capability, Pt@LF ameliorates the inflammatory microenvironment and rescues dying neurons. In conclusion, Pt@LF demonstrates efficiently deep penetration and neuroprotective effects in vitro and vivo. And this study provides a promising therapeutic platform for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Weimin Nie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Qi Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Tao Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Yiting Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Yu Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
| | - He Wang
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200 433, China
- Department of Radiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200 081, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201 102, China
- Institute of Healthy Yangtze River Delta, Shanghai Jiao Tong University, Shanghai, 200 030, China
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery (Ministry of Education), Shanghai, 201203, China
- Quzhou Fudan Institute, Quzhou, 324 002, China
| |
Collapse
|
8
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
9
|
Wu G, Li B, Wei X, Chen Y, Zhao Y, Peng Y, Su J, Hu Z, Zhuo L, Tian Y, Wang Z, Peng X. Design, synthesis and biological evaluation of N-salicyloyl tryptamine derivatives as multifunctional neuroprotectants for the treatment of ischemic stroke. Eur J Med Chem 2024; 278:116795. [PMID: 39216381 DOI: 10.1016/j.ejmech.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke (IS) is a disease of high death and disability worldwide with few medications in clinical treatment. Neuroinflammation and oxidative stress are considered as crucial factors in the progression of IS. In our previous studies, N-salicyloyl tryptamine derivative (NST) L7 exhibited promising anti-inflammatory properties and is considered a potential clinical therapy for IS but had limited antioxidant capacity. Here, we have designed, synthesized, and biologically evaluated 30 novel NSTs for their neuroprotective effects against cerebral ischemia-reperfusion (CI/R) injury. To identify a multifunctional neuroprotectant with enhanced antioxidant and anti-inflammatory capacity, as well as an effective therapeutic agent for CI/R damage. Among them, M11 exhibited synergistic highly anti-oxidant, anti-inflammatory, anti-ferroptosis, and anti-apoptosis effects and surpassed the parent compound L7. Further studies demonstrated that the synergistic and efficient neuroprotective role of M11 was mainly achieved by activating Nrf2 and stimulating its downstream target HO-1/GCLC/NQO1/GPX4. In addition, M11 possessed good blood-brain barrier permeability. Moreover, M11 effectively reduced cerebral infarct volume and improved neurological deficits in MCAO/R mice. Its hydrochloride form, M11·HCl, exhibited better pharmacokinetic properties, high safety, and a significant reduction in infarct volume, which is comparable to Edaravone. In conclusion, our findings suggested that M11 capable of activating Nrf2, could represent a promising candidate agent for IS.
Collapse
Affiliation(s)
- Genping Wu
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bo Li
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiuzhen Wei
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaxin Chen
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuting Zhao
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yan Peng
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jianhui Su
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zecheng Hu
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Linsheng Zhuo
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Tian
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China; MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Xue Peng
- The Affiliated Nanhua Hospital, School of Pharmaceutical Science, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
10
|
Wei C. The role of glutathione peroxidase 4 in neuronal ferroptosis and its therapeutic potential in ischemic and hemorrhagic stroke. Brain Res Bull 2024; 217:111065. [PMID: 39243947 DOI: 10.1016/j.brainresbull.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Ferroptosis is a type of cell death that depends on iron and is driven by lipid peroxidation, playing a crucial role in neuronal death during stroke. A central element in this process is the inactivation of glutathione peroxidase 4 (GPx4), an antioxidant enzyme that helps maintain redox balance by reducing lipid hydroperoxides. This review examines the critical function of GPx4 in controlling neuronal ferroptosis following ischemic and hemorrhagic stroke. We explore the mechanisms through which GPx4 becomes inactivated in various stroke subtypes. In strokes, excess glutamate depletes glutathione (GSH) and products of hemoglobin breakdown overwhelm GPx4. Studies using genetic models with GPx4 deficiency underscore its vital role in maintaining neuronal survival and function. We also consider new therapeutic approaches to enhance GPx4 activity, including novel small molecule activators, adjustments in GSH metabolism, and selenium supplementation. Additionally, we outline the potential benefits of combining these GPx4-focused strategies with other anti-ferroptotic methods like iron chelation and lipoxygenase inhibition for enhanced neuroprotection. Furthermore, we highlight the significance of understanding the timing of GPx4 inactivation during stroke progression to design effective therapeutic interventions.
Collapse
Affiliation(s)
- Chao Wei
- Feinberg school of medicine, Northwestern University, IL 60611, USA
| |
Collapse
|
11
|
Yu Y, Wang Q, Huang X, Li Z. GA receptor targeted chitosan oligosaccharide polymer nanoparticles improve non-alcoholic fatty liver disease by inhibiting ferroptosis. Int J Biol Macromol 2024; 278:134779. [PMID: 39151850 DOI: 10.1016/j.ijbiomac.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Excessive iron in the liver may exacerbate Non-alcoholic fatty liver disease (NAFLD) by increasing the risk of liver cell expansion, inflammation and fibrosis. Ferroptosis in liver cells may lead the progression of simple fatty liver degeneration to steatohepatitis (NASH). More and more studies shew that ferroptosis played a crucial role in the pathological process of NAFLD. Based on the mechanism of ferroptosis, this study first synthesized a liver targeted 18-β-Glycyrrhetinic-acid-chitosan oligosaccharide -N-acetylcysteine polymer (GCNp), and further curcumin (Cur) was used as model drug to prepare Cur loaded nanodelivery system (GCNp-Cur NPs). The particle size of GCNp-Cur NPs was 132.5 ± 9.8 nm, PDI was 0.148 ± 0.026 and the potential was 23.8 mV. GCNp-Cur NPs can regulate the GPX4/GSH pathway, inhibit lipid peroxidation, restore cellular oxidative environment, reduce free Fe2+, improve cellular lipid metabolism and iron metabolism, thereby NPs inhibited liver cell ferroptosis through multiple pathways. Additionally, GCNp-Cur NPs could also alleviate liver tissue lipid accumulation and oxidative damage, delaying disease progression, and providing a new method and theoretical basis for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yao Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xi Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 450001, China.
| |
Collapse
|
12
|
Wang J, Lv C, Wei X, Li F. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke. Brain Behav Immun Health 2024; 40:100837. [PMID: 39228970 PMCID: PMC11369453 DOI: 10.1016/j.bbih.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Ischemic stroke, as one of the most severe and prevalent neurological disorders, poses a significant threat to the health and quality of life of affected individuals. Stemming from the obstruction of blood flow, ischemic stroke, leads to cerebral tissue hypoxia and ischemia, instigating a cascade of pathophysiological changes that markedly exacerbate neuronal damage and may even culminate in cell death. In recent years, emerging research has increasingly focused on novel cell death mechanisms such as ferroptosis and cuproptosis. Mounting evidence underscores the independent roles of ferroptosis and cuproptosis in ischemic stroke. This review aims to elucidate potential cross-regulatory mechanisms between ferroptosis and cuproptosis, exploring their regulatory roles in ischemic stroke. The objective is to provide targeted therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jing Wang
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
- Bengbu Medical College, Anhui, China
| | - Cunming Lv
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Xinyu Wei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Feng Li
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
| |
Collapse
|
13
|
Li J, Yang Z, Yang W, Zhao X, Li L, Cao Z, Zhou H, Zheng R, Deng Y, Peng C, Li Y, Fang Y. A novel AIE-based mitochondria-targeting fluorescent probe for monitoring of the fluctuation of endogenous hypochlorous acid in ferroptosis models. Anal Bioanal Chem 2024; 416:4873-4885. [PMID: 38951148 DOI: 10.1007/s00216-024-05412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Ferroptosis is a way of cell death mainly due to the imbalance between the production and degradation of lipid reactive oxygen species, which is closely associated with various diseases. Endogenous hypochlorous acid (HOCl) mainly produced in mitochondria is regarded as an important signal molecule of ferroptosis. Therefore, monitoring the fluctuation of endogenous HOCl is beneficial to better understand and treat ferroptosis-related diseases. Inspired by the promising aggregation-induced emission (AIE) properties of tetraphenylethene (TPE), herein, we rationally constructed a novel AIE-based fluorescent probe, namely QTrPEP, for HOCl with nice mitochondria-targeting ability and high sensitivity and selectivity. Probe QTrPEP consisted of phenylborate ester and the AIE fluorophore of quinoline-conjugated triphenylethylene (QTrPE). HOCl can brighten the strong fluorescence through a specific HOCl-triggered cleavage of the phenylborate ester bond and release of QTrPE, which has been demonstrated by MS, HPLC, and DLS experiments. In addition, combining QTrPE-doped test strips with a smartphone-based measurement demonstrated the excellent performance of the probe to sense HOCl. The obtained favorable optical properties and negligible cytotoxicity allowed the use of this probe for tracking of HOCl in three different cells. In particular, this work represents the first AIE-based mitochondria-targeting fluorescent probe for monitoring the fluctuation of HOCl in ferroptosis.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhiqiang Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenya Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Houcheng Zhou
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yuyu Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Sichuan New Green Pharmaceutical Technology Development Co. Ltd., Chengdu, 611930, China.
