1
|
Kumar M, Sethi P, Shiekmydeen J, Rastogi S, Mahmood S, Chopra S, Thomas S, Kumar D, Bhatia A. A recent review on smart sensor-integrated wound dressings: Real-time monitoring and on-demand therapeutic delivery. Int J Biol Macromol 2025; 313:144251. [PMID: 40381780 DOI: 10.1016/j.ijbiomac.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Wound management is a critical aspect of healthcare, necessitating continuous monitoring and timely interventions to ensure optimal healing outcomes. In recent years, the integration of sensor technology into wound dressings has emerged as a transformative approach, enabling real-time monitoring of healing parameters and facilitating on-demand treatment delivery. Sensor-based wound dressings leverage various sensing modalities, including temperature, pH, moisture, oxygen, and other biochemical markers, to provide comprehensive insights into the wound microenvironment. These dressings are equipped with miniaturized sensors capable of transmitting the data wirelessly, facilitating remote monitoring and timely interventions. Moreover, some advanced dressings incorporate responsive drug delivery systems, enabling the on-demand release of therapeutics based on real-time sensor feedback. Additionally, the incorporation of on-demand treatment mechanisms allows targeted delivery of therapeutics based on the specific needs of the wound, further enhancing the efficacy of the healing process. This comprehensive approach improves patient outcomes by promoting faster and more effective wound healing and reducing the burden through streamlined monitoring and treatment protocols. This paper presents an overview of recent advancements in sensor technology applied to wound healing, focusing on their role in monitoring wound parameters and delivering targeted therapy. These sensors leverage temperature, pH, and glucose sensing modalities to provide comprehensive insights into the healing process.
Collapse
Affiliation(s)
- Mohit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Pranshul Sethi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Jailani Shiekmydeen
- Formulation R&D, Alpha Pharma Industries, King Abdullah Economic City (KAEC), Rabigh, Saudi Arabia
| | - Sonali Rastogi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, PathumWan, Bangkok, Thailand
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281 406, U. P., India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Lu Y, Quan H, Wang Y, Song S, Guo H. Advanced oral drug delivery systems for gastrointestinal targeted delivery: the design principles and foundations. J Nanobiotechnology 2025; 23:400. [PMID: 40448152 DOI: 10.1186/s12951-025-03479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/20/2025] [Indexed: 06/02/2025] Open
Abstract
Oral administration has long been considered the most convenient method of drug delivery, requiring minimal expertise and invasiveness. Unlike injections, it avoids discomfort, wound infections, and complications, leading to higher patient compliance. However, the effectiveness of oral delivery is often hindered by the harsh biological barriers of the gastrointestinal tract, which limit the bioaccessibility and bioavailability of drugs. The development of oral drug delivery systems (ODDSs) represents a critical area for the advancement of pharmacotherapy. This review highlights the characteristics and precise targeting mechanisms of ODDSs. It first examines the unique properties of each gastrointestinal compartment, including the stomach, small intestine, intestinal mucus, intestinal epithelial barrier, and colon. Based on these features, it outlines the targeting strategies and design principles for ODDSs aimed at overcoming gastrointestinal barriers to enhance disease treatment. Lastly, the review discusses the challenges and potential future directions for ODDS development, emphasizing their importance for advancing drug delivery technologies and accelerating their future growth.
Collapse
Affiliation(s)
- Yafei Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yiran Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Heng Quan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yuqi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Sijia Song
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China.
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Thapa R, Pandey P, Parat MO, Gurung S, Trembizki E, Anderson T, Whiley D, Parekh HS. Investigation of ex vivo vaginal tissue deposition and antimicrobial screening- A proof-of-concept study with doxycycline-infused in situ sol-gel for localised gonorrhoea management. J Pharm Sci 2025; 114:103833. [PMID: 40374075 DOI: 10.1016/j.xphs.2025.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Antimicrobial resistance (AMR) associated with the leading sexually transmitted infections (STIs) such as gonorrhoea, chlamydia, and trichomoniasis has resulted in significant challenges in the prevention and treatment of these infections using current approaches. To address this, the intravaginal sol-gel platform holds immense potential, as the female reproductive tract (FRT) is the primary site of invasion and colonisation of STI-causing organisms, herein, Neisseria gonorrhoeae. The lead sol-gels, F5 and F9 demonstrate relatively low doxycycline hyclate (DOXH) tissue permeability (10.18 ± 1.56 % and 4.49 ± 1.53 %, respectively), while displaying substantive tissue deposition (2372.95 ± 135.79 µg/g and 2187.73 ± 95.29 µg/g respectively) at 8 h in ex vivo bovine vaginal mucosal tissue. Furthermore, the attenuation of the deleterious effect of DOXH by the sol-gel platform on HeLa cell viability presents it as a safe drug delivery vehicle. The distinct possibility of dose reduction is demonstrated by the negligible differences in the zone of inhibition (ZoI) for sensitive isolates of N. gonorrhoeae with half-strength (0.25 % w/w) and full-strength (0.5 % w/w) DOXH sol-gels. In summary, intravaginal delivery using engineered DOXH-infused sol-gels presents a demonstrable solution to STI prevention/treatment with the potential to reduce AMR risk through localised drug delivery, dose reduction, and increased patient compliance.
