1
|
Yu D, Liu M, Ding Q, Wu Y, Wang T, Song L, Li X, Qian K, Cheng Z, Gu M, Li Z. Molecular imaging-guided diagnosis and treatment integration for brain diseases. Biomaterials 2025; 316:123021. [PMID: 39705925 DOI: 10.1016/j.biomaterials.2024.123021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In practical clinical scenarios, improved diagnostic methods have been developed for the precise visualization of molecular targets using molecular imaging in brain diseases. Recently, the introduction of innovative molecular imaging modalities across both macroscopic and mesoscopic dimensions, with remarkable specificity and spatial resolution, has expanded the scope of applications beyond diagnostic testing, with the potential to guide therapeutic interventions, offering real-time feedback in the context of brain therapy. The molecular imaging-guided integration of diagnosis and treatment holds the potential to revolutionize disease management by enabling the real-time monitoring of treatment responses and therapy adjustments. Given the vibrant and ever-evolving nature of this field, this review provides an integrated picture on molecular image-guided diagnosis and treatment integration for brain diseases involving the basic concepts, significant breakthroughs, and recent trends. In addition, based on the current achievements, some critical challenges are also discussed.
Collapse
Affiliation(s)
- Donghu Yu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Menghao Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| | - Youxian Wu
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tianqing Wang
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Litong Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoyu Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Meijia Gu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center & Department of Neurosurgery, International Science and Technology Cooperation Base for Research and Clinical Techniques for Brain Glioma Diagnosis and Treatment, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Brewer KD, Santo NV, Samanta A, Nag R, Trotsyuk AA, Rajadas J. Advances in Therapeutics for Chronic Lung Diseases: From Standard Therapies to Emerging Breakthroughs. J Clin Med 2025; 14:3118. [PMID: 40364149 PMCID: PMC12072883 DOI: 10.3390/jcm14093118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Background: The global health burden of chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS) affects billions of people and is associated with high levels of healthcare expenditure. Conventional therapies (bronchodilators and corticosteroids) provide symptomatic benefit but take no effect on disease progression, demonstrating the need to develop new therapies. Emerging therapies treat the underlying mechanisms of these chronic diseases, which provide symptomatic relief and benefit the underlying disease. Methods: This review assesses the evolution of therapeutic interventions for chronic lung diseases from a series of established inhaled combination therapies to biologics, gene therapy, and even AI-based stratification of therapies for patients. In addressing these issues, we review the mechanisms of action, evidence of efficacy, and clinical trial evidence, while discussing access issues affecting the implementation of these therapies and ethical issues in relation to their use. Results: The review highlights recent developments in treatment approaches, such as gene therapies aimed at cystic fibrosis mutations, advanced drug delivery pathways for more accurate targeting, and stem cell-based therapies designed to replace damaged lung tissue. These developments have the potential to improve outcomes for chronic lung diseases, but the challenges, including a lack of access, adequate patient selection, and long-term safety, need to be addressed. Conclusions: New therapies offer tremendous potential, but their transition from laboratory to clinic still face numerous barriers including access, regulation, and a need for personalized therapy approaches. The review indicates that future research should develop strategies to reduce barriers to access, improve distribution, and improve clinical guidelines to successfully implement these new therapies.
Collapse
Affiliation(s)
- Kyle D. Brewer
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford, CA 94304, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Ronjon Nag
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Artem A. Trotsyuk
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford, CA 94304, USA;
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Wang S, Li J, Yan Z, Jiang Q, Li K. Intravitreal conbercept for chronic central serous chorioretinopathy with occult CNV: a retrospective clinical study based on multimodal ophthalmic imaging. Front Med (Lausanne) 2025; 12:1550543. [PMID: 40201323 PMCID: PMC11975556 DOI: 10.3389/fmed.2025.1550543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose This study aimed to evaluate the therapeutic efficacy and safety of intravitreal conbercept in patients with chronic central serous chorioretinopathy (cCSC) complicated by occult choroidal neovascularization (CNV), and to explore its potential in improving visual function and various ophthalmic parameters. Methods This retrospective, longitudinal, comparative study included 50 patients diagnosed with cCSC and occult CNV. Patients underwent intravitreal conbercept injections and were monitored over a six-month period. Comprehensive ophthalmic evaluation included best-corrected visual acuity (BCVA), central macular thickness (CMT), subretinal fluid (SRF) status, subfoveal choroidal thickness (SFCT), and optical coherence tomography angiography (OCTA). OCTA parameters such as foveal avascular zone (FAZ) area and CNV lesion characteristics were analyzed pre- and post-treatment. Patients were categorized based on changes in CNV lesion size to identify prognostic factors influencing treatment response. Results Significant improvements were observed in mean BCVA from baseline (0.78 ± 0.50 vs. 0.32 ± 0.31, p < 0.01) in all 50 eyes of the patients, except for one eye. Additionally, there were significant improvements in CMT, SRF status, SFCT, FAZ area, and CNV lesion size post-treatment (p < 0.05). Pearson correlation analysis