| |
Collapse
|
14
|
Wang W, Liu X, Wang Y, Zhou D, Chen L. Application of biomaterials in the treatment of intracerebral hemorrhage. Biomater Sci 2024; 12:4065-4082. [PMID: 39007343 DOI: 10.1039/d4bm00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the current surgical hematoma removal treatment saves patients' lives in critical moments of intracerebral hemorrhage (ICH), the lethality and disability rates of ICH are still very high. Due to the individual differences of patients, postoperative functional improvement is still to be confirmed, and the existing drug treatment has limited benefits for ICH. Recent advances in biomaterials may provide new ideas for the therapy of ICH. This review first briefly describes the pathogenic mechanisms of ICH, including primary and secondary injuries such as inflammation and intracerebral edema, and briefly describes the existing therapeutic approaches and their limitations. Secondly, existing nanomaterials and hydrogels for ICH, including exosomes, liposomes, and polymer nanomaterials, are also described. In addition, the potential challenges and application prospects of these biomaterials for clinical translation in ICH treatment are discussed.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Yupeng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
| | - Dongfang Zhou
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510310, P. R. China.
| |
Collapse
|
15
|
Zhou J, Tang J, Zhang C, Li G, Lin X, Liao S, Luo J, Yu G, Zheng F, Guo Z, Shao W, Hu H, Xu L, Wu S, Li H. ALKBH5 targets ACSL4 mRNA stability to modulate ferroptosis in hyperbilirubinemia-induced brain damage. Free Radic Biol Med 2024; 220:271-287. [PMID: 38734267 DOI: 10.1016/j.freeradbiomed.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Bilirubin-induced brain damage is a serious clinical consequence of hyperbilirubinemia, yet the underlying molecular mechanisms remain largely unknown. Ferroptosis, an iron-dependent cell death, is characterized by iron overload and lipid peroxidation. Here, we report a novel regulatory mechanism of demethylase AlkB homolog 5 (ALKBH5) in acyl-coenzyme A synthetase long-chain family member 4 (ACSL4)-mediated ferroptosis in hyperbilirubinemia. Hyperdifferential PC12 cells and newborn Sprague-Dawley rats were used to establish in vitro and in vivo hyperbilirubinemia models, respectively. Proteomics, coupled with bioinformatics analysis, first suggested the important role of ferroptosis in hyperbilirubinemia-induced brain damage. In vitro experiments showed that ferroptosis is activated in hyperbilirubinemia, and ferroptosis inhibitors (desferrioxamine and ferrostatin-1) treatment effectively alleviates hyperbilirubinemia-induced oxidative damage. Notably, we observed that the ferroptosis in hyperbilirubinemia was regulated by m6A modification through the downregulation of ALKBH5 expression. MeRIP-seq and RIP-seq showed that ALKBH5 may trigger hyperbilirubinemia ferroptosis by stabilizing ACSL4 mRNA via m6A modification. Further, hyperbilirubinemia-induced oxidative damage was alleviated through ACSL4 genetic knockdown or rosiglitazone-mediated chemical repression but was exacerbated by ACSL4 overexpression. Mechanistically, ALKBH5 promotes ACSL4 mRNA stability and ferroptosis by combining the 669 and 2015 m6A modified sites within 3' UTR of ACSL4 mRNA. Our findings unveil a novel molecular mechanism of ferroptosis and suggest that m6A-dependent ferroptosis could be an underlying clinical target for the therapy of hyperbilirubinemia.
Collapse
Affiliation(s)
- Jinfu Zhou
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jianping Tang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Sining Liao
- Center for Disease Control and Prevention of Shantou, Shantou, Guangdong, 515000, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
16
|
Lu Y, Shen Z, Xu Y, Lin H, Shen L, Jin Y, Guo Y, Lu J, Li L, Zhuang Y, Jin Y, Zhuang W, Huang W, Dong X, Dai H, Che J. Discovery of New Phenyltetrazolium Derivatives as Ferroptosis Inhibitors for Treating Ischemic Stroke: An Example Development from Free Radical Scavengers. J Med Chem 2024; 67:11712-11731. [PMID: 38996382 DOI: 10.1021/acs.jmedchem.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Ferroptosis is a promising therapeutic target for injury-related diseases, yet diversity in ferroptosis inhibitors remains limited. In this study, initial structure optimization led us to focus on the bond dissociation enthalpy (BDE) of the N-H bond and the residency time of radical scavengers in a phospholipid bilayer, which may play an important role in ferroptosis inhibition potency. This led to the discovery of compound D1, exhibiting potent ferroptosis inhibition, high radical scavenging, and moderate membrane permeability. D1 demonstrated significant neuroprotection in an oxygen glucose deprivation/reoxygenation (OGD/R) model and reduced infarct volume in an in vivo stroke model upon intravenous treatment. Further screening based on this strategy identified NecroX-7 and Eriodictyol-7-O-glucoside as novel ferroptosis inhibitors with highly polar structural characteristics. This approach bridges the gap between free radical scavengers and ferroptosis inhibitors, providing a foundation for research and insights into novel ferroptosis inhibitor development.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zexu Shen
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoran Lin
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linjie Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, PR China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiaowu Dong
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Shi CL, Han XL, Chen JC, Pan QF, Gao YC, Guo PY, Min XL, Gao YJ. Single-nucleus transcriptome unveils the role of ferroptosis in ischemic stroke. Heliyon 2024; 10:e32727. [PMID: 38994078 PMCID: PMC11237950 DOI: 10.1016/j.heliyon.2024.e32727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.