Collapse
Affiliation(s)
- Ritu Thapa
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Preeti Pandey
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Marie-Odile Parat
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Shila Gurung
- School of Health and Allied Sciences, Pokhara University, Pokhara-30, Kaski 33700, Nepal
| | - Ella Trembizki
- The University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia
| | - Taylah Anderson
- The University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia
| | - David Whiley
- The University of Queensland Centre for Clinical Research, Herston, QLD, 4029, Australia; Pathology Queensland Central Laboratory, Herston QLD 4029, Australia
| | - Harendra S Parekh
- School of Pharmacy and Pharmaceutical Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
4
|
Payamifar S, Khalili Y, Foroozandeh A, Abdouss M, Hasanzadeh M. Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges. RSC Adv 2025; 15:16050-16074. [PMID: 40370857 PMCID: PMC12076205 DOI: 10.1039/d5ra00948k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMS NPs) stand out as excellent options for targeted chemotherapy owing to their remarkable features, such as extensive surface area, substantial pore volume, adjustable and uniform pore size, facile scalability, and versatile surface chemistry. This review comprehensively explores the latest developments in MMS NPs, emphasizing their design, functionalization, and application in cancer therapy. Initially, we discuss the critical need for targeted and controlled drug delivery (DD) in oncology, highlighting the role of magnetic and MMs in addressing some challenges. Subsequently, the key features of MMS NPs, such as their high surface area, pore structure, and functionalization strategies, are examined for their impact on their DD performance for efficient cancer chemotherapy. The integration of chemotherapy methods such as photothermal therapy and photodynamic therapy with MMS NPs is also explored, showcasing multifunctional platforms that combine imaging and therapeutic capabilities. Finally, we identify the current challenges and provide future perspectives for the development and clinical translation of MMS NPs, underscoring their potential to reshape CT paradigms.
Collapse
Affiliation(s)
- Sara Payamifar
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Yasaman Khalili
- School of Chemistry, Faculty of Science, University of Tehran Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
5
|
Lucic B, Franciscato DS, Nogueira HP, Gallucci L, Silveira Junior AT, Ismail AM, Robinson M, Dallinger T, Gutfleisch C, Kurz J, Toledo M, Dias da Silva Ferraz J, Tarek M, Dias D, Diaz RS, ElHefnawi M, Forcato M, Monteiro HP, Lusic M, Shytaj IL, Savarino A. Fast pH-Driven Solubilization Method of Realgar (As 4S 4) to Reduce the Toxicity of Arsenic [As(III)] for Medicinal Purposes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502740. [PMID: 40271739 DOI: 10.1002/advs.202502740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Indexed: 04/25/2025]
Abstract
Acute promyelocytic leukemia (APL) accounts for 5-15% of acute myeloid leukemia cases. It is typically characterized by the (15;17) chromosomal translocation, producing the pathogenic retinoic acid receptor (RAR) alpha/promyelocytic leukemia (PML) fusion protein. Recently, remission of APL has been achieved using the first chemotherapy-independent oral drug regimen in anticancer therapy, consisting of all-trans retinoic acid (targeting RARalpha) and the arsenic sulfide realgar (targeting PML). However, clinical adoption of realgar and the characterization of its active breakdown products have been hampered by its poor solubility. Here, a scalable pH/temperature-based process is described that partially mimics gut transition, achieving fast and reproducible solubilization of realgar. Six different spectroscopic and spectrometric techniques are employed to investigate solubilized realgar. Furthermore, it is shown that solubilized realgar targets PML, displaying wider in vitro therapeutic indices and lower off-target effects than arsenic trioxide, the current APL standard of care. Moreover, in line with evidence of an interplay between PML and HIV persistence, solubilized realgar can disrupt HIV latency, the main barrier to an HIV/AIDS cure, in CD4 T cells of people living with HIV. These findings may open avenues for streamlining realgar solubilization and designing less toxic, orally administrable arsenic-based therapies.
