1
|
Nazakat L, Ali S, Summer M, Nazakat F, Noor S, Riaz A. Pharmacological modes of plant-derived compounds for targeting inflammation in rheumatoid arthritis: A comprehensive review on immunomodulatory perspective. Inflammopharmacology 2025; 33:1537-1581. [PMID: 40074996 DOI: 10.1007/s10787-025-01664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/28/2024] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is one of the most prevalent autoimmune, chronic, inflammatory disease characterized by joint inflammation, synovial swelling, loss of articular structures, swelling, and pain. RA is a major cause of discomfort and disability worldwide, associated with infectious agents, genetic determinants, epigenetic factors, advancing age, obesity, and smoking. Although conventional therapies for RA alleviate the symptoms, but their long-term use is associated with significant side effects. This necessitates the urge to discover complementary and alternative medicine from natural products with minimum side effects. PURPOSE In this review, natural product's potential mechanism of action against RA has been documented in the setting of in-vivo, in-vitro and pre-clinical trials, which provides new treatment opportunities for RA patients. The bioefficacy of these natural product's bioactive compounds must be further studied to discover novel natural medications for RA with high selectivity, improved effectiveness, and economic replacement with minimum side effects. STUDY DESIGN AND METHODS The current review article was designed systematically in chronological order. Plants and their phytochemicals are discussed in an order concerning their mode of action. All the mechanisms of action are depicted in diagrams which are thoroughly generated by the Chembiodraw to maintain the integrity of the work. Moreover, by incorporating the recent data with simple language which is not incorporated previously, we tried to provide a molecular insight to the readers of every level and ethnicity. Moreover, Google Scholar, PubMed, ResearchGate, and Science Direct databases were used to collect the data. SOLUTION Traditionally, various plant extracts and bioactive compounds are effectively used against RA, but their comprehensive pharmacological mechanistic actions are rarely discussed. Therefore, the objective of this study is to systematically review the efficacy and proposed mechanisms of action of different plants and their bioactive compounds including Tripterygium wilfordii Hook F (celastrol and triptolide), Nigella sativa (thymoquinone), Zingiber officinale (shogaols, zingerone), Boswellia serrata (boswellic acids), Curcuma longa (curcumin), and Syzygium aromaticum (eugenol) against rheumatoid arthritis. CONCLUSION These plants have strong anti-inflammatory, anti-oxidant, and anti-arthritic effects in different study designs of rheumatoid arthritis with negligible side effects. Phytomedicines could revolutionize pharmacology as they act through alternative pathways hence seeming biocompatible.
Collapse
Affiliation(s)
- Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Fakiha Nazakat
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Bartusik-Aebisher D, Przygórzewska A, Woźnicki P, Aebisher D. Nanoparticles for Photodynamic Therapy of Breast Cancer: A Review of Recent Studies. Molecules 2025; 30:1571. [PMID: 40286175 PMCID: PMC11990253 DOI: 10.3390/molecules30071571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic method based on the interaction between light and a photosensitizer. Supported by nanoparticles, this method represents a promising interdisciplinary approach for the treatment of many diseases. This article reviews the latest 2024 developments in the design and applications of nanoparticles dedicated to stand-alone PDT of breast cancer. Strategies to improve therapeutic efficacy by enhancing reactive oxygen species (ROS) production, precise delivery of photosensitizers and their stabilization in the systemic circulation are discussed, among others. Results from preclinical studies indicate significant improvements in therapeutic efficacy, including inhibition of tumor growth, reduction in metastasis and improvement of the immune microenvironment. The potential of these technologies to expand PDT applications in medicine and the need for further clinical trials to confirm their safety and efficacy are highlighted.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Agnieszka Przygórzewska
- English Division Science Club, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Paweł Woźnicki
- Doctoral School, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, Collegium Medicum, University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
3
|
Tu X, Hu J, Peng J, Chen Q, Zhao Y, Gu Z. Discovery of thymoquinone analogues with high anthelmintic activity against monogenean infections in goldfish (Carassius auratus). Vet Parasitol 2025; 334:110401. [PMID: 39837239 DOI: 10.1016/j.vetpar.2025.110401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
Monogenean parasites are harmful pathogens in aquaculture systems. Current treatment strategies for monogenean infections are unsatisfactory, making the discovery of new drugs urgent. Thymoquinone (TQ), a natural monoterpene isolated from Nigella sativa L., has demonstrated its potential as lead structure against the monogenean parasites. In the present study, the anthelmintic activity of 26 selected TQ analogues was investigated against the monogenean parasite Gyrodactylus kobayashii in the goldfish (Carassius auratus). The results indicated that 18 TQ analogues displayed the EC50 value below 1.0 mg/L, 14 of them showed more potent anthelmintic activity than TQ (EC50=0.303 mg/L). Particularly, compounds 9 and 23 exhibited the best efficacies with the EC50 values of 0.058 and 0.034 mg/L, outperforming the standard drug praziquantel as well. Structure-activity relationship analysis revealed that large electron-donating substituents at the 2-position of the quinone ring contribute to enhanced in vivo anthelmintic activity. Additionally, four analogues (9, 12, 23 and 25) displayed low fish toxicity, with the therapeutic index (TI, LC50/EC50) above 9.23, and were selected for further in silico drug‑likeness assessment. The results demonstrated an excellent drug-likeness profile and an adherence to major pharmaceutical companies' filters for compounds 9 and 23. Besides, TQ analogue 9 was chosen for an in vivo study in large-scale trial based on its potency, low fish toxicity, and excellent drug-likeness profiles. Treatment of G. kobayashii infected goldfish for 24 h at 0.1 and 0.2 mg/L was effective, reducing the infection prevalence from 100 % to 0 % post-treatment. The experimental fish exhibited normal behavior, despite minor modifications were displayed in the gills and liver according to histopathological results. Collectively, this study suggested that TQ analogues are excellent scaffolds in the discovery of novel anthelmintic agents against monogenean infections.