Collapse
Affiliation(s)
- Cheng-Long Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiu-Li Han
- Department of Stomatology, Kunming Children's Hospital, Kunming, 650100, China
| | - Jing-Ce Chen
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, 650100, China
| | - Qian-Fan Pan
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Chao Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Peng-Yan Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiao-Li Min
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Jun Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
18
|
Geng Y, Qiu L, Cheng Y, Li J, Ma Y, Zhao C, Cai Y, Zhang X, Chen J, Pan Y, Wang K, Yao X, Guo D, Wu J. Alleviating Recombinant Tissue Plasminogen Activator-induced Hemorrhagic Transformation in Ischemic Stroke via Targeted Delivery of a Ferroptosis Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309517. [PMID: 38647405 PMCID: PMC11199968 DOI: 10.1002/advs.202309517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Intravenous thrombolysis with recombinant tissue plasminogen activator (rtPA) is the primary treatment for ischemic stroke. However, rtPA treatment can substantially increase blood-brain barrier (BBB) permeability and susceptibility to hemorrhagic transformation. Herein, the mechanism underlying the side effects of rtPA treatment is investigated and demonstrated that ferroptosis plays an important role. The ferroptosis inhibitor, liproxstatin-1 (Lip) is proposed to alleviate the side effects. A well-designed macrocyclic carrier, glucose-modified azocalix[4]arene (GluAC4A), is prepared to deliver Lip to the ischemic site. GluAC4A bound tightly to Lip and markedly improved its solubility. Glucose, modified at the upper rim of GluAC4A, imparts BBB targeting to the drug delivery system owing to the presence of glucose transporter 1 on the BBB surface. The responsiveness of GluAC4A to hypoxia due to the presence of azo groups enabled the targeted release of Lip at the ischemic site. GluAC4A successfully improved drug accumulation in the brain, and Lip@GluAC4A significantly reduced ferroptosis, BBB leakage, and neurological deficits induced by rtPA in vivo. These findings deepen the understanding of the side effects of rtPA treatment and provide a novel strategy for their effective mitigation, which is of great significance for the treatment and prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Yan‐Qin Geng
- School of MedicineNankai UniversityTianjin300071China
- Tianjin Huanhu HospitalTianjin300350China
| | - Li‐Na Qiu
- Department of NeurologyTianjin Huanhu HospitalTianjin300350China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Neurosurgical InstituteTianjin Huanhu HospitalTianjin300350China
| | - Yuan‐Qiu Cheng
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)Frontiers Science Center for New Organic MatterCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071China
| | - Juan‐Juan Li
- College of Chemistry and Environmental ScienceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Key Laboratory of Chemical Biology of Hebei ProvinceHebei UniversityBaoding071002China
| | - Yi‐Lin Ma
- Clinical College of NeurologyNeurosurgery and NeurorehabilitationTianjin Medical UniversityTianjin300071China
| | - Cheng‐Cheng Zhao
- Clinical College of NeurologyNeurosurgery and NeurorehabilitationTianjin Medical UniversityTianjin300071China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Neurosurgical InstituteTianjin Huanhu HospitalTianjin300350China
| | - Xue‐Bin Zhang
- Department of PathologyTianjin Huanhu HospitalTianjin300350China
| | - Jieli Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Neurosurgical InstituteTianjin Huanhu HospitalTianjin300350China
| | - Yu‐Chen Pan
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)Frontiers Science Center for New Organic MatterCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071China
| | - Ke‐Rang Wang
- College of Chemistry and Environmental ScienceKey Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education)Key Laboratory of Chemical Biology of Hebei ProvinceHebei UniversityBaoding071002China
| | - Xiu‐Hua Yao
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Neurosurgical InstituteTianjin Huanhu HospitalTianjin300350China
| | - Dong‐Sheng Guo
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)Frontiers Science Center for New Organic MatterCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjin300071China
- Xinjiang Key Laboratory of Novel Functional Materials ChemistryCollege of Chemistry and Environmental SciencesKashi UniversityKashi844000China
| | - Jia‐Ling Wu
- School of MedicineNankai UniversityTianjin300071China
- Tianjin Huanhu HospitalTianjin300350China
- Department of NeurologyTianjin Huanhu HospitalTianjin300350China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Neurosurgical InstituteTianjin Huanhu HospitalTianjin300350China
| |
Collapse
|
19
|
Zhang XY, Han PP, Zhao YN, Shen XY, Bi X. Crosstalk between autophagy and ferroptosis mediate injury in ischemic stroke by generating reactive oxygen species. Heliyon 2024; 10:e28959. [PMID: 38601542 PMCID: PMC11004216 DOI: 10.1016/j.heliyon.2024.e28959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Stroke represents a significant threat to global human health, characterized by high rates of morbidity, disability, and mortality. Predominantly, strokes are ischemic in nature. Ischemic stroke (IS) is influenced by various cell death pathways, notably autophagy and ferroptosis. Recent studies have increasingly highlighted the interplay between autophagy and ferroptosis, a process likely driven by the accumulation of reactive oxygen species (ROS). Post-IS, either the inhibition of autophagy or its excessive activation can escalate ROS levels. Concurrently, the interaction between ROS and lipids during ferroptosis further augments ROS accumulation. Elevated ROS levels can provoke endoplasmic reticulum stress-induced autophagy and, in conjunction with free iron (Fe2+), can trigger ferroptosis. Moreover, ROS contribute to protein and lipid oxidation, endothelial dysfunction, and an inflammatory response, all of which mediate secondary brain injury following IS. This review succinctly explores the mechanisms of ROS-mediated crosstalk between autophagy and ferroptosis and the detrimental impact of increased ROS on IS. It also offers novel perspectives for IS treatment strategies.
Collapse
Affiliation(s)
- Xing-Yu Zhang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Ning Zhao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
20
|
Dar NJ, John U, Bano N, Khan S, Bhat SA. Oxytosis/Ferroptosis in Neurodegeneration: the Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol Neurobiol 2024; 61:1507-1526. [PMID: 37725216 DOI: 10.1007/s12035-023-03646-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Oxytosis/ferroptosis is an iron-dependent oxidative form of cell death triggered by lethal accumulation of phospholipid hydroperoxides (PLOOHs) in membranes. Failure of the intricate PLOOH repair system is a principle cause of ferroptotic cell death. Glutathione peroxidase 4 (GPX4) is distinctly vital for converting PLOOHs in membranes to non-toxic alcohols. As such, GPX4 is known as the master regulator of oxytosis/ferroptosis. Ferroptosis has been implicated in a number of disorders such as neurodegenerative diseases (amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), etc.), ischemia/reperfusion injury, and kidney degeneration. Reduced function of GPX4 is frequently observed in degenerative disorders. In this study, we examine how diminished GPX4 function may be a critical event in triggering oxytosis/ferroptosis to perpetuate or initiate the neurodegenerative diseases and assess the possible therapeutic importance of oxytosis/ferroptosis in neurodegenerative disorders. These discoveries are important for advancing our understanding of neurodegenerative diseases because oxytosis/ferroptosis may provide a new target to slow the course of the disease.
Collapse
Affiliation(s)
- Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
- School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nargis Bano
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Sameera Khan
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India
| | - Shahnawaz Ali Bhat
- Faculty of Life Sciences, Department of Zoology, Aligarh Muslim University, Aligarh, U.P, India.