Collapse
Affiliation(s)
- Bojana Lucic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University, 69120, Heidelberg, Germany
- German Center for Infection Research, 69120, Heidelberg, Germany
| | | | | | - Lara Gallucci
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | - Asmaa Mohamed Ismail
- Spectroscopy Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Millie Robinson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Teresa Dallinger
- Department of Infectious Diseases, Integrative Virology, Heidelberg University, 69120, Heidelberg, Germany
| | - Claudia Gutfleisch
- Center for Infectious Diseases, Medical Microbiology und Hygiene, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jochen Kurz
- Center for Infectious Diseases, Medical Microbiology und Hygiene, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Maytê Toledo
- Department of Biochemistry, Center for Cellular and Molecular Therapy, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | | | - Mohammad Tarek
- Clinical Hematology Department, Armed Forces College of Medicine (AFCM) Cairo Governatorate, Heliopolis, 11774, Egypt
| | - Danilo Dias
- Infectious Diseases Department, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Department, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Mahmoud ElHefnawi
- Informatics and Systems Department, National Research Centre, 33 El Bohouth Street, Dokki, Giza, 12622, Egypt
| | - Mattia Forcato
- Department of Molecular Medicine, University of Padova, Padova, 35122, Italy
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Marina Lusic
- Department of Infectious Diseases, Integrative Virology, Heidelberg University, 69120, Heidelberg, Germany
- German Center for Infection Research, 69120, Heidelberg, Germany
| | - Iart Luca Shytaj
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Infectious Diseases Department, Federal University of São Paulo, São Paulo, 04021-001, Brazil
| | - Andrea Savarino
- Department of Infectious Diseases, Italian Institute of Health, Rome, 00161, Italy
| |
Collapse
|
6
|
Mukhopadhyay S, Youssef SH, Song Y, Nayak UY, Garg S. Harnessing the Power of Antimicrobial Peptides: From Mechanisms to Delivery Optimization for Topical Infections. Antibiotics (Basel) 2025; 14:379. [PMID: 40298559 PMCID: PMC12024199 DOI: 10.3390/antibiotics14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as promising agents for treating topical infections due to their enhanced biocompatibility and resistance to systemic degradation. AMPs possess host immunomodulatory effects and disintegrate bacterial cell membranes, a mechanism less prone to microbial resistance compared to conventional antibiotics, making AMPs potential candidates for antimicrobial delivery. The review discusses the challenges posed by antimicrobial resistance (AMR) and explores the mechanisms by which bacteria develop resistance to AMPs. The authors provide a detailed analysis of the mechanisms of action of AMPs, their limitations, and strategies to improve their efficacy. Conventional AMP delivery systems, including polymeric, synthetic, and lipid-based nanoparticles and cubosomes, face challenges of microbial resistance mechanisms via efflux pump systems, bacterial cell membrane modifications, and protease enzyme release. This review explores strategies to optimize these delivery systems. Furthermore, market statistics and the growing interest in peptide antibiotics have been explored in this review. The authors provide future research directions, such as exploring gene-targeting approaches to combat emerging bacterial resistance against AMPs, and emphasize considering the conformational stability of peptides, the skin microbiome's nature at the infection site, and proteolytic stability for developing efficient AMP delivery systems for topical infections.
Collapse
Affiliation(s)
- Songhita Mukhopadhyay
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Souha H. Youssef
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (S.M.); (S.H.Y.); (Y.S.)
| |
Collapse
|
7
|
Chaturvedi S, Gaur A, Garg A. Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule based hydrogel for transdermal delivery. Ther Deliv 2025; 16:139-154. [PMID: 39877995 PMCID: PMC11849957 DOI: 10.1080/20415990.2025.2457312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
AIM Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery. METHOD A 33 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties. Furthermore, the optimized lipid nanocapsule was loaded into a hydrogel and evaluated for rheology, spreadability, ex-vivo skin permeation, deposition and irritation. RESULTS The numerical optimization suggested an optimal formula with desirability value of 0.852 and low prediction errors. The optimized formulation showed good % drug entrapment efficiency (79.56 ± 2.34%), nanometer size (56.68 ± 1.2 nm), monodisperse nature (PDI = 0.176 ± 0.2), spherical morphology and good drug-excipient compatibility. The raloxifene hydrochloride loaded lipid nanocapsule hydrogel showed shear thinning properties, sustained drug delivery, dermal compatibility and significantly higher permeability (2-fold), retention (3.37) for raloxifene hydrochloride compared to the control. CONCLUSION The present study showed a successful development of raloxifene hydrochloride loaded lipid nanocapsule hydrogel with improved skin permeation, retention, and good topical compatibility. This formulation may overcome the challenges associated with raloxifene hydrochloride oral delivery including low bioavailability.
Collapse
Affiliation(s)
| | - Arushi Gaur
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
8
|
Ananda N, Julia V, Bachtiar EW. Limosilactobacillus reuteri DSM 17938 Inhibition of Biofilm Formation by Prevotella intermedia and Fusobacterium nucleatum Across Salivary pH: An In Vitro Study. Eur J Dent 2025; 19:90-95. [PMID: 38942052 PMCID: PMC11750330 DOI: 10.1055/s-0044-1786846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVES This study aims to investigate Limosilactobacillus reuteri DSM 17938's antibiofilm effects on Prevotella intermedia and Fusobacterium nucleatum, common causes of alveolar osteitis. It seeks topical alternatives to prevent this condition posttooth extraction. The secondary objective is to assess these effects under different pH conditions (pH 4.5 and pH 7), mimicking oral cavity saliva pH dynamics. MATERIALS AND METHODS Ethical approval was secured for the saliva collection process involving five healthy adult participants who had undergone wisdom tooth extraction. Saliva samples were diligently collected on the 7th day post-surgery. The unstimulated saliva underwent a series of treatments, including the addition of phenylmethylsulfonyl fluoride (PMSF), pH adjustments, centrifugation, and filtration. The pH levels were re-measured, and subsequent adjustments were made to achieve pH values of 4.5 or 7. Limosilactobacillus reuteri DSM 17938, with a concentration of 1×108 colony-forming units (CFU) per 5 drops, was utilized in the study. Biofilm testing involved incubating saliva samples with varying pH (4.5 or 7) alongside bacterial suspensions (Prevotella intermedia, Fusobacterium nucleatum, or a mixed species). The Interlac suspension was introduced, and plates were anaerobically incubated for 24 hours. Biofilm results were obtained using a spectrometer. The test is conducted in triplicate. STATISTICAL ANALYSIS To scrutinize the impact of pH on biofilm development, the acquired data underwent a two-way ANOVA test in SPSS as part of the statistical analysis. A significance level of p<0.05 was used to determine statistical significance. RESULTS Limosilactobacillus reuteri DSM 17938 significantly reduced biofilm formation across bacterial strains (p = 0.000). Statistical analysis indicated a significant impact of pH on biofilm development (p = 0.000) compared to no saliva samples, with higher formation observed under acidic conditions (pH 4.5). However, the pH levels of 4.5 and 7 did not result in significantly different bacterial biofilm formation (p = 0.529). CONCLUSION This research highlights Limosilactobacillus reuteri DSM 17938's potency in inhibiting biofilm formation of Prevotella intermedia and Fusobacterium nucleatum. Salivary pH variations significantly influence biofilm development, emphasizing the need to consider pH when assessing probiotic effectiveness. Despite limitations in saliva sample sterilization, this study provides valuable insights into alternative approaches for preventing alveolar osteitis. Further research should explore clinical applications and refine sterilization methods for more accurate results.