indicated a positive correlation between baseline BCVA and CMT (r = 0.3615, p = 0.0116). Changes in BCVA post-treatment correlated with alterations in CMT, SRF diameter, and CNV lesion size. Patients with a favorable treatment response had significantly lower baseline CMT (312.17 ± 57.39 vs. 428.86 ± 114.54, p < 0.05) and CNV vessel diameter (17.46 ± 2.72 vs. 24.84 ± 4.02, p < 0.01) compared to those with unfavorable responses. Conclusion Intravitreal conbercept injection was found to be safe and effective in improving BCVA and various ophthalmic parameters in patients with cCSC complicated by occult CNV, with no significant adverse effects observed during the study period. Baseline CMT, SRF diameter, CNV lesion size, and mean CNV vessel diameter were identified as valuable indicators for assessing treatment response and prognosis. These findings provide important insights for the clinical management and prognostic evaluation of cCSC patients with occult CNV, highlighting the utility of multimodal imaging in assessing treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Wu R, Tian G, Zhang S, Zhang P, Lei X. A Comprehensive Review: Versatile Imaging Probe Based on Chemical Materials for Biomedical Applications. Appl Biochem Biotechnol 2025; 197:1301-1328. [PMID: 39215904 DOI: 10.1007/s12010-024-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Imaging probe and contrast agents play significant role in combating cancer. Based on special chemical materials, imaging probe can convert cancer symptoms into information-rich images with high sensitivity and signal amplification, accompanying with detection, diagnosis, drug delivery and treatment. In the paper, some inorganic and organic chemical materials as imaging probe, including Ultrasound imaging (US), Optical imaging (OP), Photoacoustic imaging (PA), X-ray Computed Tomography (CT), Magnetic Resonance imaging (MRI), Radionuclide imaging (RNI) probe, as well as multi-modality imaging probe for diagnosis and therapy of tumour were introduced. The sophisticated and comprehensive chemical materials as imaging probe were highlighted in detail. Meanwhile, the advantages and disadvantages of the imaging probe were compared. In order to provide some reference and help researchers for construction imaging probe for tumour diagnosis and treatment, it attempts to exhaustively cover the whole field. Finally, the prospect and challenge for imaging probe were discussed.
Collapse
Affiliation(s)
- Rui Wu
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| | - Guanghui Tian
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Pengfei Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, Shaanxi, China
| | - Xiaoyun Lei
- Shaanxi Key Laboratory of Catalysis, College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
5
|
Martins SA, Correia JDG. 99mTc(I)-Labeled His-Tagged Proteins: Impact in the Development of Novel Imaging Probes and in Drug Discovery. Chembiochem 2024; 25:e202400645. [PMID: 39158861 DOI: 10.1002/cbic.202400645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Technetium-99 m (99mTc) remains the cornerstone of nuclear medicine for single photon emission computed tomography (SPECT) due to its widespread availability and chemical and physical features. Its multiple oxidation states allow for the design and production of radiopharmaceuticals with versatile properties, namely in terms of pharmacokinetic profile. 99mTc(V) is the most common oxidation state, but 99mTc(I) gained traction after the pioneering work of Alberto and colleagues, which resulted in the introduction of the organometallic core fac-[99mTc(CO)3(H2O)3]+. This core is readily available from [99mTcO4]- and displays three labile water molecules that can be easily swapped for ligands with different denticity and/or donor atoms in aqueous environment. This makes it possible to radiolabel small molecules as well as high molecular weight molecules, such as antibodies or other proteins, while assuring biological activity. Direct radiolabelling of those proteins with fac-[99mTc(CO)3]+ under mild conditions is accomplished through incorporation of a polyhistidine tag (His-tag), a commonly used tag for purification of recombinant proteins. This review aims to address the direct radiolabelling of His-tagged macromolecules with fac-[99mTc(CO)3]+ for development of molecular imaging agents and the impact of this technology in the discovery and development of imaging and/or therapeutic agents towards clinical application.
Collapse
Affiliation(s)
- Sofia A Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
6
|
Farajollahi A, Baharvand M. Advancements in photoacoustic imaging for cancer diagnosis and treatment. Int J Pharm 2024; 665:124736. [PMID: 39326479 DOI: 10.1016/j.ijpharm.2024.124736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Photoacoustic imaging provides in vivo morphological and functional information about tumors within surrounding tissue. By integrating ultrasound guidance, this technique enables precise localization and characterization of tumors. Moreover, the introduction of targeted contrast agents has further expanded the capabilities of photoacoustic imaging in the realm of in vivo molecular imaging. These contrast agents facilitate enhanced molecular and cellular characterization of cancer, enabling detailed insights into the disease. This review aims to provide a concise summary of the extensive research conducted in the field of Photoacoustic imaging for cancer management. It encompasses the development of the technology, its applications in clinical settings, and the advancements made in molecular imaging. By consolidating and synthesizing the existing knowledge, this review contributes to a better understanding of the potential of photoacoustic imaging in cancer care. In conclusion, photoacoustic imaging has emerged as a non-ionizing and noninvasive modality with the ability to visualize tissue's optical absorption properties while maintaining ultrasound's spatial resolution. Its integration with targeted contrast agents has enhanced molecular and cellular characterization of cancer. This review serves as a succinct overview of the extensive research conducted in the field, shedding light on the potential of photoacoustic imaging in the management of cancer.