| |
Collapse
|
21
|
Fan B, Zhang Y, Luo Q, Hao C, Liao W. Physical and social environmental enrichment alleviate ferroptosis and inflammation with inhibition of TLR4/MyD88/p38MAPK pathway in chronic cerebral hypoperfusion rats. Brain Res Bull 2024; 208:110897. [PMID: 38340777 DOI: 10.1016/j.brainresbull.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
A typical enriched environment (EE), which combines physical activity and social interaction, has been proven to mitigate cognitive impairment caused by chronic cerebral hypoperfusion (CCH). However, it remains unclear how the different components of EE promote cognitive recovery after CCH. This study stripped out the different components of EE into physical environmental enrichment (PE) and social environmental enrichment (SE), and compared the neuroprotective effects of PE, SE and typical EE (PSE) in CCH. The results of novel object recognition and Morris water maze tests showed that PE, SE, and PSE improved cognitive function in CCH rats. Additionally, Nissl and TUNEL staining revealed that three EEs reduced neuronal loss in the hippocampus. PSE exhibited superior neuroprotective and functional improvement effects compared to PE and SE, while there was no significant difference between PE and SE. Furthermore, three EEs reduced lipid peroxidation in the hippocampus with decreasing the levels of MDA and increasing the activities of SOD and GSH. The expression of SLC7A11 and GPX4 was increased, while the level of p53 was reduced in three EEs. This suggested that three EEs inhibited ferroptosis by maintaining the redox homeostasis in the hippocampus. Three EEs reduced the levels of IL-β, TNF-α, and IL-6, thereby inhibiting neuroinflammation. Additionally, Western blotting and immunofluorescence results indicated that three EEs also inhibited the TLR4/MyD88/p38MAPK signaling pathway. These findings collectively demonstrated that the three EEs alleviated hippocampal ferroptosis and neuroinflammation in CCH rats, thereby reducing neuronal loss, which might be associated with the inhibition of the TLR4/MyD88/p38MAPK signaling pathway. Moreover, the study results supported that it is only through the combination of physical exercise and social interaction that the optimal neuroprotective effects can be achieved. These findings provided valuable insights for the prevention and treatment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Bin Fan
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qihang Luo
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chizi Hao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Zhu F, Ding S, Liu Y, Wang X, Wu Z. Ozone-mediated cerebral protection: Unraveling the mechanism through ferroptosis and the NRF2/SLC7A11/GPX4 signaling pathway. J Chem Neuroanat 2024; 136:102387. [PMID: 38182039 DOI: 10.1016/j.jchemneu.2023.102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/16/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The pathogenesis of brain ischemic/reperfusion (I/R) insult is characterized by neuronal loss due to excessive oxidative stress responses. Ferroptosis, a form of oxidative cell death, can be triggered when the balance between antioxidants and pro-oxidants in cells is disrupted. Ozone, a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagic properties, has been shown to enhance the antioxidant system's capacity and ameliorate oxidative stress. However, its role in neuronal ferroptosis remains unclear. Therefore, we investigated the functions and possible mechanisms of ozone in cerebral I/R-induced ferroptotic neuronal death. METHODS A cerebral ischemia-reperfusion injury model was induced in Sprague-Dawley (SD) rats pre-treated with ozone. Intraperitoneal administration of the NRF2 inhibitor ML385, the SLC7A11 inhibitor Erastin, and the GPX4 inhibitor RSL3 was performed one hour prior to model establishment. RESULTS Our results showed that ozone preconditioning mitigated neuronal damage caused by cerebral I/R, reduced the severity of neurological deficits, lowered cerebral infarct volume in middle cerebral artery occlusion (MCAO) rats, and decreased the volume of cerebral infarcts. Transmission electron microscopy, immunofluorescence, and Western blotting indicated ferroptosis following MCAO-induced brain damage. MCAO resulted in morphological damage to neuronal mitochondria, increased lipid peroxidation accumulation, and elevated malondialdehyde (MDA) production. Furthermore, MCAO decreased levels of FTH1 and GPX4 (negative regulators of ferroptosis) and increased ACSL4 levels (a positive regulator of ferroptosis). Ozone preconditioning demonstrated a neuroprotective effect by increasing NRF2 nuclear translocation and the expression of SLC7A11 and GPX4. Treatment with ML385, Erastin, and RSL3 significantly reversed ozone preconditioning's protective effect on neuronal ferroptosis. CONCLUSION Our findings demonstrated that ozone treatment attenuates ferroptosis in a cerebral ischemia/reperfusion injury rat model via the NRF2/SLC7A11/GPX4 pathway, providing a theoretical basis for ozone's potential use as a therapy to prevent ischemic stroke.
Collapse
Affiliation(s)
- Farong Zhu
- Department of Anesthesiology, Nanjing Medical University, Jiangning, Nanjing 211166, People's Republic of China
| | - Shengyang Ding
- Department of Anesthesiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Changzhou, Jiangsu 213000, People's Republic of China
| | - Yu Liu
- Department of Graduate School of Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xinlei Wang
- Department of Graduate School of Dalian Medical University, Dalian 116044, People's Republic of China
| | - Zhouquan Wu
- Department of Anesthesiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Changzhou, Jiangsu 213000, People's Republic of China.
| |
Collapse
|
23
|
Zhang Y, Ye P, Zhu H, Gu L, Li Y, Feng S, Zeng Z, Chen Q, Zhou B, Xiong X. Neutral polysaccharide from Gastrodia elata alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling pathway. CNS Neurosci Ther 2024; 30:e14456. [PMID: 37752806 PMCID: PMC10916450 DOI: 10.1111/cns.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
AIMS The crosstalk between ferroptosis and neuroinflammation considerably impacts the pathogenesis of cerebral ischemia-reperfusion injury (CIRI). Neutral polysaccharide from Gastrodia elata (NPGE) has shown significant effects against oxidative stress and inflammation. This study investigated the potential effects of NPGE on CIRI neuropathology. METHODS The effects of NPGE were studied in a mouse model of ischemic stroke (IS) and in oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cells. RESULTS NPGE treatment decreased neurological deficits, reduced infarct volume, and alleviated cerebral edema in IS mice, and promoted the survival of OGD/R-induced HT22 cells. Mechanistically, NPGE treatment alleviated neuronal ferroptosis by upregulating GPX4 levels, lowering reactive oxygen species (ROS), malondialdehyde (MDA), and Fe2+ excessive hoarding, and meliorating GSH levels and SOD activity. Additionally, it inhibited neuroinflammation by down-regulating the level of IL-1β, IL-6, TNF-α, NLRP3, and HMGB1. Meanwhile, NPGE treatment alleviated ferroptosis and inflammation in erastin-stimulated HT22 cells. Furthermore, NPGE up-regulated the expression of NRF2 and HO-1 and promoted the translocation of NRF2 into the nucleus. Using the NRF2 inhibitor brusatol, we verified that NRF2/HO-1 signaling mediated the anti-ferroptotic and anti-inflammatory properties of NPGE. CONCLUSION Collectively, our results demonstrate the protective effects of NPGE and highlight its therapeutic potential as a drug component for CIRI treatment.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Peng Ye
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijuan Gu
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuntao Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Department of Neurosurgery, The Affiliated Huzhou HospitalZhejiang University School of Medicine (Huzhou Central Hospital)HuzhouChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhi Zeng
- Department of PathologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Qianxue Chen
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
24
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
25
|
Horinouchi T, Mazaki Y, Miwa S. Mechanism of cytotoxicity induced by the cigarette smoke extract (CSE) of heated tobacco products in vascular smooth muscle cells: A comparative study of the cytotoxic effects of CSE and the ferroptosis inducer, erastin. J Pharmacol Sci 2024; 154:86-96. [PMID: 38246732 DOI: 10.1016/j.jphs.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Heated tobacco products (HTPs) are marketed worldwide as less harmful alternatives to combustible cigarettes; however, their cytotoxic mechanisms in vascular smooth muscle cells are poorly understood. Ferroptosis is defined as iron-dependent cell death caused by the accumulation of lipid peroxidation products. In this study, the cytotoxic effects of nicotine- and tar-free cigarette smoke extracts (CSE) derived from three types of HTPs and the ferroptosis inducer, erastin, on vascular smooth muscle A7r5 cells were compared. Cigarette smoke from all HTPs was generated according to the following puffing regime: 55 mL, puff volume; 30 s, puff interval; 2 s, puff duration; bell-shaped, puff profile; and no blocking of the ventilation holes. Erastin and CSE decreased mitochondrial metabolic activity and increased lactate dehydrogenase leakage. The cytotoxic effects of erastin were almost completely inhibited by the radical-trapping antioxidant, UAMC-3203; iron chelator, deferoxamine mesylate (DFO); 12/15-lipoxygenase (12/15-LOX) inhibitor, baicalein; and selective 15-LOX inhibitor, ML351. In contrast, CSE-induced cell damage was partially attenuated by UAMC-3203, baicalein, and ML351 but not by DFO. These results suggest that erastin induces ferroptosis via 15-LOX-mediated iron-dependent lipid peroxidation, whereas CSE causes iron-independent cell damage via 15-LOX-mediated lipid peroxidation-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Takahiro Horinouchi
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Yuichi Mazaki
- Department of Cellular Pharmacology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Soichi Miwa
- Toyooka General Hospital, 1094 Tobera, Toyooka, Hyogo, 668-8501, Japan
| |
Collapse
|
26
|
Ying D, Shen X, Wang S, Chen J, Wu Z, Chen W, Wang F, Min J, Yu Y. Discovery of 4-hydroxyl pyrazole derivatives as potent ferroptosis inhibitors. Eur J Med Chem 2024; 263:115913. [PMID: 37950965 DOI: 10.1016/j.ejmech.2023.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death, has been well recognized as a pathogenic mechanism in driving many diseases, such as neurodegenerative disorders, ischemia-reperfusion (I/R) injury. Blocking ferroptosis has been emerging as a feasible therapeutic strategy for the prevention and treatment of these diseases. However, novel potent ferroptosis inhibitors remain to be developed for further clinical applications. In this study, we screened our in-house compound libraries by phenotypic assays and identified a 4-hydroxyl pyrazole derivative HW-3 with good ferroptosis inhibitory activity (EC50 = 120.1 ± 3.5 nM). Based on the structure of HW-3, a series of 4-hydroxyl pyrazole derivatives were further designed and synthesized. Among these compounds, compound 25 could significantly inhibit RSL3-induced ferroptosis with an EC50 value of 8.6 ± 2.2 nM in HT-1080 cells, which was 3-fold more potent than the classical ferroptosis inhibitor ferrostatin-1 (Fer-1) (EC50 = 23.4 ± 1.3 nM). The potent ferroptosis inhibitory activity of compound 25 was further validated in multiple additional cell lines. Our mechanistic study revealed that compound 25 inhibited ferroptosis via intrinsic radical-trapping antioxidative capacity. Taken together, the findings of our study demonstrate 4-hydroxyl pyrazole derivative 25 is a potent ferroptosis inhibitor, which holds a great therapeutic potential for further development.