Collapse
Affiliation(s)
- Nissia Ananda
- Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
- Staff of Dental Department, Universitas Indonesia Hospital, Jl. Prof Dr. Bahder Djohan, Universitas Indonesia, Pondok Cina, Beji, Depok, West Java, Indonesia
| | - Vera Julia
- Staff of Dental Department, Universitas Indonesia Hospital, Jl. Prof Dr. Bahder Djohan, Universitas Indonesia, Pondok Cina, Beji, Depok, West Java, Indonesia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
9
|
Guo J, Qiu Y, Zhang J, Xue C, Zhu J. A review on polysaccharide-based delivery systems for edible bioactives: pH responsive, controlled release, and emerging applications. Int J Biol Macromol 2025; 291:139178. [PMID: 39730044 DOI: 10.1016/j.ijbiomac.2024.139178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body. These polysaccharide-based delivery systems can be made pH-responsive by modulating the charge of polybasic or polyacidic polysaccharides, inducing swelling of the carrier and subsequent release of the encapsulated bioactives. These pH-responsive systems show promise in stabilizing under acidic conditions for enhanced retention in the stomach during oral delivery while also enabling targeted release at low pH sites such as tumors and wounds, thereby accelerating wound healing and aiding in cancer therapy and inflammation treatment. pH can co-respond with a variety of stimuli, including temperature, enzymes and reactive oxygen species, enabling more precise responses to the microenvironment for targeted delivery. It provides solid theoretical foundations for the advancement of personalized nutrition and therapeutics through controlled and responsive release technologies.
Collapse
Affiliation(s)
- Jiaxin Guo
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chenxu Xue
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Kral Ö, Ilbasmis-Tamer S, Han S, Tirnaksiz F. Development of Dermal Lidocaine Nanosuspension Formulation by the Wet Milling Method Using Experimental Design: In Vitro/In Vivo Evaluation. ACS OMEGA 2024; 9:50992-51008. [PMID: 39758633 PMCID: PMC11696440 DOI: 10.1021/acsomega.4c05296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 01/07/2025]
Abstract
Lidocaine (LID), frequently used in dermal applications, is a nonpolar local anesthetic agent that is practically insoluble in water. The main aim of this study is to develop the nanosuspension formulation of LID using the design of experiments (DoE). The improved solubility and dissolution rate provided by nanosizing are expected to result in enhanced dermal bioavailability. Nanosuspension formulations were developed by a wet media milling method using different stabilizer types [poloxamer (POL) and poly(vinyl alcohol) (PVA)]. Characterization studies of the nanosuspensions were carried out using DSC, FTIR, XRD, and SEM in vitro release from the dialysis membrane and ex vivo permeation studies using rat skin were performed. Analgesic/anesthetic effects were evaluated using the tail-flick test in in vivo studies. Particle size (PS), polydispersity index (PDI), and zeta potential (ZP) values were found as 171.7 ± 3.52 nm, 0.251 ± 0.036, and -32.2 ± 0.907 mV for POL/LID nanosuspensions and 262.1 ± 29.42 nm, 0.453 ± 0.071, and -20.2 ± 3.50 mV for PVA/LID nanosuspensions, respectively. Compared to the coarse suspension of LID, it was determined that it accumulated in the skin approximately 1.81 times more in the POL/LID nanosuspension formulation and 1.79 times more in the PVA/LID nanosuspension formulation. According to analgesic effect and related AUC data, nanosuspension formulation was found to be statistically more effective than coarse suspension. It is concluded that DoE is a useful tool in determining process parameters when developing nanosuspensions by the wet media milling method, and POL is a suitable nonionic polymer to stabilize nanosuspensions.