Collapse
Affiliation(s)
| | - Mohammad Baharvand
- Department of Mechanical Engineering, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Drmić A, Saccà R, Vetter T, Ehmann F. Identifying and overcoming challenges in the EMA's qualification of novel methodologies: a two-year review. Front Pharmacol 2024; 15:1470908. [PMID: 39629079 PMCID: PMC11612500 DOI: 10.3389/fphar.2024.1470908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The EMA Qualification of Novel Methodologies procedure qualifies methods, technologies and methodologies within a well-defined context of use in a pharma R&D context based on the evaluation of the presented scientific rationale and submitted data. This policy brief analyses QoNM submissions providing policy messages and recommendations to stakeholders on how to better prepare qualification applications in this regard. The recommendations include: 1. Grounding validation strategy using a current standard measure or a distribution technique. 2. Accurately represent pertinent subgroups via accurate inclusion and exclusion criteria. 3. Establish a well-defined and specific CoU with clear descriptions of the use within a development program target population and disease stage. Lastly, it emphasizes role of the QoNM procedure in advancing medicine development methodologies within the EU.
Collapse
Affiliation(s)
- Ana Drmić
- Independent Researcher, Strasbourg, France
| | - Riccardo Saccà
- Faculty of Health, Medicine and Life Sciences (FHLM), Maastricht, Netherlands
- European Medicines Agency, Amsterdam, Netherlands
| | | | - Falk Ehmann
- European Medicines Agency, Amsterdam, Netherlands
| |
Collapse
|
8
|
Lewis AJM, Dodd MS, Sourdon J, Lygate CA, Clarke K, Neubauer S, Tyler DJ, Rider OJ. Hyperpolarized 13C and 31P MRS detects differences in cardiac energetics, metabolism, and function in obesity, and responses following treatment. NMR IN BIOMEDICINE 2024; 37:e5206. [PMID: 38994722 PMCID: PMC11571269 DOI: 10.1002/nbm.5206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024]
Abstract
Obesity is associated with important changes in cardiac energetics and function, and an increased risk of adverse cardiovascular outcomes. Multi-nuclear MRS and MRI techniques have the potential to provide a comprehensive non-invasive assessment of cardiac metabolic perturbation in obesity. A rat model of obesity was created by high-fat diet feeding. This model was characterized using in vivo hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate MRS, echocardiography and perfused heart 31P MRS. Two groups of obese rats were subsequently treated with either caloric restriction or the glucagon-like peptide-1 analogue/agonist liraglutide, prior to reassessment. The model recapitulated cardiovascular consequences of human obesity, including mild left ventricular hypertrophy, and diastolic, but not systolic, dysfunction. Hyperpolarized 13C and 31P MRS demonstrated that obesity was associated with reduced myocardial pyruvate dehydrogenase flux, altered cardiac tricarboxylic acid (TCA) cycle metabolism, and impaired myocardial energetic status (lower phosphocreatine to adenosine triphosphate ratio and impaired cardiac ΔG~ATP). Both caloric restriction and liraglutide treatment were associated with normalization of metabolic changes, alongside improvement in cardiac diastolic function. In this model of obesity, hyperpolarized 13C and 31P MRS demonstrated abnormalities in cardiac metabolism at multiple levels, including myocardial substrate selection, TCA cycle, and high-energy phosphorus metabolism. Metabolic changes were linked with impairment of diastolic function and were reversed in concert following either caloric restriction or liraglutide treatment. With hyperpolarized 13C and 31P techniques now available for human use, the findings support a role for multi-nuclear MRS in the development of new therapies for obesity.
Collapse
Affiliation(s)
- Andrew J. M. Lewis
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Michael S. Dodd
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Centre for Health and Life SciencesCoventry UniversityCoventryUK
| | - Joevin Sourdon
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Kieran Clarke
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Damian J. Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Oliver J. Rider
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Xing Y, Meng B, Chen Q. Cyclodextrin-Containing Drug Delivery Systems and Their Applications in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:10834. [PMID: 39409162 PMCID: PMC11477047 DOI: 10.3390/ijms251910834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Cyclodextrins (CDs) are ubiquitous excipients, constituted of cyclic glucopyranose units, and possess a unique dual nature, that of a hydrophobic interior and a hydrophilic exterior. This enables their interaction with lipid-affinitive compounds and hydrophilic compounds, thereby augmenting their application in pharmaceutical formulations as agents for improving solubility, as well as fundamental elements of advanced drug delivery systems. Additionally, CDs, upon suitable modification, can strategically participate in the interaction with cellular components and physical barriers, such as the blood-brain barrier, where their intricate and multifunctional engagement leads to various biological impacts. This review consolidates the crucial features of CDs and their derivatives, and summarizes the applications of them as drug delivery systems in neurodegenerative disorders, emphasizing their notable potentials.