Collapse
Affiliation(s)
- Xiao Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Jiaxin Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Jinghao Peng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Qihan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Yangle Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; National Aquatic Animal Diseases Para-reference laboratory (HZAU), Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, China.
| |
Collapse
|
4
|
Chen R, Zhang H, Zhao X, Zhu L, Zhang X, Ma Y, Xia L. Progress on the mechanism of action of emodin against breast cancer cells. Heliyon 2024; 10:e38628. [PMID: 39524792 PMCID: PMC11550755 DOI: 10.1016/j.heliyon.2024.e38628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
At present, the role of active ingredients of traditional Chinese medicine in tumor therapy has gradually attracted people's attention, and anthraquinones, which are structurally similar to adriamycin and epirubicin, are one of the hotspots of research. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a natural anthraquinone compound isolated from rhubarb, Polygonum cuspidatum, and aloe vera. In recent years, emodin has received widespread attention for its remarkable anti-tumor effects, and its anti-breast cancer effects are manifested as induction of apoptosis, inhibition of tumor cell proliferation, inhibition of invasion and metastasis of tumor cells, and anti-tumor drug resistance. Moreover, emodin can act against multiple types of breast cancer cells by acting on different targets. In this paper, we reviewed the latest research progress on the anti-breast cancer effects of emodin and its anti-tumor mechanism, to provide reference and information for the treatment of breast cancer and the development of anti-tumor drugs.
Collapse
Affiliation(s)
- Ruoqing Chen
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, PR China
| | - Xue Zhao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - XiaoYu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yuning Ma
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| |
Collapse
|
5
|
Yenigun VB, Kocyigit A, Kanimdan E, Balkan E, Gul AZ. Copper (II) increases anti-Proliferative activity of thymoquinone in colon cancer cells by increasing genotoxic, apoptotic, and reactive oxygen species generating effects. Toxicon 2024; 250:108103. [PMID: 39278473 DOI: 10.1016/j.toxicon.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Thymoquinone is the main active compound derived from the essential oil of the Nigella sativa plant seed. While thymoquinone is an antioxidant, it has been reported in several studies that thymoquinone has dose-dependent pro-oxidant activity with the Fenton reaction in the presence of transition elements such as iron and copper. This study aimed to investigate cytotoxic, apoptotic, genotoxic, and reactive oxygen species (ROS) generating effects of thymoquinone treated with copper in colon cancer cells. HT-29 cells were treated with pro-oxidant-acting doses of thymoquinone alone and together with the non-toxic dose of Copper (II) Sulfate for 24 h. Cytotoxic, apoptotic, genotoxic, and ROS production activities were analyzed by MTT viability test, Acridine Orange/Ethidium Bromide (AO/EB) staining, alkaline single cell gel electrophoresis and H2DCF-DA assay, respectively. Viability results showed that thymoquinone and copper synergistically affect cancer cells, and DNA damage was increased with the synergic effect. The intracellular ROS was increased when thymoquinone and copper were applied together. Applying redox-active copper (II) with thymoquinone increases DNA damage, apoptosis, and cell death by increasing the amount of intracellular ROS through pro-oxidant activity. Treatments targeting copper-related pathways may open new therapeutic avenues for cancer treatment.
Collapse
Affiliation(s)
- Vildan Betul Yenigun
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey.
| | - Ebru Kanimdan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey; Bezmialem Vakif University, Vocational School of Health Services, Istanbul, Turkey
| | - Ezgi Balkan
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Ayse Zehra Gul
- Bezmialem Vakıf University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
6
|
Liu Q, Li X, Luo Y. Tanshinone IIA delays liver aging by modulating oxidative stress. Front Pharmacol 2024; 15:1434024. [PMID: 39415831 PMCID: PMC11480062 DOI: 10.3389/fphar.2024.1434024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Organ-specific aging is increasingly recognized for its research significance, with liver aging demonstrating particular relevance due to its central role in metabolism. We have pioneered the discovery that the expression of ESRRG in the liver positively correlates with age and have established its association with clinical characteristics, including hepatic edema. Our findings link liver aging to a shift in oxidative stress states, where ESRRG, a crucial nuclear receptor responsive to oxidative stress, may be modulated by various small molecules. Through virtual screening of a natural medicinal molecule database followed by further validation, we confirmed that the natural compound Tanshinone IIA mitigates oxidative stress-induced damage in the liver via the ESRRG/Cyp2e1 pathway, thus decelerating liver aging. Importantly, our study also explores the dynamic impact of Tanshinone IIA on ESRRG conformation, providing a profound understanding of its molecular interactions with ESRRG and laying a foundation for the rational design of small molecules based on natural compounds.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Li
- School of Basic Medicine, Zhejiang University, Hangzhou, China
| | - Yi Luo
- Research Center for Life and Health Sciences, Binjiang Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
8
|
Pandey R, Pandey B, Bhargava A. The Emergence of N. sativa L. as a Green Antifungal Agent. Mini Rev Med Chem 2024; 24:1521-1534. [PMID: 38409693 DOI: 10.2174/0113895575282914240217060251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Nigella sativa L. has been widely used in the Unani, Ayurveda, Chinese, and Arabic medicine systems and has a long history of medicinal and folk uses. Several phytoconstituents of the plant are reported to have excellent therapeutic properties. In-vitro and in-vivo studies have revealed that seed oil and thymoquinone have excellent inhibitory efficacy on a wide range of both pathogenic and non-pathogenic fungi. OBJECTIVE The present review aims to undertake a comprehensive and systematic evaluation of the antifungal effects of different phytochemical constituents of black cumin. METHOD An exhaustive database retrieval was conducted on PubMed, Scopus, ISI Web of Science, SciFinder, Google Scholar, and CABI to collect scientific information about the antifungal activity of N. sativa L. with 1990 to 2023 as a reference range using 'Nigella sativa,' 'Nigella oil,' 'antifungal uses,' 'dermatophytic fungi,' 'candidiasis,' 'anti-aflatoxin,' 'anti-biofilm' and 'biological activity' as the keywords. RESULTS Black cumin seeds, as well as the extract of aerial parts, were found to exhibit strong antifungal activity against a wide range of fungi. Among the active compounds, thymoquinone exhibited the most potent antifungal effect. Several recent studies proved that black cumin inhibits biofilm formation and growth. CONCLUSION The review provides an in-depth analysis of the antifungal activity of black cumin. This work emphasizes the need to expand studies on this plant to exploit its antifungal properties for biomedical applications.