Collapse
Affiliation(s)
- Özlem Kral
- Department
of Pharmaceutical Technology, Gazi University, Ankara 06560, Turkey
- Department
of Pharmaceutical Technology, Ağri
İbrahim Çeçen University, Agri 04100, Turkey
| | | | - Sevtap Han
- Department
of Pharmacology, Lokman Hekim University, Ankara 06510, Turkey
| | - Figen Tirnaksiz
- Department
of Pharmaceutical Technology, Gazi University, Ankara 06560, Turkey
| |
Collapse
|
11
|
Yue P, Nagendraraj T, Wang G, Jin Z, Angelovski G. The role of responsive MRI probes in the past and the future of molecular imaging. Chem Sci 2024; 15:20122-20154. [PMID: 39611034 PMCID: PMC11600131 DOI: 10.1039/d4sc04849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Magnetic resonance imaging (MRI) has become an indispensable tool in biomedical research and clinical radiology today. It enables the tracking of physiological changes noninvasively and allows imaging of specific biological processes at the molecular or cellular level. To this end, bioresponsive MRI probes can greatly contribute to improving the specificity of MRI, as well as significantly expanding the scope of its application. A large number of these sensor probes has been reported in the past two decades. Importantly, their development was done hand in hand with the ongoing advances in MRI, including emerging methodologies such as chemical exchange saturation transfer (CEST) or hyperpolarised MRI. Consequently, several approaches on successfully using these probes in functional imaging studies have been reported recently, giving new momentum to the field of molecular imaging, also the chemistry of MRI probes. This Perspective summarizes the major strategies in the development of bioresponsive MRI probes, highlights the major research directions within an individual group of probes (T 1- and T 2-weighted, CEST, fluorinated, hyperpolarised) and discusses the practical aspects that should be considered in designing the MRI sensors, up to their intended application in vivo.
Collapse
Affiliation(s)
- Ping Yue
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Thavasilingam Nagendraraj
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Ziyi Jin
- School of Chemistry and Chemical Engineering, Jiangsu University Zhenjiang 212013 PR China
| | - Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS) Shanghai 201602 PR China
| |
Collapse
|
12
|
Rahman MA, Yadab MK, Ali MM. Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy. Cells 2024; 13:1924. [PMID: 39594672 PMCID: PMC11592846 DOI: 10.3390/cells13221924] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying definitive biomarkers that predict clinical response and resistance to immunotherapy remains a critical challenge. One emerging factor is extracellular acidosis in the tumor microenvironment (TME), which significantly impairs immune cell function and contributes to immunotherapy failure. However, acidic conditions in the TME disrupt the interaction between cancer and immune cells, driving tumor-infiltrating T cells and NK cells into an inactivated, anergic state. Simultaneously, acidosis promotes the recruitment and activation of immunosuppressive cells, such as myeloid-derived suppressor cells and regulatory T cells (Tregs). Notably, tumor acidity enhances exosome release from Tregs, further amplifying immunosuppression. Tumor acidity thus acts as a "protective shield," neutralizing anti-tumor immune responses and transforming immune cells into pro-tumor allies. Therefore, targeting lactate metabolism has emerged as a promising strategy to overcome this barrier, with approaches including buffer agents to neutralize acidic pH and inhibitors to block lactate production or transport, thereby restoring immune cell efficacy in the TME. Recent discoveries have identified genes involved in extracellular pH (pHe) regulation, presenting new therapeutic targets. Moreover, ongoing research aims to elucidate the molecular mechanisms driving extracellular acidification and to develop treatments that modulate pH levels to enhance immunotherapy outcomes. Additionally, future clinical studies are crucial to validate the safety and efficacy of pHe-targeted therapies in cancer patients. Thus, this review explores the regulation of pHe in the TME and its potential role in improving cancer immunotherapy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | | | - Meser M. Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| |
Collapse
|
13
|
Gabrusenok PV, Ramazanov RR, Kasyanenko NA, Lantushenko AO, Sokolov PA. pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study. Biochim Biophys Acta Gen Subj 2024; 1868:130689. [PMID: 39134247 DOI: 10.1016/j.bbagen.2024.130689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024]
Abstract
The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.
Collapse
Affiliation(s)
- P V Gabrusenok
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - R R Ramazanov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - N A Kasyanenko
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - A O Lantushenko
- Sevastopol State University, 33 Universitetskaya Street, Sevastopol, 299053, Russia
| | - P A Sokolov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia.
| |
Collapse
|
14
|
Duan X, Li L, Peng Z, Wang M, Liu Y, Hsieh DJ, Chang KC. Ultralow Power, Cleft Size-Adjustable and pH-Sensitive Hyaluronic Acid (HA) Biodevices for Acid-Sensing Ion Channels Emulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405207. [PMID: 39180450 DOI: 10.1002/smll.202405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Indexed: 08/26/2024]
Abstract
The burgeoning implantable biodevices have unlocked new frontiers in healthcare, promising personalized monitoring strategies tailored to specific needs. Herein, hyaluronic acid (HA) is harnessed to create fully biocompatible, acidity-sensitivity and cleft-adjustable neuromorphic devices. These HA-biodevices exhibit remarkable sensitivity to pH variations, effectively mimicking biological acid-sensing ion channels (ASICs) through protonation reactions between electronegative atoms and hydrogen ions, even at ultralow driving voltage (5 mV). They can monitor joint cartilage acidity by tracking changes in proton concentration and successfully diagnose the onset of arthritis. Furthermore, by adjusting the synaptic device's cleft distance, which determines responsiveness, power efficiency and plasticity, HA-based neuromorphic devices can be tailored to meet the unique demands of various implantation sites, providing both high-sensitivity and low-heat dissipation, thus broadening their application scopes. Moreover, the HA-biodevices maintain stable performance across various bending degrees, up to a curvature radius of 7.5 mm, with flexibility and deformation resilience enabling installation on joints of varying curvatures. The combination of all-biocompatibility, high sensitivity, low heat dissipation, ultralow low power (2 pW), and extraordinary deformation tolerance paves the way for the development of versatile, multipurpose medical monitoring devices with immense potential in the field of healthcare.