Collapse
Affiliation(s)
- Yuan Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.X.); (B.M.)
| | - Bohan Meng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.X.); (B.M.)
| | - Qi Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China; (Y.X.); (B.M.)
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
10
|
Qiao F, Binkowski TA, Broughan I, Chen W, Natarajan A, Schiltz GE, Scheidt KA, Anderson WF, Bergan R. Protein Structure Inspired Discovery of a Novel Inducer of Anoikis in Human Melanoma. Cancers (Basel) 2024; 16:3177. [PMID: 39335149 PMCID: PMC11429909 DOI: 10.3390/cancers16183177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Drug discovery historically starts with an established function, either that of compounds or proteins. This can hamper discovery of novel therapeutics. As structure determines function, we hypothesized that unique 3D protein structures constitute primary data that can inform novel discovery. Using a computationally intensive physics-based analytical platform operating at supercomputing speeds, we probed a high-resolution protein X-ray crystallographic library developed by us. For each of the eight identified novel 3D structures, we analyzed binding of sixty million compounds. Top-ranking compounds were acquired and screened for efficacy against breast, prostate, colon, or lung cancer, and for toxicity on normal human bone marrow stem cells, both using eight-day colony formation assays. Effective and non-toxic compounds segregated to two pockets. One compound, Dxr2-017, exhibited selective anti-melanoma activity in the NCI-60 cell line screen. In eight-day assays, Dxr2-017 had an IC50 of 12 nM against melanoma cells, while concentrations over 2100-fold higher had minimal stem cell toxicity. Dxr2-017 induced anoikis, a unique form of programmed cell death in need of targeted therapeutics. Our findings demonstrate proof-of-concept that protein structures represent high-value primary data to support the discovery of novel acting therapeutics. This approach is widely applicable.
Collapse
Affiliation(s)
- Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | | | - Irene Broughan
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weining Chen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Raymond Bergan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
11
|
Vandenbosch M, van Hove ERA, Mohren R, Vermeulen I, Dijkman H, Heeren RMA, Leonards PEG, Hughes S. Combined matrix-assisted laser desorption/ionisation-mass spectrometry imaging with liquid chromatography-tandem mass spectrometry for observing spatial distribution of lipids in whole Caenorhabditis elegans. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9850. [PMID: 39034751 DOI: 10.1002/rcm.9850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/23/2024]
Abstract
RATIONALE Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is a powerful label-free technique for biomolecule detection (e.g., lipids), within tissue sections across various biological species. However, despite its utility in many applications, the nematode Caenorhabditis elegans is not routinely used in combination with MALDI-MSI. The lack of studies exploring spatial distribution of biomolecules in nematodes is likely due to challenges with sample preparation. METHODS This study developed a sample preparation method for whole intact nematodes, evaluated using cryosectioning of nematodes embedded in a 10% gelatine solution to obtain longitudinal cross sections. The slices were then subjected to MALDI-MSI, using a RapifleX Tissuetyper in positive and negative polarities. Samples were also prepared for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using an Exploris 480 coupled to a HPLC Vanquish system to confirm the MALDI-MSI results. RESULTS An optimised embedding method was developed for longitudinal cross-sectioning of individual worms. To obtain longitudinal cross sections, nematodes were frozen at -80°C so that all worms were rod shaped. Then, the samples were defrosted and transferred to a 10% gelatine matrix in a cryomold; the worms aligned, and the whole cryomold submerged in liquid nitrogen. Using MALDI-MSI, we were able to observe the distribution of lipids within C. elegans, with clear differences in their spatial distribution at a resolution of 5 μm. To confirm the lipids from MALDI-MSI, age-matched nematodes were subjected to LC-MS/MS. Here, 520 lipids were identified using LC-MS/MS, indicating overlap with MALDI-MSI data. CONCLUSIONS This optimised sample preparation technique enabled (un)targeted analysis of spatially distributed lipids within individual nematodes. The possibility to detect other biomolecules using this method thus laid the basis for prospective preclinical and toxicological studies on C. elegans.