Collapse
Affiliation(s)
- Raghvendra Pandey
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Brijesh Pandey
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401 (Bihar), India
| |
Collapse
|
9
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
10
|
Zhang T, Deng W, Deng Y, Liu Y, Xiao S, Luo Y, Xiang W, He Q. Mechanisms of ferroptosis regulating oxidative stress and energy metabolism in myocardial ischemia-reperfusion injury and a novel perspective of natural plant active ingredients for its treatment. Biomed Pharmacother 2023; 165:114706. [PMID: 37400352 DOI: 10.1016/j.biopha.2023.114706] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 07/05/2023] Open
Abstract
Acute myocardial infarction remains the leading cause of death in humans. Timely restoration of blood perfusion to ischemic myocardium remains the most effective strategy in the treatment of acute myocardial infarction, which can significantly reduce morbidity and mortality. However, after restoration of blood flow and reperfusion, myocardial injury will aggravate and induce apoptosis of cardiomyocytes, a process called myocardial ischemia-reperfusion injury. Studies have shown that the loss and death of cardiomyocytes caused by oxidative stress, iron load, increased lipid peroxidation, inflammation and mitochondrial dysfunction, etc., are involved in myocardial ischemia-reperfusion injury. In recent years, with the in-depth research on the pathology of myocardial ischemia-reperfusion injury, people have gradually realized that there is a new form of cell death in the pathological process of myocardial ischemia-reperfusion injury, namely ferroptosis. A number of studies have found that in the myocardial tissue of patients with acute myocardial infarction, there are pathological changes closely related to ferroptosis, such as iron metabolism disorder, lipid peroxidation, and increased reactive oxygen species free radicals. Natural plant products such as resveratrol, baicalin, cyanidin-3-O-glucoside, naringenin, and astragaloside IV can also exert therapeutic effects by correcting the imbalance of these ferroptosis-related factors and expression levels. Combining with our previous studies, this review summarizes the regulatory mechanism of natural plant products intervening ferroptosis in myocardial ischemia-reperfusion injury in recent years, in order to provide reference information for the development of targeted ferroptosis inhibitor drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, The First People's Hospital of Changde City, Changde 415003, Hunan, China
| | - Wenxu Deng
- The Central Hospital of Hengyang, Hengyang, Hunan 421001, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| | - Yao Liu
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medcial School, University of South China, Hunan 421001, China.
| | - Sijie Xiao
- Department of Ultrasound, The First People's Hospital of Changde City, Changde 415003, China
| | - Yanfang Luo
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Immunology and Rheumatology, The First People's Hospital of Changde City, Changde 415003, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, Hunan, China
| |
Collapse
|
11
|
Qadri MM, Alam MF, Khired ZA, Alaqi RO, Khardali AA, Alasmari MM, Alrashah ASS, Muzafar HMA, Qahl AM. Thymoquinone Ameliorates Carfilzomib-Induced Renal Impairment by Modulating Oxidative Stress Markers, Inflammatory/Apoptotic Mediators, and Augmenting Nrf2 in Rats. Int J Mol Sci 2023; 24:10621. [PMID: 37445797 DOI: 10.3390/ijms241310621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Chemotherapy-induced kidney damage is an emerging problem that restricts cancer treatment effectiveness. The proteasome inhibitor carfilzomib (CFZ) is primarily used to treat multiple myeloma and has been associated with severe renal injury in humans. CFZ-induced nephrotoxicity remains an unmet medical need, and there is an urgent need to find and develop a nephroprotective and antioxidant therapy for this condition. Thymoquinone (TQ) is a bioactive compound that has been isolated from Nigella sativa seeds. It has a wide range of pharmacological properties. Therefore, this experimental design aimed to study the effectiveness of TQ against CFZ-induced renal toxicity in rats. The first group of rats was a normal control (CNT); the second group received CFZ (4 mg/kg b.w.); the third and fourth groups received TQ (10 and 20 mg/kg b.w.) 2 h before receiving CFZ; the fifth group received only TQ (20 mg/kg b.w.). This experiment was conducted for 16 days, and at the end of the experiment, blood samples and kidney tissue were collected for biochemical assays. The results indicated that administration of CFZ significantly enhanced serum marker levels such as BUN, creatinine, and uric acid in the CFZ group. Similarly, it was also noticed that CFZ administration induced oxidative stress by reducing antioxidants (GSH) and antioxidant enzymes (CAT and SOD) and increasing lipid peroxidation. CFZ treatment also enhanced the expression of IL-1β, IL-6, and TNF-α production. Moreover, CFZ increased caspase-3 concentrations and reduced Nrf2 expression in the CFZ-administered group. However, treatment with 10 and 20 mg/kg TQ significantly decreased serum markers and increased antioxidant enzymes. TQ treatment considerably reduced IL-1β, IL-6, TNF-α, and caspase-3 concentrations. Overall, this biochemical estimation was also supported by histopathological outcomes. This study revealed that TQ administration significantly mitigated the negative effects of CFZ treatment on Nrf2 expression. Thus, it indicates that TQ may have utility as a potential drug to prevent CFZ-induced nephrotoxicity in the future.