Collapse
Affiliation(s)
- Danzhi Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Shen
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shuqi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Junyi Chen
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenying Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fudi Wang
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Junxia Min
- The First Affiliated Hospital, The Second Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Chen W, Zhou X, Meng M, Pan X, Huang L, Chen C. Hyperbaric oxygen improves cerebral ischemia-reperfusion injury in rats via inhibition of ferroptosis. J Stroke Cerebrovasc Dis 2023; 32:107395. [PMID: 37839303 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Our previous study found that hyperbaric oxygen (HBO) attenuated cognitive impairment in mice induced by cerebral ischemia-reperfusion injury (CIRI). However, its mechanism of action is not fully understood. In this study, we aimed to establish a rat model of cerebral ischemia-reperfusion, explore the possible role of ferroptosis in the pathogenesis of CIRI, and observe the effect of HBO on ferroptosis-mediated CIRI. METHODS Sprague Dawley (SD) rats were randomly divided into control, model, Ferrostatin-1 (Fer-1), HBO and Fer-1+ HBO groups. Morris water maze, myelin basic protein (MBP) and β-tubulin immunoreactivity were assessed to evaluate the neuroprotective effects of HBO on cerebral ischemia reperfusion injury. Ferroptosis were examined to investigate the mechanism underlying the effects of HBO. RESULTS Our result showed that Fer-1 and HBO improved learning and memory ability in the navigation trail and probe trail of the Morris water maze and increased MBP and β-tubulin immunoreactivity of the cortex in the model rats. The levels of ferritin, malondialdehyde (MDA) and glutathione (GSH) in the serum were also reversed by Fer-1 and HBO treatment. Mitochondrial cristae dissolution and vacuolization were observed in the model group by transmission electron microscopy and these conditions were improved in the Fer-1 and HBO groups. Furthermore, Fer-1 and HBO treatment reversed Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Iron Responsive Element Binding Protein 2 (IREB2), acyl-CoA synthetase long chain family member 4 (ACSL4) and Solute Carrier Family 7 Member 11 (SLC7A11) mRNA levels and Transferrin Receptor 1 (TFR1), ferritin light chain (FTL), ferritin heavy chain 1 (FTH1), glutathione peroxidase 4 (GPX4), Nuclear factor E2-related factor 2 (Nrf2), lysophosphatidylcholine acyltransferase 3 (LPCAT3), c-Jun N-terminal kinase (JNK), phosphorylated c-Jun N-terminal kinase (P-JNK) phosphorylated Extracellular signal-regulated protein kinase (P-ERK) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) protein levels. The above changes were more pronounced in Fer-1+ HBOGroup. DISCUSSION The results of the present study indicated that HBO improves cerebral ischemia-reperfusion injury in rats, which may be related to inhibition of ferroptosis. This also means that ferroptosis may become a new target of HBO against CIRI.
Collapse
Affiliation(s)
- Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Xing Zhou
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Mingyu Meng
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Xiaorong Pan
- Department of Hyperbaric Oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Luying Huang
- Department of Department of Respiratory and Critical Care Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
28
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
30
|
Zheng M, Zhou M, Lu T, Lu Y, Qin P, Liu C. TMT and PRM Based Quantitative Proteomics to Explore the Protective Role and Mechanism of Iristectorin B in Stroke. Int J Mol Sci 2023; 24:15195. [PMID: 37894877 PMCID: PMC10607092 DOI: 10.3390/ijms242015195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Stroke is a serious disease caused by the rupture or blockage of the cerebrovascular system. Its pathogenesis is complex and involves multiple mechanisms. Iristectorin B is a natural isoflavone that has certain anti stroke effects. In this study, an in vitro stroke injury model of glyoxylate deprivation was established using PC12 cells, which was used to evaluate the anti-stroke activity of Iristectorin B in ejecta stem. The results showed that Iristectorin B, a natural isoflavone derived from Dried Shoot, significantly reduced the damage to PC12 cells caused by oxygen glucose deprivation/reoxygenation, decreased apoptosis, enhanced cell survival and reduced Ca2+, LDH and ROS levels. The results showed that Iristectorin B had a significant protective effect on Na2S2O4-injured PC12 cells, and the mechanism may be related to the protective effect of neurons in the brain. After protein extraction and various analyses were performed, a series of cutting-edge technologies were organically combined to study the quantitative proteome of each group. Differential proteins were then analyzed. According to the protein screening principle, ferroptosis-related proteins were most closely associated with stroke. The differential proteins associated with ferroptosis screened were SLC3A2, TFR1 and HMOX1, with HMOX1 being the most significantly elevated and reduced via dosing. Iristectorin B may act as a protective agent against stroke by regulating ferroptosis, and SLC3A2, TFR1 and HMOX1 may serve as potential diagnostic biomarkers for stroke, providing additional evidence to support the importance of ferroptosis in stroke.