Collapse
Affiliation(s)
- Xinqing Duan
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Lei Li
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Zehui Peng
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Mingqiang Wang
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Yanxin Liu
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| | - Dar-Jen Hsieh
- R&D Center, ACRO Biomedical Co., Kaohsiung City, 82151, Taiwan
| | - Kuan-Chang Chang
- Peking University Shenzhen Graduate School, Shenzhen City, 518000, China
| |
Collapse
|
15
|
Machado CS, Pinto M, Aguiar B, Costa S, Sarmento B, Otero Espinar FJ, Borges F, Fernandes C. Exploring Nanocarriers for Boosting Entacapone Bioavailability: A Journey through System Characterization and Assessment of Toxicity and Pharmacological and 2D Permeability Paybacks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58299-58312. [PMID: 39432433 DOI: 10.1021/acsami.4c12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Catechol-O-methyltransferase inhibitors (iCOMT), such as entacapone, have been successfully employed to treat tremor-related symptoms of Parkinson's disease. However, iCOMT has been associated with a short half-life and poor oral bioavailability. Nanobased drug delivery systems have often been used to overcome this type of setbacks. Therefore, entacapone was encapsulated in PEGylated poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) via a nanoprecipitation process, as well as in PEGylated nanostructured lipid carriers (NLCs) using a solvent emulsification/evaporation method. Both nanoformulations presented sub-200 nm populations, with zeta-potential (ZP) values close to -30 mV, and showed stability at different pHs, while maintaining their physicochemical properties mostly intact, presenting only a change in their superficial charge (ZP values), indicating their interaction. Both nanoformulations presented interaction with mucins, which anticipates good permeation and bioavailability for oral and topical administration. No cytotoxic effects were observed for lyophilized PLGA NPs encapsulating entacapone, in which 2-hydroxypropyl-ß-cyclodextrin (HPβCD) was used as a cryoprotectant at 3% concentration (HP-PLGA@Ent), in human hepatocellular carcinoma (HepG2), human neuroblastoma (SH-SY5Y), or human epithelial colorectal adenocarcinoma (Caco-2) cell lines. Conversely, NLCs encapsulating entacapone (W-NLCs@Ent) presented cytotoxic effects on the HepG2 cell line, likely due to intracellular lipid accumulation or storage. Both nanoformulations maintained a COMT inhibition effect in HepG2 cells, using 3-BTD as the COMT probe. An increase of entacapone permeability in both monolayer and coculture models (Caco-2 and Caco-2/HT29-MTX, respectively) was observed for the developed nanoformulations. Overall, this work shows that encapsulated entacapone in different nanocarriers could be a stimulating alternative to solve entacapone setbacks, since they improve its physicochemical properties and permeability while still maintaining the COMT inhibitory activity.
Collapse
Affiliation(s)
- Cláudia Sofia Machado
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Miguel Pinto
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Brandon Aguiar
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
- Associate Laboratory i4HB─Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Costa
- i3S─Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S─Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IUCS- Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Francisco J Otero Espinar
- Instituto de Materiales iMATUS, Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Fernanda Borges
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS─Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
16
|
Alshammari ND, Elkanayati R, Vemula SK, Al Shawakri E, Uttreja P, Almutairi M, Repka MA. Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies. AAPS PharmSciTech 2024; 25:236. [PMID: 39379609 DOI: 10.1208/s12249-024-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application's advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled in vitro environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.
Collapse
Affiliation(s)
- Nouf D Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, 91431, Arar, Saudi Arabia
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Esraa Al Shawakri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
17
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
18
|
Adiguzel S, Karamese M, Kugu S, Kacar EA, Esen MF, Erdogan H, Tasoglu S, Bacanli MG, Altuntas S. Doxorubicin-loaded liposome-like particles embedded in chitosan/hyaluronic acid-based hydrogels as a controlled drug release model for local treatment of glioblastoma. Int J Biol Macromol 2024; 278:135054. [PMID: 39187114 DOI: 10.1016/j.ijbiomac.2024.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.
Collapse
Affiliation(s)
- Seyfure Adiguzel
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Molecular Biology and Genetics, Department of Molecular Biology and Genetics, University of Health Sciences, Istanbul 34668, Turkiye
| | - Miray Karamese
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Senanur Kugu
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Elif Ayse Kacar
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Muhammed Fevzi Esen
- Department of Health Information Systems, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Faculty of Science, Koc University, Istanbul, Turkiye.