Collapse
Affiliation(s)
- Marwa M Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Firoz Alam
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Zenat A Khired
- Surgical Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Reem O Alaqi
- Inflammation Pharmacology and Drug Discovery Unit, Medical Research Center (MRC), Jazan University, Jazan 45142, Saudi Arabia
| | - Amani A Khardali
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Jeddah 22384, Saudi Arabia
| | - Ahmad S S Alrashah
- Pharmacy Administration, Ministry of Health, Health Affairs General Directorate, Najran 66251, Saudi Arabia
| | - Hisham M A Muzafar
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullah M Qahl
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
12
|
Zhao Z, Liu L, Chen H, Li S, Guo Y, Hou X, Yang J. Thymoquinone affects the gemcitabine sensitivity of pancreatic cancer by regulating collagen via hypoxia inducible factor-1α. Front Pharmacol 2023; 14:1138265. [PMID: 37324458 PMCID: PMC10264578 DOI: 10.3389/fphar.2023.1138265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Objective: To clarify the potential therapeutic effects of thymoquinone (TQ) on pancreatic cancer and its gemcitabine (GEM) sensitivity. Methods: The expression levels of hypoxia inducible factor-1α (HIF-1α), collagens (COL1A1, COL3A1, and COL5A1), and transforming growth factor-β1 (TGFβ1) in pancreatic cancer and para-carcinoma tissues were compared using immunohistochemical methods, and their relationships with TNM staging were analyzed. The effects of TQ on apoptosis, migration, invasion, and GEM sensitivity of pancreatic cancer cells were assessed using in vitro and in vivo experiments. Western blot and immunohistochemistry were used to detect the expression levels of HIF-1α, extracellular matrix (ECM) production pathway-related proteins, and TGFβ/Smad signaling pathway-related proteins. Results: The expression levels of HIF-1α, COL1A1, COL3A1, COL5A1, and TGFβ1 in pancreatic cancer tissues were significantly higher than those in para-carcinoma tissues and correlated with TNM staging (p < 0.05). TQ and GEM administration inhibited the migration and invasion of the human pancreatic cancer cell line PANC-1 and promoted the apoptosis of PANC-1 cells. The combination of TQ and GEM was more effective than GEM alone. Western blot analysis showed that the expression levels of HIF-1α, ECM production pathway-related proteins, and TGFβ/Smad signaling pathway-related proteins were significantly decreased when TQ was used to treat PANC-1 cells (p < 0.05), and the expression levels of these proteins in the TQ + GEM group were significantly more decreased than those in the GEM group. Overexpression or knockdown of HIF-1α in PANC-1 cells showed the same effects as those induced by TQ administration. In vivo experiments showed that in PANC-1 tumor-bearing mice, tumor volume and tumor weight in mice treated with GEM and TQ were significantly lower than those in control or GEM-treated mice, whereas cell apoptosis was significantly increased (p < 0.05). Western blot and immunohistochemistry results showed that the levels of HIF-1α, ECM production pathway-related proteins, and TGFβ/Smad signaling pathway-related proteins in the GEM + TQ treatment group were further decreased compared to the control group or the GEM treatment group (p < 0.05). Conclusion: In pancreatic cancer cells, TQ can promote apoptosis, inhibit migration, invasion, and metastasis, and enhance the sensitivity to GEM. The underlying mechanism may involve the regulation of ECM production through the TGFβ/Smad pathway, in which HIF-1α plays a key role.
Collapse
Affiliation(s)
- Zhanxue Zhao
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Linxun Liu
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Hekai Chen
- Department of General Surgery, Peking University BinHai Hospital, Tianjin, China
| | - Shuai Li
- Department of Clinical Pharmacy, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Yan Guo
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Pathology, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| | - Xiaofan Hou
- Graduate School, Qinghai University, Xining, Qinghai, China
| | - Jinyu Yang
- Department of General Surgery, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
| |
Collapse
|
13
|
Khodadadi F, Khorashadizadeh M, Ghasemi F. Thymoquinone enhanced the antitumor activity of cisplatin in human bladder cancer 5637 cells in vitro. Mol Biol Rep 2023:10.1007/s11033-023-08472-8. [PMID: 37219672 DOI: 10.1007/s11033-023-08472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Cisplatin-based chemotherapy is a primary alternative for treating bladder cancer. But drug resistance and various side effects are the main unsightliness challenges. In search of a novel chemotherapeutic approach, this study was conducted to investigate whether thymoquinone (TQ) chemosensitize 5637 bladder cancer cells to cisplatin (CDDP). METHODS The IC50 for each drug was first determined. The cells were then pre-exposed to 40 µM of TQ for 24 h before being treated with 6 µM of cisplatin. The viability and the sub-G1 population of the 5673 cells were respectively evaluated by alamar blue assay and propidium iodide staining. RT-qPCR was also applied to analyze the expression profile of the apoptosis-related genes (Bax, Bcl-2, p53). RESULTS The viability of the cells treated with the combination of TQ and CDDP was significantly decreased compared to CDDP- or TQ-treated cells. TQ at the concentration of 40 µM increased the cytotoxicity of 6 µM CDDP by 35.5%. Moreover, flow cytometry analysis indicated that TQ pre-treatment of the cells resulted in a 55.5% increase in the population of 5637 cells in the sub-G1 phase compared to cells treated with CDDP alone. The results from RT-qPCR exhibited that the exposure of the cells to both TQ and CDDP significantly elevated Bax/Bcl-2 ratio by down-regulating Bcl-2 expression. CONCLUSION TQ significantly increased the cytotoxicity of CDDP in 5637 cells and induced apoptosis by down-regulation of the Bcl-2. Therefore, TQ and CDDP might be an effective therapeutic combination for TCC bladder cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Khodadadi
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
14
|
Landucci E, Mazzantini C, Calvani M, Pellegrini-Giampietro DE, Bergonzi MC. Evaluation of Conventional and Hyaluronic Acid-Coated Thymoquinone Liposomes in an In Vitro Model of Dry Eye. Pharmaceutics 2023; 15:pharmaceutics15020578. [PMID: 36839901 PMCID: PMC9963930 DOI: 10.3390/pharmaceutics15020578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Dry eye disease (DED) is a common ocular disorder characterized by an inadequate lubrication of the eye by tears leading to inflammation and the alteration of the ocular surface. Current treatments are often limited due to their side effects and ineffectiveness. Thymoquinone (TQ) is a natural compound present in the essential oil of Nigella sativa L., with anti-inflammatory and antioxidant activities. In this study, conventional and hyaluronic acid-coated liposomes were developed to improve TQ activity at ocular level. In the present study, the cytoprotective effects of TQ or TQ liposomes were assessed against oxidative and inflammatory processes in human corneal epithelial cells (HCE-2). Hyperosmolarity conditions (450 mOsm) were used as a model of DED. Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and tumor necrosis factor (TNFα) were quantified by quantitative real-time polymerase chain reaction (RT-qPCR); COX-2 and Phospho-NF-κB p65 (p-p65) by Western blotting (WB). Moreover, the mitochondrial reactive oxygen species (mtROS) levels were measured by MitoSOX assay. The hyperosmotic treatment induced a significant increase of the proinflammatory genes and proteins expression that were significantly decreased in the liposomes-treated cells. The coincubation with hyaluronic acid-coated liposomes significantly reverted the increase of mtROS production, evidently stimulated by the hyperosmotic stress. Our data suggest that TQ-loaded liposomes have potential as a therapeutic agent in dry eye disease, improving the TQ efficacy.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +30-055-2758378 (E.L.); +30-055-4573678 (M.C.B.)