Collapse
Affiliation(s)
- Meizhu Zheng
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| | - Mi Zhou
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Tingting Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Yao Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Peng Qin
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Chunming Liu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| |
Collapse
|
31
|
Li C, Wu Y, Chen Q, Luo Y, Liu P, Zhou Z, Zhao Z, Zhang T, Su B, Sun T, Jiang C. Pleiotropic Microenvironment Remodeling Micelles for Cerebral Ischemia-Reperfusion Injury Therapy by Inhibiting Neuronal Ferroptosis and Glial Overactivation. ACS NANO 2023; 17:18164-18177. [PMID: 37703316 DOI: 10.1021/acsnano.3c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Reperfusion injury presents a significant obstacle to neuronal survival following successful recanalization in ischemic stroke, which is characterized by intricate pathophysiological processes comprising numerous interconnected pathways. Oxidative stress-induced neuronal ferroptosis and the overactivation of glial cells play important roles in this phenomenon. In this study, we developed a targeted cross-linked micelle loaded with idebenone to rescue the ischemic penumbra by inhibiting neuronal ferroptosis and glial overactivation. In rat models, the CREKA peptide-modified micelles accumulate in the damaged brain via binding to microthrombi in the ipsilateral microvessels. Upon reactive oxygen species (ROS) stimulation, diselenide bonds within the micelles are transformed to hydrophilic seleninic acids, enabling synchronized ROS consumption and responsive drug release. The released idebenone scavenges ROS, prevents oxidative stress-induced neuronal ferroptosis, attenuates glial overactivation, and suppresses pro-inflammatory factors secretion, thereby modulating the inflammatory microenvironment. Finally, this micelle significantly reinforces neuronal survival, reduces infarct volume, and improves behavioral function compared to the control groups. This pleiotropic therapeutic micelle provides a proof-of-concept of remodeling the lesion microenvironment by inhibiting neuronal ferroptosis and glial overactivation to treat cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
32
|
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z, Chen X. Ferroptosis Detection: From Approaches to Applications. Angew Chem Int Ed Engl 2023; 62:e202300379. [PMID: 36828775 DOI: 10.1002/anie.202300379] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Understanding the intricate molecular machinery that governs ferroptosis and leveraging this accumulating knowledge could facilitate disease prevention, diagnosis, treatment, and prognosis. Emerging approaches for the in situ detection of the major regulators and biological events across cellular, tissue, and in living subjects provide a multiscale perspective for studying ferroptosis. Furthermore, advanced applications that integrate ferroptosis detection and the latest technologies hold tremendous promise in ferroptosis research. In this review, we first briefly summarize the mechanisms and key regulators underlying ferroptosis. Ferroptosis detection approaches are then presented to delineate their design, mechanisms of action, and applications. Special interest is placed on advanced ferroptosis applications that integrate multifunctional platforms. Finally, we discuss the prospects and challenges of ferroptosis detection approaches and applications, with the aim of providing a roadmap for the theranostic development of a broad range of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longguang Tang
- Affiliated Gaozhou People's Hospital, Guangdong Medical University, Guangdong, 524023, China
| | - Jinmin Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
33
|
Hu M, Huang J, Chen L, Sun XR, Yao ZM, Tong XH, Jin WJ, Zhang YX, Dong SY. Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury. Neural Regen Res 2023; 18:1512-1520. [PMID: 36571356 PMCID: PMC10075131 DOI: 10.4103/1673-5374.355766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CDGSH iron sulfur domain 2 can inhibit ferroptosis, which has been associated with cerebral ischemia/reperfusion, in individuals with head and neck cancer. Therefore, CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury. To validate this hypothesis in the present study, we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro, respectively. We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells. When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately, mouse neurological dysfunction was greatly improved; the cerebral infarct volume was reduced; the survival rate of HT22 cells was increased; HT22 cell injury was alleviated; the expression of ferroptosis-related glutathione peroxidase 4, cystine-glutamate antiporter, and glutathione was increased; the levels of malondialdehyde, iron ions, and the expression of transferrin receptor 1 were decreased; and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased. Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway. Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury, thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Miao Hu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Wen-Jing Jin
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Xin Zhang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy; Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, Anhui Province, China
| |
Collapse
|
34
|
Ye Y, Chen Y, Wu H, Fu Y, Sun Y, Wang X, Li P, Wu Z, Wang J, Yang Z, Zhou E. Investigations into ferroptosis in methylmercury-induced acute kidney injury in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1372-1383. [PMID: 36880449 DOI: 10.1002/tox.23770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Methylmercury (MeHg) is a highly poisonous form of mercury and a risk factor for kidney impairment in humans that currently has no effective means of therapy. Ferroptosis is a non-apoptotic metabolic cell death linked to numerous diseases. It is currently unknown whether ferroptosis takes part in MeHg-induced kidney damage. Here, we established a model of acute kidney injury (AKI) in mice by gavage with different doses of MeHg (0, 40, 80, 160 μmol/kg). Serological analysis revealed elevated levels of UA, UREA, and CREA; H&E staining showed variable degrees of renal tubule injury; qRT-PCR detection displayed increased expression of KIM-1 and NGAL in the groups with MeHg treatment, indicated that MeHg successfully induced AKI. Furthermore, MDA levels enhanced in renal tissues of mice with MeHg exposure whereas GSH levels decreased; ACSL4 and PTGS2 nucleic acid levels elevated while SLC7A11 levels reduced; transmission electron microscopy illustrated that the density of the mitochondrial membrane thickened and the ridge reduced considerably; protein levels for 4HNE and TfR1 improved since GPX4 levels declined, all these results implying the involvement of ferroptosis as a result of MeHg exposure. Additionally, the observed elevation in the protein levels of NLRP3, p-p65, p-p38, p-ERK1/2, and KEAP1 in tandem with downregulated Nrf2 expression levels indicate the involvement of the NF-κB/NLRP3/MAPK/Nrf2 pathways. All the above findings suggested that ferroptosis and the NF-κB/NLRP3/MAPK/Nrf2 pathways are implicated in MeHg-induced AKI, thereby providing a theoretical foundation and reference for future investigations into the prevention and treatment of MeHg-induced kidney injury.
Collapse
Affiliation(s)
- Yingrong Ye
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Yichun Chen
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Hanpeng Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Yiwu Fu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Youpeng Sun
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Xia Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People's Republic of China
| |
Collapse
|
35
|
Chen T, Shi R, Suo Q, Wu S, Liu C, Huang S, Haroon K, Liu Z, He Y, Tian HL, Wang Y, Tang Y, Yang GY, Zhang Z. Progranulin released from microglial lysosomes reduces neuronal ferroptosis after cerebral ischemia in mice. J Cereb Blood Flow Metab 2023; 43:505-517. [PMID: 36514959 PMCID: PMC10063829 DOI: 10.1177/0271678x221145090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cellular redox state is essential for inhibiting ferroptosis. Progranulin (PGRN) plays an important role in maintaining the cellular redox state after ischemic brain injury. However, the effect of PGRN on ferroptosis and its underlying mechanism after cerebral ischemia remains unclear. This study assesses whether PGRN affects ferroptosis and explores its mechanism of action on ferroptosis after cerebral ischemia. We found endogenous PGRN expression in microglia increased on day 3 after ischemia. In addition, PGRN agonists chloroquine and trehalose upregulated PGRN expression, reduced brain infarct volume, and improved neurobehavioral outcomes after cerebral ischemia compared to controls (p < 0.05). Moreover, PGRN upregulation attenuated ferroptosis by decreasing malondialdehyde and increasing Gpx4, Nrf2, and Slc7a11 expression and glutathione content (p < 0.05). Furthermore, chloroquine induced microglial lysosome PGRN release, which was associated with increased neuron survival. Our results indicate that PGRN derived from microglial lysosomes effectively inhibits ferroptosis during ischemic brain injury, identifying it as a promising target for ischemic stroke therapy.
Collapse
Affiliation(s)
- Tingting Chen
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rubing Shi
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Suo
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Liu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxian Huang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Khan Haroon
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan He
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Wang Y, Niu H, Li L, Han J, Liu Z, Chu M, Sha X, Zhao J. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J Nanobiotechnology 2023; 21:109. [PMID: 36967397 PMCID: PMC10041751 DOI: 10.1186/s12951-023-01862-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Ferroptosis plays a critical role in ischemic stroke, and anti-ferroptosis strategies were regarded as potentially effective measures. Based on ferroptosis-related mechanisms, this study aims to design and prepare anti-ferroptosis exosomes from adipose-derived mesenchymal stem cells (ADSC-Exo) for treating ischemic brain injury via intranasal (IN) administration. According to the bioinformatic analysis, CHAC1 was a key gene in the progress of ferroptosis in ischemic stroke. miR-760-3p can inhibit the expression of CHAC1 and may be abundant in ADSC-Exo. Therefore, ADSC-Exo were successfully isolated and the immunofluorescence showed that they can be efficiently delivered to the brain via IN administration. Additionally, IN administration of ADSC-Exo can effectively improve the neurobehavior function of mice after I/R, and improve the ferroptosis-related outcomes. As the immunofluorescence showed the co-localization of NeuN with CHAC1 obviously, we further evaluated the systematic effect of ADSC-Exo in an oxygen-glucose deprivation (OGD) mouse neuroblastoma cell line N2a model. The results showed that miR-760-3p in ADSC-Exo contributed to their function in inhibiting ferroptosis by targeting CHAC1 in neurons. Collectively, the present study successfully designed and prepared anti-CHAC1 ADSC-Exo and suggested a promising exosome-based strategy for anti-ferroptosis therapy in cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yong Wang