Collapse
Affiliation(s)
- Michiel Vandenbosch
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Erika R Amstalden van Hove
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronny Mohren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Isabeau Vermeulen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Henry Dijkman
- HAN University of Applied Sciences, Nijmegen, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry (IMS), Maastricht University, Maastricht, The Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment, Chemistry for Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Samantha Hughes
- Amsterdam Institute for Life and Environment, Environmental Health and Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Houvast RD, Badr N, March T, de Muynck LDAN, Sier VQ, Schomann T, Bhairosingh S, Baart VM, Peeters JAHM, van Westen GJP, Plückthun A, Burggraaf J, Kuppen PJK, Vahrmeijer AL, Sier CFM. Preclinical evaluation of EpCAM-binding designed ankyrin repeat proteins (DARPins) as targeting moieties for bimodal near-infrared fluorescence and photoacoustic imaging of cancer. Eur J Nucl Med Mol Imaging 2024; 51:2179-2192. [PMID: 37642704 PMCID: PMC11178671 DOI: 10.1007/s00259-023-06407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Fluorescence-guided surgery (FGS) can play a key role in improving radical resection rates by assisting surgeons to gain adequate visualization of malignant tissue intraoperatively. Designed ankyrin repeat proteins (DARPins) possess optimal pharmacokinetic and other properties for in vivo imaging. This study aims to evaluate the preclinical potential of epithelial cell adhesion molecule (EpCAM)-binding DARPins as targeting moieties for near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging of cancer. METHODS EpCAM-binding DARPins Ac2, Ec4.1, and non-binding control DARPin Off7 were conjugated to IRDye 800CW and their binding efficacy was evaluated on EpCAM-positive HT-29 and EpCAM-negative COLO-320 human colon cancer cell lines. Thereafter, NIRF and PA imaging of all three conjugates were performed in HT-29_luc2 tumor-bearing mice. At 24 h post-injection, tumors and organs were resected and tracer biodistributions were analyzed. RESULTS Ac2-800CW and Ec4.1-800CW specifically bound to HT-29 cells, but not to COLO-320 cells. Next, 6 nmol and 24 h were established as the optimal in vivo dose and imaging time point for both DARPin tracers. At 24 h post-injection, mean tumor-to-background ratios of 2.60 ± 0.3 and 3.1 ± 0.3 were observed for Ac2-800CW and Ec4.1-800CW, respectively, allowing clear tumor delineation using the clinical Artemis NIRF imager. Biodistribution analyses in non-neoplastic tissue solely showed high fluorescence signal in the liver and kidney, which reflects the clearance of the DARPin tracers. CONCLUSION Our encouraging results show that EpCAM-binding DARPins are a promising class of targeting moieties for pan-carcinoma targeting, providing clear tumor delineation at 24 h post-injection. The work described provides the preclinical foundation for DARPin-based bimodal NIRF/PA imaging of cancer.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.
| | - Nada Badr
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Taryn March
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vincent Q Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo Schomann
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadhvi Bhairosingh
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A H M Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, the Netherlands
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zurich, Switzerland
| | - Jacobus Burggraaf
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Centre for Human Drug Research, Leiden, the Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Vermeulen I, Rodriguez-Alvarez N, François L, Viot D, Poosti F, Aronica E, Dedeurwaerdere S, Barton P, Cillero-Pastor B, Heeren RMA. Spatial omics reveals molecular changes in focal cortical dysplasia type II. Neurobiol Dis 2024; 195:106491. [PMID: 38575092 DOI: 10.1016/j.nbd.2024.106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Focal cortical dysplasia (FCD) represents a group of diverse localized cortical lesions that are highly epileptogenic and occur due to abnormal brain development caused by genetic mutations, involving the mammalian target of rapamycin (mTOR). These somatic mutations lead to mosaicism in the affected brain, posing challenges to unravel the direct and indirect functional consequences of these mutations. To comprehensively characterize the impact of mTOR mutations on the brain, we employed here a multimodal approach in a preclinical mouse model of FCD type II (Rheb), focusing on spatial omics techniques to define the proteomic and lipidomic changes. Mass Spectrometry Imaging (MSI) combined with fluorescence imaging and label free proteomics, revealed insight into the brain's lipidome and proteome within the FCD type II affected region in the mouse model. MSI visualized disrupted neuronal migration and differential lipid distribution including a reduction in sulfatides in the FCD type II-affected region, which play a role in brain myelination. MSI-guided laser capture microdissection (LMD) was conducted on FCD type II and control regions, followed by label free proteomics, revealing changes in myelination pathways by oligodendrocytes. Surgical resections of FCD type IIb and postmortem human cortex were analyzed by bulk transcriptomics to unravel the interplay between genetic mutations and molecular changes in FCD type II. Our comparative analysis of protein pathways and enriched Gene Ontology pathways related to myelination in the FCD type II-affected mouse model and human FCD type IIb transcriptomics highlights the animal model's translational value. This dual approach, including mouse model proteomics and human transcriptomics strengthens our understanding of the functional consequences arising from somatic mutations in FCD type II, as well as the identification of pathways that may be used as therapeutic strategies in the future.