| | - Merve Güdül Bacanli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| |
Collapse
|
19
|
Acarlioglu Y, Senturan L, Salimi S. Temporal Dynamics of Pain: Examining the Relationship Between Intramuscular Injection Duration and Pain Perception: A Crossover Randomized Controlled Trial. Cureus 2024; 16:e70969. [PMID: 39507143 PMCID: PMC11538485 DOI: 10.7759/cureus.70969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background Effective pain management is crucial for optimizing the patient experience and satisfaction with care. Many factors affect the intensity of injection pain, and one of these factors is the duration of the injection. This study aimed to evaluate the impact of intramuscular injection duration on perceived pain intensity in adults. Methods Fifty participants received injections according to a predetermined research protocol. Each participant served as their own control group. The intervention group was administered the drug over 40 seconds. The control group was given the same drug on the other side dorsogluteal region the following day, according to the unit's routine, in 10 seconds. Pain intensity was measured using the Wong-Baker Faces Pain Rating Scale and the Numerical Rating Scale. Statistical analysis was performed using SPSS (IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp), including Wilcoxon and correlation analyses, with a significance level set at p < 0.05. Results The Wilcoxon test revealed a significant decrease in pain scores for the intervention group (p < 0.05), indicating that longer injection durations were associated with lower pain intensity. Significant correlations were found between hospital phobia and the use of pain relief measures, with pain perception (p < 0.05). Conclusion This research establishes a correlation between extended durations of intramuscular injections and pain intensity. These findings have implications for pain management during medical procedures and can contribute to optimizing patient comfort.
Collapse
Affiliation(s)
- Yusuf Acarlioglu
- Civil Defense and Mobilization, Istanbul Provincial Health Directorate, Istanbul, TUR
| | - Leman Senturan
- Nursing, Faculty of Health Sciences, Biruni University, Istanbul, TUR
| | - Saleh Salimi
- Nursing, Faculty of Health Sciences, Biruni University, Istanbul, TUR
| |
Collapse
|
20
|
Zhao R, Yu T, Li J, Niu R, Liu D, Wang W. Single-cell encapsulation systems for probiotic delivery: Armor probiotics. Adv Colloid Interface Sci 2024; 332:103270. [PMID: 39142064 DOI: 10.1016/j.cis.2024.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges of probiotics in food processing, storage, human digestion, and the commonly used probiotic encapsulation system. Besides, a novel technology of probiotic encapsulation was introduced based on single-cell coating, namely, "armor probiotics". We focused on the classification, structural design, and functional characteristics of armor coatings, and emphasized the essential functional characteristics of armor probiotics in human health regulation, including regulating intestinal health and targeted bioimaging and treatment of diseased tissues. Subsequently, the benefits, limitations, potential challenges, as well as future direction of armor probiotics were put forward. We hope this review may provide new insights and ideas for developing a single-cell probiotics encapsulating system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
21
|
Nonkhwao S, Leaokittikul D, Patramanon R, Jangpromma N, Daduang J, Daduang S. Revealing the pH-dependent conformational changes in sol g 2.1 protein and potential ligands binding. Sci Rep 2024; 14:21179. [PMID: 39261547 PMCID: PMC11391043 DOI: 10.1038/s41598-024-72014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Sol g 2, a major protein found in the venom of the tropical fire ant (Solenopsis geminata), is well-known for its ability to bind various hydrophobic molecules. In this study, we investigate the binding activity of recombinant Sol g 2.1 protein (rSol g 2.1) with potential molecules, including (E)-β-Farnesene, α-Caryophyllene, and 1-Octen-3-ol at different pH levels (pH 7.4 and 5.5) using fluorescence competitive binding assays (FCBA). Our results revealed that Sol g 2.1 protein has higher affinity binding with these ligands at neutral pH. Relevance to molecular docking and molecular dynamics simulations were utilized to provide insights into the stability and conformational dynamics of Sol g 2.1 and its ligand complexes. After simulation, we found that Sol g 2.1 protein has higher affinity binding with these ligands as well as high structural stability at pH 7.4 than at an acidic pH level, indicating by RMSD, RMSF, Rg, SASA, and principal component analysis (PCA). Additionally, the Sol g 2.1 protein complexes at pH 7.4 showed significantly lower binding free energy (∆Gbind) and higher total residue contributions, particularly from key non-polar amino acids such as Trp36, Met40, Cys62, and Ile104, compared to the lower pH environment. These explain why they exhibited higher binding affinity than the lower pH. Therefore, we suggested that Sol g 2.1 protein is a pH-responsive carrier protein. These findings also expand our understanding of protein-ligand interactions and offer potential avenues for the development of innovative drug delivery strategies targeting Sol g 2.1 protein.
Collapse
Affiliation(s)
- Siriporn Nonkhwao
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
22
|
Shu Q, Yang F, Lin Z, Yang L, Wang Z, Ye D, Dong Z, Huang P, Wang W. Molecular understanding of the self-assembly of an N-isopropylacrylamide delivery system for the loading and temperature-dependent release of curcumin. Commun Chem 2024; 7:163. [PMID: 39080473 PMCID: PMC11289375 DOI: 10.1038/s42004-024-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Global changes and drug abuse are forcing humanity to face various disease problems, and alternative therapies with safe natural substances have important research value. This paper combines various techniques in quantum chemical calculations and molecular simulations to provide molecular-level insight into the dynamics of the self-assembly of N-isopropylacrylamide (NIPAM) for loading curcumin (CUR). The results indicate that increasing the chain length of NIPAM molecules reduces their efficiency in encapsulating and locking CUR, and electrostatic interactions and van der Waals interactions are the main driving forces behind the evolution of system configurations in these processes. The isopropyl groups of NIPAM and the two phenolic ring planes of CUR are the main contact areas for the interaction between the two types of molecules. The thermosensitive effect of NIPAM can alter the distribution of isopropyl groups in NIPAM molecules around CUR. As a result, when the temperature rises from ambient temperature (300 K) to human characteristic temperature (310 K), the NIPAM-CUR interactions and radial distribution functions suggest that body temperature is more suitable for drug release. Our findings offer a vital theoretical foundation and practical guidance for researchers to develop temperature-sensitive drug delivery systems tailored for CUR, addressing its clinical application bottleneck.