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Huicong Niu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Luyu Li
- grid.16821.3c0000 0004 0368 8293Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Han
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhuohang Liu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Min Chu
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| | - Xianyi Sha
- grid.8547.e0000 0001 0125 2443Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203 China
- grid.8547.e0000 0001 0125 2443The Institutes of Integrative Medicine, Fudan University, 120 Urumqi Middle Road, Shanghai, 200040 China
| | - Jing Zhao
- grid.8547.e0000 0001 0125 2443Department of Neurology, Minhang Hospital, Fudan University, Floor 16th, # 170 Xinsong Road, Shanghai, 201199 China
| |
Collapse
|
37
|
Xu P, Kong L, Tao C, Zhu Y, Cheng J, Li W, Shen N, Li R, Zhang C, Wang L, Zhang Y, Wang G, Liu X, Sun W, Hu W. Elabela-APJ axis attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal ferroptosis. Free Radic Biol Med 2023; 196:171-186. [PMID: 36681202 DOI: 10.1016/j.freeradbiomed.2023.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Ferroptosis is a form of non-apoptotic cell death caused by iron-dependent peroxidation of lipids. It contributes to ischemic stroke-induced neuronal damage. Elabela (ELA), a novel endogenous ligand for Apelin receptor (APJ), regulates oxidative stress and exerts a protective role in cardiovascular disease. However, the effect of ELA-APJ axis on cellular ferroptosis in cerebral ischemia/reperfusion (I/R) remains elusive. The present study showed that ELA and APJ were expressed on neurons and increased after cerebral I/R injury. The I/R insult triggered typical molecular and morphological features of neuronal ferroptosis, including iron and MDA accumulation, mitochondrial shrink and membrane rupture, upregulation of positive ferroptosis regulators and downregulation of negative regulators. ELA-32 treatment reduced brain infarction and ameliorated neurobehavioral deficits and cognitive dysfunction. Moreover, ELA-32 administration alleviated neuronal ferroptosis, accompanied by reduced iron deposition, decreased mitochondrial damage, relived lipid peroxidation and glutathione reduction. Such effects of ELA-32 were abolished by AAV-APJ-RNAi or nuclear factor erythroid 2-related factor 2 (NRF2) inhibitor ML385. Mechanistically, ELA was shown to bind to APJ and activate NRF2/ARE anti-oxidative signaling pathway via Gα13. Together, these findings suggested that ELA-APJ axis mitigates neuronal ferroptosis after ischemic stroke and that the ELA-32 peptide may be a putative therapeutic avenue for ischemic stroke.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuyou Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Juan Cheng
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenyu Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chao Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Li Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
38
|
Cao Y, Xiao W, Liu S, Zeng Y. Ferroptosis: Underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage. Front Cell Neurosci 2023; 17:1080344. [PMID: 36814866 PMCID: PMC9939649 DOI: 10.3389/fncel.2023.1080344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high rates of morbidity, mortality, and disability. Optimal treatment of ICH is a major clinical challenge, as the underlying mechanisms remain unclear. Ferroptosis, a newly identified form of non-apoptotic programmed cell death, is characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid ROS causes damage to nucleic acids, proteins, and cell membranes, eventually resulting in ferroptosis. In the past 10 years, ferroptosis has resulted in plenty of discoveries and breakthroughs in cancer, neurodegeneration, and other diseases. Some studies have also reported that ferroptosis does occur after ICH in vitro and in vivo and contribute to neuronal death. However, the studies on ferroptosis following ICH are still in the preliminary stage. In this review, we will summarize the current evidence on the mechanism underlying ferroptosis after ICH. And review the traditional modes of neuronal death to identify the crosstalk with ferroptosis in ICH, including apoptosis, necroptosis, and autophagy. Additionally, we also aim to explore the promising therapeutic application of ferroptosis in cell death-based ICH.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhen Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Yi Zeng,
| |
Collapse
|
39
|
Wang Z, Li Y, Ye Y, Zhu H, Zhang J, Wang H, Lei J, Gu L, Zhan L. NLRP3 inflammasome deficiency attenuates cerebral ischemia-reperfusion injury by inhibiting ferroptosis. Brain Res Bull 2023; 193:37-46. [PMID: 36435361 DOI: 10.1016/j.brainresbull.2022.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The role of ferroptosis in ischemic stroke has been hotly debated recently, but the mechanism is not clearly clarified. It has been reported that the NLRP3 inflammasome is essential for the progression of ischemic stroke. Whether the ferroptosis after ischemic stroke mediated by the activation of NLRP3 inflammasome is still not reported. In this study, we investigated the effect of NLRP3 deficiency on ferroptosis following cerebral ischemia-reperfusion injury (CIRI) in vivo and in vitro. MATERIALS In vivo, we used C57BL/6J mice and NLRP3-/- mice to establish a model of middle cerebral artery occlusion (MCAO). After 3 days of reperfusion, we assessed neurological function and then performed TTC staining to measure the infarct volume. Besides, we measured the expression of NLRP3 inflammasome-related proteins and the ferroptosis-inhibiting protein glutathione peroxidase 4 (GPX4) by western blotting (WB) and immunofluorescence (IF). Moreover, we evaluated the levels of ferroptosis-related factors (Fe2+, MDA and GSH) in the infarct area by using appropriate kits. Furthermore, we used WB to measure the expression of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), which participate in the progression of ischemic stroke. In vitro, we knocked down NLRP3 with small interfering RNAs (siRNAs) and established an oxygen glucose deprivation/Reperfusion (OGD/R) model in BV2 cells to simulate ischemic conditions. Next, we assessed the viability of BV2 cells by the Cell Counting Kit (CCK)-8 cytotoxicity assay. Moreover, we used WB to measure the expression of NLRP3, IL-1β, GPX4, Keap1 and Nrf2 proteins which are involved in CIRI. RESULTS Three days after MCAO, the NLRP3-/- mice exhibited smaller cerebral infarct volumes and lower neurological deficit scores. The expression of NLRP3 inflammasome-associated proteins (IL-18 and IL-1β) and Keap1/Nrf2 signaling pathway moleculars (Keap1 and Nrf2) in mice brain tissue and BV2 cells were inhibited by NLRP3 knockout/knockdown, while the expression of GPX4, one of the ferroptosis-related factors was increased. Furthermore, the contents of Fe2+ and MDA in the brain tissues of NLRP3-/- mice were decreased, while the content of GSH were increased significantly. CONCLUSION Inhibition of the NLRP3 inflammasome alleviates CIRI by inhibiting ferroptosis and inflammation, possibly through a mechanism of the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hua Zhu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huijuan Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiaxi Lei
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
40
|
Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3999083. [PMID: 35910843 PMCID: PMC9337979 DOI: 10.1155/2022/3999083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
With the acceleration of population aging, nervous system diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), anxiety, depression, stroke, and traumatic brain injury (TBI) have become a huge burden on families and society. The mechanism of neurological disorders is complex, which also lacks effective treatment, so relevant research is required to solve these problems urgently. Given that oxidative stress-induced lipid peroxidation eventually leads to ferroptosis, both oxidative stress and ferroptosis are important mechanisms causing neurological disorders, targeting mediators of oxidative stress and ferroptosis have become a hot research direction at present. Our review provides a current view of the mechanisms underlying ferroptosis and oxidative stress participate in neurological disorders, the potential application of molecular mediators targeting ferroptosis and oxidative stress in neurological disorders. The target of molecular mediators or agents of oxidative stress and ferroptosis associated with neurological disorders, such as reactive oxygen species (ROS), nuclear factor erythroid 2–related factor-antioxidant response element (Nrf2-ARE), n-acetylcysteine (NAC), Fe2+, NADPH, and its oxidases NOX, has been described in this article. Given that oxidative stress-induced ferroptosis plays a pivotal role in neurological disorders, further research on the mechanisms of ferroptosis caused by oxidative stress will help provide new targets for the treatment of neurological disorders.
Collapse
|
41
|
Mao R, Zong N, Hu Y, Chen Y, Xu Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci Bull 2022; 38:1229-1247. [PMID: 35513682 PMCID: PMC9554175 DOI: 10.1007/s12264-022-00859-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke caused by intracranial vascular occlusion has become increasingly prevalent with considerable mortality and disability, which gravely burdens the global economy. Current relatively effective clinical treatments are limited to intravenous alteplase and thrombectomy. Even so, patients still benefit little due to the short therapeutic window and the risk of ischemia/reperfusion injury. It is therefore urgent to figure out the neuronal death mechanisms following ischemic stroke in order to develop new neuroprotective strategies. Regarding the pathogenesis, multiple pathological events trigger the activation of cell death pathways. Particular attention should be devoted to excitotoxicity, oxidative stress, and inflammatory responses. Thus, in this article, we first review the principal mechanisms underlying neuronal death mediated by these significant events, such as intrinsic and extrinsic apoptosis, ferroptosis, parthanatos, pyroptosis, necroptosis, and autophagic cell death. Then, we further discuss the possibility of interventions targeting these pathological events and summarize the present pharmacological achievements.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ningning Zong
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yujie Hu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Ying Chen
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, China.