Collapse
Affiliation(s)
- Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | | | - Liesbeth François
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Delphine Viot
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Fariba Poosti
- UCB Pharma, Chemin du Foriest 1, 1420 Braine-l'Alleud, Walloon Region, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, De Boelelaan 1108, 1081 HV Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 3, 2103 SW Heemstede, the Netherlands
| | | | - Patrick Barton
- UCB Pharma, 216 Bath Rd, Slough, SL1 3WE Berkshire, United Kingdom
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Cell Biology-Inspired Tissue Engineering (cBITE), MERLN, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
14
|
Qiao F, Binknowski TA, Broughan I, Chen W, Natarajan A, Schiltz GE, Scheidt KA, Anderson WF, Bergan R. Protein Structure Inspired Drug Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594634. [PMID: 38826221 PMCID: PMC11142055 DOI: 10.1101/2024.05.17.594634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drug discovery starts with known function, either of a compound or a protein, in-turn prompting investigations to probe 3D structure of the compound-protein interface. As protein structure determines function, we hypothesized that unique 3D structural motifs represent primary information denoting unique function that can drive discovery of novel agents. Using a physics-based protein structure analysis platform developed by us, designed to conduct computationally intensive analysis at supercomputing speeds, we probed a high-resolution protein x-ray crystallographic library developed by us. We selected 3D structural motifs whose function was not otherwise established, that offered environments supporting binding of drug-like chemicals and were present on proteins that were not established therapeutic targets. For each of eight potential binding pockets on six different proteins we accessed a 60 million compound library and used our analysis platform to evaluate binding. Using eight-day colony formation assays acquired compounds were screened for efficacy against human breast, prostate, colon and lung cancer cells and toxicity against human bone marrow stem cells. Compounds selectively inhibiting cancer growth segregated to two pockets on separate proteins. The compound, Dxr2-017, exhibited selective activity against human melanoma cells in the NCI-60 cell line screen, had an IC50 of 19 nM against human melanoma M14 cells in our eight-day assay, while over 2100-fold higher concentrations inhibited stem cells by less than 30%. We show that Dxr2-017 induces anoikis, a unique form of programmed cell death in need of targeted therapeutics. The predicted target protein for Dxr2-017 is expressed in bacteria, not in humans. This supports our strategy of focusing on unique 3D structural motifs. It is known that functionally important 3D structures are evolutionarily conserved. Here we demonstrate proof-of-concept that protein structure represents high value primary data to support discovery of novel therapeutics. This approach is widely applicable.
Collapse
Affiliation(s)
- Fangfang Qiao
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | | | - Irene Broughan
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weining Chen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Gary E. Schiltz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA
| | - Raymond Bergan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
15
|
Van Assche CXL, Krüger DN, Flinders B, Vandenbosch M, Franssen C, Guns PJD, Heeren RMA, Cillero-Pastor B. Improved on-tissue detection of the anti-cancer agent doxorubicin by quantitative matrix-assisted laser desorption/ionization mass spectrometry imaging. Talanta 2024; 271:125667. [PMID: 38245959 DOI: 10.1016/j.talanta.2024.125667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Doxorubicin (dox) is an affordable, and highly effective chemotherapeutic agent used in cancer treatment, yet its application is known to cause cumulative cardiac and renal toxicity. In this study, we employed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to evaluate the distribution of dox in mouse heart and kidney after in vivo treatment. To this end, we performed absolute quantification using an isotopically labeled form (13C d3-dox) as an internal standard. Unfortunately, ion suppression often leads to loss of sensitivity in compound detection and can result in hampered drug quantification. To overcome this issue, we developed an on-tissue chemical derivatization (OTCD) method using Girard's reagent T (GirT). With the developed method, dox signal was increased by two orders of magnitude. This optimized sample preparation enabled a sensible gain in dox detection, making it possible to study its distribution and abundance (up to 0.11 pmol/mm2 in the heart and 0.33 pmol/mm2 in the kidney medulla). The optimized approach for on-tissue derivatization and subsequent quantification creates a powerful tool to better understand the relationship between dox exposure (at clinically relevant concentrations) and its biological detrimental effects in various tissues. Overall, this work is a showcase of the added value of MALDI-MSI for pharmaceutical studies to better understand heterogeneity in drug exposure between and within organs.
Collapse
Affiliation(s)
- Charles X L Van Assche
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Dustin N Krüger
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Antwerp B-2610, Belgium
| | - Bryn Flinders
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Michiel Vandenbosch
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, B-2610 Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, Belgium
| | - Pieter-Jan D Guns
- Laboratory of Physiopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Antwerp B-2610, Belgium
| | - Ron M A Heeren
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Maastricht Multimodal Molecular Imaging institute (M4i), Maastricht University, Maastricht, Netherlands; Institute for Technology-Inspired Regenerative Medicine (MERLN), Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
16
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
17
|
Duncan KD, Pětrošová H, Lum JJ, Goodlett DR. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr Opin Biotechnol 2024; 86:103068. [PMID: 38310648 PMCID: PMC11520788 DOI: 10.1016/j.copbio.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
Collapse
Affiliation(s)
- Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
| | - Helena Pětrošová
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
18
|
Li F, Chen L, Zhong S, Chen J, Cao Y, Yu H, Ran H, Yin Y, Reutelingsperger C, Shu S, Ling Z. Collagen-Targeting Self-Assembled Nanoprobes for Multimodal Molecular Imaging and Quantification of Myocardial Fibrosis in a Rat Model of Myocardial Infarction. ACS NANO 2024; 18:4886-4902. [PMID: 38295159 DOI: 10.1021/acsnano.3c09801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Currently, inadequate early diagnostic methods hinder the prompt treatment of patients with heart failure and myocardial fibrosis. Magnetic resonance imaging is the gold standard noninvasive diagnostic method; however, its effectiveness is constrained by low resolution and challenges posed by certain patients who cannot undergo the procedure. Although enhanced computed tomography (CT) offers high resolution, challenges arise owing to the unclear differentiation between fibrotic and normal myocardial tissue. Furthermore, although echocardiography is real-time and convenient, it lacks the necessary resolution for detecting fibrotic myocardium, thus limiting its value in fibrosis detection. Inspired by the postinfarction accumulation of collagen types I and III, we developed a collagen-targeted multimodal imaging nanoplatform, CNA35-GP@NPs, comprising lipid nanoparticles (NPs), encapsulating gold nanorods (GNRs) and perfluoropentane (PFP). This platform facilitated ultrasound/photoacoustic/CT imaging of postinfarction cardiac fibrosis in a rat model of myocardial infarction (MI). The surface-modified peptide CNA35 exhibited excellent collagen fiber targeting. The strong near-infrared light absorption and substantial X-ray attenuation of the nanoplatform rendered it suitable for photoacoustic and CT imaging. In the rat model of MI, our study demonstrated that CNA35-GNR/PFP@NPs (CNA35-GP@NPs) achieved photoacoustic, ultrasound, and enhanced CT imaging of the fibrotic myocardium. Notably, the photoacoustic signal intensity positively correlated with the severity of myocardial fibrosis. Thus, this study presents a promising approach for accurately detecting and treating the fibrotic myocardium.