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Maura Calvani
- Division of Pediatric Oncology/Hematology, Meyer University Children’s Hospital, Viale Pieraccini 6, 50139 Florence, Italy
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
- Correspondence: (E.L.); (M.C.B.); Tel.: +30-055-2758378 (E.L.); +30-055-4573678 (M.C.B.)
| |
Collapse
|
15
|
Swingler S, Gupta A, Gibson H, Kowalczuk M, Adamus G, Heaselgrave W, Radecka I. Thymoquinone: Hydroxypropyl-β-cyclodextrin Loaded Bacterial Cellulose for the Management of Wounds. Pharmaceutics 2022; 14:pharmaceutics14122816. [PMID: 36559309 PMCID: PMC9781873 DOI: 10.3390/pharmaceutics14122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The need for more advantageous and pharmaceutically active wound dressings is a pressing matter in the area of wound management. In this study, we explore the possibility of incorporating thymoquinone within bacterial cellulose, utilising cyclodextrins as a novel method of solubilising hydrophobic compounds. The thymoquinone was not soluble in water, so was incorporated within hydroxypropyl-β-cyclodextrin before use. Thymoquinone: hydroxypropyl-β-cyclodextrin inclusion complex produced was found to be soluble in water up to 7% (w/v) and was stable with no crystal formation for at least 7 days with the ability to be loaded within the bacterial cellulose matrix. The inclusion complex was found to be thermally stable up to 280 °C which is far greater than the production temperature of 80 °C and was stable in phosphate-buffered saline and extraction solvents in permeation and dose experiments. The adhesion properties of the Thymoquinone: hydroxypropyl-β-cyclodextrin loaded bacterial cellulose dressings were tested and found to be 2.09 N. Permeation studies on skin mimicking membrane Strat-M showed a total permeated amount (0-24 h) of 538.8 µg cm-2 and average flux after a 2 h lag of 22.4 µg h-1 cm-2. To the best of our knowledge, the methods outlined in this study are the first instance of loading bacterial cellulose with thymoquinone inclusion complex with the aim of producing a pharmaceutically active wound dressing.
Collapse
Affiliation(s)
- Sam Swingler
- Department of Biology, Chemistry and Forensic Science, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- School of Allied Health and Midwifery, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Department of Biology, Chemistry and Forensic Science, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Wayne Heaselgrave
- Department of Biomedical Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- Department of Biology, Chemistry and Forensic Science, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
16
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
17
|
Bruno MC, Gagliardi A, Mancuso A, Barone A, Tarsitano M, Cosco D, Cristiano MC, Fresta M, Paolino D. Oleic acid-based vesicular nanocarriers for topical delivery of the natural drug thymoquinone: Improvement of anti-inflammatory activity. J Control Release 2022; 352:74-86. [PMID: 36228953 DOI: 10.1016/j.jconrel.2022.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
The topical administration of a drug compound remains the first choice for the treatment of many local skin ailments. Many skin diseases can be treated by applying the active formulation directly to the skin, but unfortunately some drugs are unable to overcome the stratum corneum and exert their pharmacological action. An example is thymoquinone, a naturally derived drug obtained from Nigella sativa L. and potentially effective in the treatment of inflammatory and oxidative skin conditions. Since its physico-chemical properties are not suitable for overcoming the stratum corneum, we wanted to circumvent the problem by proposing new lipid-based nanovesicles called "oleoethosomes", made up of naturally derived ingredients, for its delivery. Among several formulations of oleoethosomes, the sample made up of 2% (w/w) oleic acid:PL90G 1:1 (molar ratio), and ethanol 15% showed the best physico-chemical characteristics and above all it showed the capacity to contain a suitable amount of thymoquinone (2 mg/ml). The formulation was tested in vitro on stratum corneum and viable epidermis membranes confirming its ability to induce the passage of thymoquinone through the human stratum corneum and to act as a permeation enhancer. In fact, it showed thymoquinone permeation values of 22.63 ± 1.49% regarding the applied drug amount. Oleoethosomes were compared with oleosomes, another kind of naturally derived nanosystems but free of ethanol. The experimental data confirmed that ethanol was an important component that enhanced the activity of the oleoethosomes when tested on the skin of healthy volunteers. The thymoquinone-loaded oleoethosome treatment demonstrated a significantly greater extent of anti-inflammatory activity than the treatment with thymoquinone-loaded oleosomes or the conventional dosage form of the drug. These in vivo results confirmed the synergic effect between oleic acid and ethanol on the lipid and protein compartments of the outermost skin layer, thus promoting a greater penetration capacity.