- Nanjing Neurology Clinic Medical Center, Nanjing, 210008, China.
| |
Collapse
|
42
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
43
|
Hanke N, Rami A. Cerebral ischemia induced iron deposit, ferritin accumulation, nuclear receptor coactivator 4-depletion and ferroptosis. Curr Neurovasc Res 2022; 19:47-60. [PMID: 35319371 DOI: 10.2174/1567202619666220321120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The neuronal death upon cerebral ischemia shares not only characteristics of necrosis, apoptosis and autophagy, but exhibits also biochemical and morphological characteristics of ferroptosis. Ferroptosis is a regulated form of cell death which is considered to be an oxidative iron-dependent process. It is now commonly accepted that iron and free radicals are considered to cause lipid peroxidation as well as the oxidation of proteins and nucleic acids, leading to increased membrane and enzymatic dysfunction, and finally contributing to cell death. Although ferroptosis was first described in cancer cells, emerging evidence now links mechanisms of ferroptosis to many different diseases, including cerebral ischemia. METHODS The objective of this study was to identify the ferroptosis key players and the underlying biochemical pathways leading to cell death upon focal cerebral ischemia in mice by using immunofluorescence, Western blotting, histochemistry and densitometry. RESULTS In this study, we demonstrated that cerebral ischemia induced iron-deposition, down-regulated dramatically the expression of the glutathione peroxidase 4 (GPX4), decreased the expression of the nuclear receptor coactivator 4 (NCOA4) and induced inappropriate accumulation of ferritin in the ischemic brain. This supports the hypothesis that an ischemic insult may induce ferroptosis through inhibition of GPX4. CONCLUSION We conclude that iron excess following cerebral ischemia leads to cell death despite activation of compensatory mechanisms for iron homeostasis, as illustrated by the accumulation of ferritins. These data emphasize the presence of a cellular mechanism that allows neuronal cells to handle restriction in iron overload.
Collapse
Affiliation(s)
- Nora Hanke
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Abdelhaq Rami
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
44
|
Chen Y, Long T, Xu Q, Zhang C. Bibliometric Analysis of Ferroptosis in Stroke From 2013 to 2021. Front Pharmacol 2022; 12:817364. [PMID: 35264947 PMCID: PMC8899397 DOI: 10.3389/fphar.2021.817364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Stroke is a major cause of long-term disability and death, but the clinical therapeutic strategy for stroke is limited and more research must be conducted to explore the possible avenues for stroke treatment and recovery. Since ferroptosis is defined, its role in the body has become the focus of attention and discussion, including in stroke. Methods: In this work, we aim to systematically discuss the “ferroptosis in stroke” research by bibliometric analysis. Documents were retrieved from the Web of Science Core Collection database on October 30, 2021. Statistical analysis and visualization analysis were conducted by the VOSviewer 1.6.15. Results: Ninety-nine documents were identified for bibliometric analysis. Research on “ferroptosis in stroke” has been rapidly developing and has remained the focus of many scholars and organizations in the last few years, but the Chinese groups in this field still lacked collaboration with others. Documents and citation analysis suggested that Rajiv R. Ratan and Brent R. Stockwell are active researchers, and the research by Qingzhang Tuo, Ishraq Alim, and Qian Li are more important drivers in the development of the field. Keywords associated with lipid peroxidation, ferroptosis, iron, oxidative stress, and cell death had high frequency, but apoptosis, necroptosis, pyroptosis, and autophagy had scant research, and there may be more research ideas in the future by scholars. Conclusion: Further exploration of the mechanisms of crosstalk between ferroptosis and other programmed cell death may improve clinical applications and therapeutic effects against stroke. Scholars will also continue to pay attention to and be interested in the hot topic “ferroptosis in stroke”, to produce more exciting results and provide new insights into the bottleneck of stroke treatment.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, China
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Chi Zhang,
| |
Collapse
|
45
|
Fratta Pasini AM, Stranieri C, Girelli D, Busti F, Cominacini L. Is Ferroptosis a Key Component of the Process Leading to Multiorgan Damage in COVID-19? Antioxidants (Basel) 2021; 10:1677. [PMID: 34829548 PMCID: PMC8615234 DOI: 10.3390/antiox10111677] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023] Open
Abstract
Even though COVID-19 is mostly well-known for affecting respiratory pathology, it can also result in several extrapulmonary manifestations, leading to multiorgan damage. A recent reported case of SARS-CoV-2 myocarditis with cardiogenic shock showed a signature of myocardial and kidney ferroptosis, a novel, iron-dependent programmed cell death. The term ferroptosis was coined in the last decade to describe the form of cell death induced by the small molecule erastin. As a specific inducer of ferroptosis, erastin inhibits cystine-glutamate antiporter system Xc-, blocking transportation into the cytoplasm of cystine, a precursor of glutathione (GSH) in exchange with glutamate and the consequent malfunction of GPX4. Ferroptosis is also promoted by intracellular iron overload and by the iron-dependent accumulation of polyunsaturated fatty acids (PUFA)-derived lipid peroxides. Since depletion of GSH, inactivation of GPX4, altered iron metabolism, and upregulation of PUFA peroxidation by reactive oxygen species are peculiar signs of COVID-19, there is the possibility that SARS-CoV-2 may trigger ferroptosis in the cells of multiple organs, thus contributing to multiorgan damage. Here, we review the molecular mechanisms of ferroptosis and its possible relationship with SARS-CoV-2 infection and multiorgan damage. Finally, we analyze the potential interventions that may combat ferroptosis and, therefore, reduce multiorgan damage.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, 37134 Verona, Italy; (C.S.); (D.G.); (F.B.); (L.C.)
| | | | | | | | | |
Collapse
|
46
|
Zhang J, Song L, Xu L, Fan Y, Wang T, Tian W, Ju J, Xu H. Knowledge Domain and Emerging Trends in Ferroptosis Research: A Bibliometric and Knowledge-Map Analysis. Front Oncol 2021; 11:686726. [PMID: 34150654 PMCID: PMC8209495 DOI: 10.3389/fonc.2021.686726] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objectives To identify the cooperation and impact of authors, countries, institutions, and journals, evaluate the knowledge base, find the hotspot trends, and detect the emerging topics regarding ferroptosis research. Methods The articles and reviews related to ferroptosis were obtained from the Web of Science Core Collection on November 1, 2020. Two scientometric software (CiteSpace 5.7 and VOSviewer 1.6.15) were used to perform bibliometric and knowledge-map analysis. Results A total of 1,267 papers were included, in 466 academic journals by 6,867 authors in 438 institutions from 61 countries/regions. The ferroptosis-related publications were increasing rapidly. Cell Death & Disease published the most papers on ferroptosis, while Cell was the top co-cited journal, publication journals and co-cited journals were major in the molecular and biology fields. The United States and China were the most productive countries; meanwhile, the University of Pittsburgh, Columbia University and Guangzhou Medical University were the most active institutions. Brent R Stockwell published the most papers, while Scott J Dixon had the most co-citations; simultaneously, active cooperation existed in ferroptosis researchers. Ten references on reviews, mechanisms, and diseases were regarded as the knowledge base. Five main aspects of ferroptosis research included regulation mechanisms, nervous system injury, cancer, relationships with other types of cell death, and lipid peroxidation. The latest hotspots were nanoparticle, cancer therapy, iron metabolism, and in-depth mechanism. Notably Nrf2 might have turning significance. The emerging topics on ferroptosis research were the further molecular mechanism of ferroptosis and the wider application of ferroptosis-related disease with advanced technology. Conclusion This study performed a full overview of the ferroptosis research using bibliometric and visual methods. The information would provide helpful references for scholars focusing on ferroptosis.
Collapse
Affiliation(s)
- Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liyan Xu
- Department of Computer Science, Emory University, Atlanta, GA, United States
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|