Collapse
Affiliation(s)
- Fang Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Lihua Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Shigeng Zhong
- Department of Ultrasound, Chongqing People's Hospital, Chongqing 400010, P. R. China
| | - Jinhua Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yang Cao
- Department of Ultrasound Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Han Yu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhiyu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
19
|
Rajbhandari P, Neelakantan TV, Hosny N, Stockwell BR. Spatial pharmacology using mass spectrometry imaging. Trends Pharmacol Sci 2024; 45:67-80. [PMID: 38103980 PMCID: PMC10842749 DOI: 10.1016/j.tips.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The emerging and powerful field of spatial pharmacology can map the spatial distribution of drugs and their metabolites, as well as their effects on endogenous biomolecules including metabolites, lipids, proteins, peptides, and glycans, without the need for labeling. This is enabled by mass spectrometry imaging (MSI) that provides previously inaccessible information in diverse phases of drug discovery and development. We provide a perspective on how MSI technologies and computational tools can be implemented to reveal quantitative spatial drug pharmacokinetics and toxicology, tissue subtyping, and associated biomarkers. We also highlight the emerging potential of comprehensive spatial pharmacology through integration of multimodal MSI data with other spatial technologies. Finally, we describe how to overcome challenges including improving reproducibility and compound annotation to generate robust conclusions that will improve drug discovery and development processes.
Collapse
Affiliation(s)
- Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Noreen Hosny
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
20
|
Isin EM. Unusual Biotransformation Reactions of Drugs and Drug Candidates. Drug Metab Dispos 2023; 51:413-426. [PMID: 36653118 DOI: 10.1124/dmd.121.000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Detailed assessment of the fate of drugs in nonclinical test species and humans is essential to ensure the safety and efficacy of medicines in patients. In this context, biotransformation of drugs and drug candidates has been an area of keen interest over many decades in the pharmaceutical industry as well as academia. Although many of the enzymes and biotransformation pathways involved in the metabolism of xenobiotics and more specifically drugs have been well characterized, each drug molecule is unique and constitutes specific challenges for the biotransformation scientist. In this mini-review written for the special issue on the occasion of the 50th Anniversary celebration of Drug Metabolism and Disposition and to celebrate contributions of F. Peter Guengerich, one of the pioneers of the drug metabolism field, recently reported "unusual" biotransformation reactions are presented. Scientific and technological advances in the "toolbox" of the biotransformation scientists are summarized. As the pharmaceutical industry continues to explore therapeutic modalities different from the traditional small molecule drugs, the new challenges confronting the biotransformation scientist as well as future opportunities are discussed. SIGNIFICANCE STATEMENT: For the biotransformation scientists, it is essential to share and be aware of unexpected biotransformation reactions so that they can increase their confidence in predicting metabolites of drugs in humans to ensure the safety and efficacy of these metabolites before the medicines reach large numbers of patients. The purpose of this review is to highlight recent observations of "unusual" metabolites so that the scientists working in the area of drug metabolism can strengthen their readiness in expecting the unexpected.