Collapse
Affiliation(s)
- Maria Chiara Bruno
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy
| | - Martine Tarsitano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy.
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta"- Building of BioSciences, Viale Europa, Catanzaro I-88100, Italy.
| |
Collapse
|
18
|
Torres-Vargas JA, Cheng-Sánchez I, Martínez-Poveda B, Medina MÁ, Sarabia F, García-Caballero M, Quesada AR. Characterization of the activity and the mechanism of action of a new toluquinol derivative with improved potential as an antiangiogenic drug. Biomed Pharmacother 2022; 155:113759. [DOI: 10.1016/j.biopha.2022.113759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
19
|
Fahmy HM, Ahmed MM, Mohamed AS, Shams-Eldin E, Abd El-Daim TM, El-Feky AS, Mustafa AB, Abd Alrahman MW, Mohammed FF, Fathy MM. Novel lipid-coated mesoporous silica nanoparticles loaded with thymoquinone formulation to increase its bioavailability in the brain and organs of Wistar rats. BMC Pharmacol Toxicol 2022; 23:71. [PMID: 36163187 PMCID: PMC9511777 DOI: 10.1186/s40360-022-00616-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
AIMS The Blood-Brain Barrier (BBB) is a filter for most medications and blocks their passage into the brain. More effective drug delivery strategies are urgently needed to transport medications into the brain. This study investigated the biodistribution of thymoquinone (TQ) and the effect on enzymatic and non-enzymatic oxidative stress indicators in different brain regions, either in free form or incorporated into nanocarriers as mesoporous silica nanoparticles (MSNs). Lipid bilayer-coated MSNs. MATERIALS AND METHODS MSNs and LB-MSNs were synthesized and characterized using a transmission electron microscope and dynamic light scattering to determine the particle size and zeta potential. TQ encapsulation efficiency and TQ's release profile from LB-MSNs were also examined. The impact of loading LB-MSNs with TQ-on-TQ delivery to different brain areas was examined using chromatographic measurement. Furthermore, nitric oxide, malondialdehyde (MDA), reduced glutathione, and catalase were evaluated as oxidant and antioxidant stress biomarkers. KEY FINDINGS The LB-MSNs formulation successfully transported TQ to several areas of the brain, liver, and kidney, revealing a considerable increase in TQ delivery in the thalamus (81.74%) compared with that in the free TQ group and a considerable reduction in the cortex (-44%). The LB-MSNs formulation had no significant effect on TQ delivery in the cerebellum, striatum, liver, and kidney. SIGNIFICANCE TQ was redistributed in different brain areas after being encapsulated in LB-MSNs, indicating that LB-MSNs have the potential to be developed as a drug delivery system for selective clinical application of specific brain regions. CONCLUSIONS LB-MSNs are capable nanoplatforms that can be used to target medications precisely to specific brain regions.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mostafa M Ahmed
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman S Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Engy Shams-Eldin
- Special Food and Nutrition Department, Food Technology Research Institute, Agriculture Research Center, 9 Gamma Street, Giza, Cairo, Egypt
| | | | - Amena S El-Feky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.,School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amira B Mustafa
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mai W Abd Alrahman
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Faten F Mohammed
- Pathology Department, Faculty of Veterinary, Cairo University, Giza, Egypt
| | - Mohamed M Fathy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Liu Y, Huang L, Kim MY, Cho JY. The Role of Thymoquinone in Inflammatory Response in Chronic Diseases. Int J Mol Sci 2022; 23:ijms231810246. [PMID: 36142148 PMCID: PMC9499585 DOI: 10.3390/ijms231810246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Anti-inflammatory therapies have been shown to be effective in the prevention of various cardiovascular diseases, tumors, and cancer complications. Thymoquinone (TQ), the main active constituent of Nigella sativa, has shown promising therapeutic properties in many in vivo and in vitro models. However, TQ has poor bioavailability and is hydrophobic, prohibiting clinical trials with TQ alone. Studies have explored the combination of TQ with biological nanomaterials to improve its bioavailability. The TQ nanoparticle formulation shows better bioavailability than free TQ, and these formulations are ready for clinical trials to determine their potential as therapeutic agents. In this paper, we review current knowledge about the interaction between TQ and the inflammatory response and summarize the research prospects in Korea and abroad. We discuss the different biological activities of TQ and various combination therapies of TQ and nanomaterials in clinical trials.