Collapse
Affiliation(s)
- Emre M Isin
- Translational Medicine, Servier, 25/27 Rue Eugène Vignat, 45000, Orléans, France
| |
Collapse
|
21
|
Luo Q, Shao N, Zhang AC, Chen CF, Wang D, Luo LP, Xiao ZY. Smart Biomimetic Nanozymes for Precise Molecular Imaging: Application and Challenges. Pharmaceuticals (Basel) 2023; 16:249. [PMID: 37259396 PMCID: PMC9965384 DOI: 10.3390/ph16020249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 04/06/2024] Open
Abstract
New nanotechnologies for imaging molecules are widely being applied to visualize the expression of specific molecules (e.g., ions, biomarkers) for disease diagnosis. Among various nanoplatforms, nanozymes, which exhibit enzyme-like catalytic activities in vivo, have gained tremendously increasing attention in molecular imaging due to their unique properties such as diverse enzyme-mimicking activities, excellent biocompatibility, ease of surface tenability, and low cost. In addition, by integrating different nanoparticles with superparamagnetic, photoacoustic, fluorescence, and photothermal properties, the nanoenzymes are able to increase the imaging sensitivity and accuracy for better understanding the complexity and the biological process of disease. Moreover, these functions encourage the utilization of nanozymes as therapeutic agents to assist in treatment. In this review, we focus on the applications of nanozymes in molecular imaging and discuss the use of peroxidase (POD), oxidase (OXD), catalase (CAT), and superoxide dismutase (SOD) with different imaging modalities. Further, the applications of nanozymes for cancer treatment, bacterial infection, and inflammation image-guided therapy are discussed. Overall, this review aims to provide a complete reference for research in the interdisciplinary fields of nanotechnology and molecular imaging to promote the advancement and clinical translation of novel biomimetic nanozymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang-Ping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Ze-Yu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Du Z, Wang T. Knowledge domain and dynamic patterns in multimodal molecular imaging from 2012 to 2021: A visual bibliometric analysis. Medicine (Baltimore) 2023; 102:e32780. [PMID: 36705366 PMCID: PMC9875962 DOI: 10.1097/md.0000000000032780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multimodal molecular imaging technologies have been widely used to optimize medical research and clinical practice. Bibliometric analysis was performed to identify global research trends, hot spots, and scientific frontiers of multimodal molecular imaging technology from 2012 to 2021. The articles and reviews related to multimodal molecular imaging were retrieved from the Web of Science Core Collection. A bibliometric study was performed using CiteSpace and VOSviewer. A total of 4169 articles and reviews from 2012 to 2021 were analyzed. An increasing trend in the number of articles on multimodal molecular imaging technology was observed. These publications mainly come from 417 institutions in 92 countries, led by the USA and China. K. Bailey Freund published the most papers amongst the publications, while R.F. Spaide had the most co-citations. A dual map overlay of the literature shows that most publications were specialized in physics/materials/chemistry, and molecular/biology/immunology. Synergistic therapy in cancer, advanced nanotechnology, and multimodal imaging in ophthalmology are new trends and developing areas of interest. A global bibliometric and visualization analysis was used to comprehensively review the published research related to multimodal molecular imaging. This study may help in understanding the dynamic patterns of multimodal molecular imaging technology research and point out the developing areas of this field.
Collapse
Affiliation(s)
- Zhe Du
- Trauma Center, Peking University People’s Hospital, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education), Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education), Beijing, China
- *Correspondence: Tianbing Wang, Trauma Center, Peking University People’s Hospital, No.11 South Xizhimen Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
23
|
Gai Y, Li Y, Wu S, Xu L, Lu Y, Lan X, Xiang G, Ma X. Preparation and In Vitro Evaluation of a Gadolinium-Containing Vitamin E TPGS Micelle as a Potential Contrast Agent for MR Imaging. Pharmaceutics 2023; 15:pharmaceutics15020401. [PMID: 36839723 PMCID: PMC9963244 DOI: 10.3390/pharmaceutics15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The application of many currently evaluated macromolecular contrast agents for magnetic resonance imaging (MRI) has been limited because of their bio-incompatibility and toxicity. The aim of this study is to synthesize and characterize a new micelle-based TPGS gadolinium chelate as a biocompatible MRI contrast agent for prolonged blood circulation time and good tumor imaging contrast. The TPGS-gadolinium conjugate was prepared through the conjugation between TPGS-SA and bifunctional L-NETA-Gd chelate. The conjugate was characterized with regard to molecular weight, critical micellar concentration and particle sizes, cellular uptake, and in vitro cell MRI. Distributions of the MRI contrast agent in various organs were determined via intravenous injection of the agent into mice bearing xenograft tumors. The successfully prepared TPGS-L-NETA-Gd micelle exhibited improved cellular uptake in HepG2 cells and xenografts and high in vivo safety. Distributions of TPGS-L-NETA-Gd in mice showed enhanced cellular uptake up to 2 h after the contrast agent injection. Its in vitro and in vivo properties make it a favorable macromolecular MRI contrast agent for future in vivo imaging.
Collapse
Affiliation(s)
- Yongkang Gai
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuying Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shuangping Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ling Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Correspondence: (G.X.); (X.M.)
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- School of Pharmacy, Tongren Polytechnic College, Tongren 554300, China
- Correspondence: (G.X.); (X.M.)
| |
Collapse
|
24
|
Anwar S, Naeem N, Mufarreh Elqahtani Z, Siddique S, Iqbal J, Al-Buriahi M, Alomairy S. Quantum chemical simulations of benzothiadiazole (BT) based small molecule donor materials for efficient organic solar cells. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Baijnath S, Kaya I, Nilsson A, Shariatgorji R, Andrén PE. Advances in spatial mass spectrometry enable in-depth neuropharmacodynamics. Trends Pharmacol Sci 2022; 43:740-753. [DOI: 10.1016/j.tips.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|