Collapse
Affiliation(s)
- Yan Liu
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Mi-Yeon Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
21
|
Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN, Kamal M, Alam O, Asdaq SMB, Alzahrani AK, Jomah S. Nigella sativa L. and COVID-19: A Glance at The Anti-COVID-19 Chemical Constituents, Clinical Trials, Inventions, and Patent Literature. Molecules 2022; 27:2750. [PMID: 35566101 PMCID: PMC9105261 DOI: 10.3390/molecules27092750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has had an impact on human quality of life and economics. Scientists have been identifying remedies for its prevention and treatment from all possible sources, including plants. Nigella sativa L. (NS) is an important medicinal plant of Islamic value. This review highlights the anti-COVID-19 potential, clinical trials, inventions, and patent literature related to NS and its major chemical constituents, like thymoquinone. The literature was collected from different databases, including Pubmed, Espacenet, and Patentscope. The literature supports the efficacy of NS, NS oil (NSO), and its chemical constituents against COVID-19. The clinical data imply that NS and NSO can prevent and treat COVID-19 patients with a faster recovery rate. Several inventions comprising NS and NSO have been claimed in patent applications to prevent/treat COVID-19. The patent literature cites NS as an immunomodulator, antioxidant, anti-inflammatory, a source of anti-SARS-CoV-2 compounds, and a plant having protective effects on the lungs. The available facts indicate that NS, NSO, and its various compositions have all the attributes to be used as a promising remedy to prevent, manage, and treat COVID-19 among high-risk people as well as for the therapy of COVID-19 patients of all age groups as a monotherapy or a combination therapy. Many compositions of NS in combination with countless medicinal herbs and medicines are still unexplored. Accordingly, the authors foresee a bright scope in developing NS-based anti-COVID-19 composition for clinical use in the future.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman;
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh 76312, Saudi Arabia;
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | | | - A. Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Sulaiman Al-Habib Medical Group, Riyadh 11643, Saudi Arabia
| |
Collapse
|
22
|
Łyżeń R, Gawron G, Kadziński L, Banecki B. GSH Protects the Escherichia coli Cells from High Concentrations of Thymoquinone. Molecules 2022; 27:molecules27082546. [PMID: 35458746 PMCID: PMC9029668 DOI: 10.3390/molecules27082546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of the present study was to evaluate the potential protective effect of glutathione (GSH) on Escherichia coli cells grown in a high concentration of thymoquinone (TQ). This quinone, as the main active compound of Nigella sativa seed oil, exhibits a wide range of biological activities. At low concentrations, it acts as an antioxidant, and at high concentrations, an antimicrobial agent. Therefore, any interactions between thymoquinone and glutathione are crucial for cellular defense against oxidative stress. In this study, we found that GSH can conjugate with thymoquinone and its derivatives in vitro, and only fivefold excess of GSH was sufficient to completely deplete TQ and its derivatives. We also carried out studies on cultures of GSH-deficient Escherichia coli strains grown on a minimal medium in the presence of different concentrations of TQ. The strains harboring mutations in gene ΔgshA and ΔgshB were about two- and fourfold more sensitive (256 and 128 µg/mL, respectively) than the wild type. It was also revealed that TQ concentration has an influence on reactive oxygen species (ROS) production in E. coli strains—at the same thymoquinone concentration, the level of ROS was higher in GSH-deficient E. coli strains than in wild type.
Collapse
|
23
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA, Almatroudi AA, AlSuhaymi N, Khan MA. Experimental and Theoretical Insights on Chemopreventive Effect of the Liposomal Thymoquinone Against Benzo[ a]pyrene-Induced Lung Cancer in Swiss Albino Mice. J Inflamm Res 2022; 15:2263-2280. [PMID: 35422652 PMCID: PMC9005154 DOI: 10.2147/jir.s358632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Thymoquinone (TQ), a phytoconstituent of Nigella sativa seeds, has been studied extensively in various cancer models. However, TQ's limited water solubility restricts its therapeutic applicability. Our work aims to prepare the novel formulation of TQ and assess its chemopreventive potential in chemically induced lung cancer animal model. METHODS The polyethylene glycol coated DOPE/CHEMS incorporating TQ-loaded pH-sensitive liposomes (TQPSL) were prepared and characterized. Mice were exposed to benzo[a]pyrene (BaP) thrice a week for 4 weeks to induce lung cancer. TQPSL was administered three times a week for 21 weeks, starting 2 weeks before the first dose of BaP. RESULTS The prepared TQPSL revealed 85% entrapment efficiency with 128 nm size and -19.5 mv ζ-potential showing high stability of the formulation. The pretreatment of TQPSL showed the recovery in BaP-modulated relative organ weight of lungs, cancer marker enzymes, and antioxidant enzymes in the serum. The histopathological analysis of the tissues showed that TQPSL protected the malignancy in the lungs. The flow cytometry data revealed the induction of apoptosis and decreased intracellular ROS by TQPSL. Molecular docking was performed to predict the TQ's affinity for eight possible anticancer drug targets linked to lung cancer etiology. The data assisted to identify the serine/threonine-protein kinase BRAF as the most suitable target of TQ with binding energy -6.8 kcal/mol. CONCLUSION The current findings demonstrated the potential of TQPSL and its possible therapeutic targets of lung cancer. To our knowledge, this is the first research to outline the development of TQ formulation against lung cancer considering its low solubility as well as pulmonary delivery challenges.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammad A Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mugahid A Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid, Sudan
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, 51911, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Ahmad A Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah, 21912, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| |
Collapse
|
24
|
Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N. Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15040408. [PMID: 35455405 PMCID: PMC9026861 DOI: 10.3390/ph15040408] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) possesses anticonvulsant, antianxiety, antidepressant, and antipsychotic properties. It could be utilized to treat drug misuse or dependence, and those with memory and cognitive impairment. TQ protects brain cells from oxidative stress, which is especially pronounced in memory-related regions. TQ exhibits antineurotoxin characteristics, implying its role in preventing neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. TQ’s antioxidant and anti-inflammatory properties protect brain cells from damage and inflammation. Glutamate can trigger cell death by causing mitochondrial malfunction and the formation of reactive oxygen species (ROS). Reduction in ROS production can explain TQ effects in neuroinflammation. TQ can help prevent glutamate-induced apoptosis by suppressing mitochondrial malfunction. Several studies have demonstrated TQ’s role in inhibiting Toll-like receptors (TLRs) and some inflammatory mediators, leading to reduced inflammation and neurotoxicity. Several studies did not show any signs of dopaminergic neuron loss after TQ treatment in various animals. TQ has been shown in clinical studies to block acetylcholinesterase (AChE) activity, which increases acetylcholine (ACh). As a result, fresh memories are programmed to preserve the effects. Treatment with TQ has been linked to better outcomes and decreased side effects than other drugs.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
- Correspondence: (F.H.P.); (A.M.I.)
| | - Abdallah Mohammad Ibrahim
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (F.H.P.); (A.M.I.)
| | - Ali Alammar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Rida Alsinan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Mahdi Aleid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Ali Alshehhi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Muruj Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Supriya Mishra
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad 201204, UP, India;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
25
|
Sultan MH, Javed S, Madkhali OA, Alam MI, Almoshari Y, Bakkari MA, Sivadasan D, Salawi A, Jabeen A, Ahsan W. Development and Optimization of Methylcellulose-Based Nanoemulgel Loaded with Nigella sativa Oil for Oral Health Management: Quadratic Model Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061796. [PMID: 35335159 PMCID: PMC8954538 DOI: 10.3390/molecules27061796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Abstract
The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC–MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box–Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 ± 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent.
Collapse
Affiliation(s)
- Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
- Correspondence:
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Osama Ali Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Mohammad Intakhab Alam
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Mohammad Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Ameena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
26
|
Abstract
The identification of secondary metabolites present in both terrestrial and marine species continues to be a fundamental and privileged path for the emergence of new and fundamental natural products available on the market with very different applications [...]
Collapse
|
27
|
Khan A, Alsahli MA, Aljasir MA, Maswadeh H, Mobark MA, Azam F, Allemailem KS, Alrumaihi F, Alhumaydhi FA, Alwashmi ASS, Almatroudi AA, Alsugoor MH, Khan MA. Safety, Stability, and Therapeutic Efficacy of Long-Circulating TQ-Incorporated Liposomes: Implication in the Treatment of Lung Cancer. Pharmaceutics 2022; 14:153. [PMID: 35057049 PMCID: PMC8778344 DOI: 10.3390/pharmaceutics14010153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Thymoquinone (TQ), which is one of the main bioactive constituents of Nigella sativa seeds, has demonstrated its potential against various cancer models. The poor solubility of TQ in aqueous solution limits its uses in clinical application. The present study aimed to develop a novel formulation of TQ to increase its bioavailability and therapeutic potential with minimal toxicity. Polyethylene glycol (PEG)-coated DSPC/cholesterol comprising TQ liposomes (PEG-Lip-TQ) were prepared and characterized on various aspects. A computational investigation using molecular docking was used to assess the possible binding interactions of TQ with 12 prospective anticancer drug targets. The in vitro anticancer activity was assessed in A549 and H460 lung cancer cells in a time- and dose-dependent manner, while the oral acute toxicity assay was evaluated in silico as well as in vivo in mice. TQ docked to the Hsp90 target had the lowest binding energy of -6.05 kcal/mol, whereas caspase 3 was recognized as the least likely target for TQ with a binding energy of -1.19 kcal/mol. The results showed 96% EE with 120 nm size, and -10.85 mv, ζ-potential of PEG-Lip-TQ, respectively. The cell cytotoxicity data demonstrated high sensitivity of PEG-Lip-TQ and a several fold decrease in the IC50 while comparing free TQ. The cell cycle analysis showed changes in the distribution of cells with doses. The in vivo data revealed an ~9-fold increase in the LD50 of PEG-Lip-TQ on free TQ as an estimated 775 and 89.5 mg/kg b.w, respectively. This study indicates that the pharmacological and efficacy profile of PEG-lip-TQ is superior to free TQ, which will pave the way for an exploration of the effect of TQ formulation in the treatment of lung cancer in clinical settings.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Mohammad A. Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Hamzah Maswadeh
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mugahid A. Mobark
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pathology, Faculty of Medicine, University of Kordofan, El-Obeid 157, Sudan
| | - Faizul Azam
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Ahmed A. Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (M.A.A.); (M.A.A.); (K.S.A.); (F.A.); (F.A.A.); (A.S.S.A.); (A.A.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, Al Qunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia;
| | - Masood A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
28
|
Lodovichi J, Landucci E, Pitto L, Gisone I, D'Ambrosio M, Luceri C, Salvatici MC, Bergonzi MC. Evaluation of the increase of the thymoquinone permeability formulated in polymeric micelles: In vitro test and in vivo toxicity assessment in Zebrafish embryos. Eur J Pharm Sci 2021; 169:106090. [PMID: 34864170 DOI: 10.1016/j.ejps.2021.106090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Thymoquinone (TQ) is a natural compound present in the essential oil and in the fixed oil of Nigella sativa L. Like many natural substances, it is characterized by poor aqueous solubility and low stability which limit its bioavailability. Soluplus®-Solutol® HS15 polymeric micelles (TQ-MP) were developed to increase the permeability of TQ with particular attention to overcoming intestinal barrier and the blood brain barrier, for possible oral and parenteral administration. The optimized micelles have dimensions < 100 nm and PdI < 0.2 indicating that the formulation was homogeneous as confirmed also by TEM experiments. EE% was 92.4 ± 0.3%. Stability studies showed a stable formulation following subsequent dilutions and in the gastric-intestinal media. In vitro studies have revealed that the carrier enhances the permeability of TQ in the intestine and in the blood-brain barrier using Parallel Artificial Membrane Permeability Assay (PAMPA) assay and cellular tests with Caco-2 cells and hCMEC/D3 monolayer cells. Up-take study, cell viability and cytotoxicity studies were also conducted. Fluorescent micelles (FITC-MP), were also optimized to perform in vitro up-take study in Caco-2 cells and to study their toxicity in Zebrafish model. The toxicity was evaluated on three lines of Zebrafish: wild type, transgenic line Tg(Myl7:EGFP) in which cardiomyocytes are marked with green fluorescence protein and Tg(flk1-GFP) line which expresses GFP under the control of the vascular endothelial growth factor receptor 2 (vegfr2) promoter.
Collapse
Affiliation(s)
- Jessika Lodovichi
- Department of Chemistry, University of Florence, via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Italy
| | - Letizia Pitto
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1-56124 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi, 1-56124 Pisa, Italy
| | - Mario D'Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Reasearch Council (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, via U Schiff 6, 50519 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|