Collapse
Affiliation(s)
- Qijiang Shu
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- Yunnan Traditional Chinese Medicine Prevention and Treatment Engineering Research Center, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Fuhua Yang
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zedong Lin
- School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, Zhejiang, China
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, Guangdong, China
| | - Linjing Yang
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zhan Wang
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Donghai Ye
- Institute of Information, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Zhi Dong
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Pengru Huang
- Guangxi Key Laboratory of Information Materials and Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science & Engineering, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China
| | - Wenping Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| |
Collapse
|
23
|
Alifah N, Palungan J, Ardayanti K, Ullah M, Nurkhasanah AN, Mustopa AZ, Lallo S, Agustina R, Yoo JW, Hasan N. Development of Clindamycin-Releasing Polyvinyl Alcohol Hydrogel with Self-Healing Property for the Effective Treatment of Biofilm-Infected Wounds. Gels 2024; 10:482. [PMID: 39057504 PMCID: PMC11275357 DOI: 10.3390/gels10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Self-healing hydrogels have good mechanical strength, can endure greater external force, and have the ability to heal independently, resulting in a strong bond between the wound and the material. Bacterial biofilm infections are life-threatening. Clindamycin (Cly) can be produced in the form of a self-healing hydrogel preparation. It is noteworthy that the antibacterial self-healing hydrogels show great promise as a wound dressing for bacterial biofilm infection. In this study, we developed a polyvinyl alcohol/borax (PVA/B) self-healing hydrogel wound dressing that releases Cly. Four ratios of PVA, B, and Cly were used to make self-healing hydrogels: F1 (4%:0.8%:1%), F2 (4%:1.2%:1%), F3 (1.6%:1%), and F4 (4%:1.6%:0). The results showed that F4 had the best physicochemical properties, including a self-healing duration of 11.81 ± 0.34 min, swelling ratio of 85.99 ± 0.12%, pH value of 7.63 ± 0.32, and drug loading of 98.34 ± 11.47%. The B-O-C cross-linking between PVA and borax caused self-healing, according to FTIR spectra. The F4 formula had a more equal pore structure in the SEM image. The PVA/B-Cly self-healing hydrogel remained stable at 6 ± 2 °C for 28 days throughout the stability test. The Korsmeyer-Peppas model released Cly by Fickian diffusion. In biofilm-infected mouse wounds, PVA/B-Cly enhanced wound healing and re-epithelialization. Our results indicate that the PVA/B-Cly produced in this work has reliable physicochemical properties for biofilm-infected wound therapy.
Collapse
Affiliation(s)
- Nur Alifah
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Juliana Palungan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Kadek Ardayanti
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (M.U.); (J.-W.Y.)
| | - Andi Nokhaidah Nurkhasanah
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Apon Zaenal Mustopa
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia;
| | - Subehan Lallo
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Rina Agustina
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (M.U.); (J.-W.Y.)
| | - Nurhasni Hasan
- Faculty of Pharmacy, Hasanuddin University, Jl. Perintis Kemerdekaan KM 10, Makassar 90245, Indonesia; (N.A.); (J.P.); (K.A.); (A.N.N.); (S.L.); (R.A.)
| |
Collapse
|
24
|
Lopez-Vidal L, Parodi P, Actis MR, Camacho N, Real DA, Paredes AJ, Irazoqui FJ, Real JP, Palma SD. Formulation and optimization of pH-sensitive nanocrystals for improved oral delivery. Drug Deliv Transl Res 2024; 14:1301-1318. [PMID: 37953429 DOI: 10.1007/s13346-023-01463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
The challenge of low water solubility in pharmaceutical science profoundly impacts drug absorption and therapeutic effectiveness. Nanocrystals (NC), consisting of drug molecules and stabilizing agents, offer a promising solution to enhance solubility and control release rates. In the pharmaceutical industry, top-down techniques are favored for their flexibility and cost-effectiveness. However, increased solubility can lead to premature drug dissolution in the stomach, which is problematic due to the acidic pH or enzymes. Researchers are exploring encapsulating agents that facilitate drug release at customized pH levels as a valuable strategy to address this. This study employed wet milling and spray drying techniques to create encapsulated NC for delivering the drug to the intestinal tract using the model drug ivermectin (IVM). Nanosuspensions (NS) were efficiently produced within 2 h using NanoDisp®, with a particle size of 198.4 ± 0.6 nm and a low polydispersity index (PDI) of 0.184, ensuring uniformity. Stability tests over 100 days at 4 °C and 25 °C demonstrated practical viability, with no precipitation or significant changes observed. Cytotoxicity evaluations indicated less harm to Caco-2 cells compared to the pure drug. Furthermore, the solubility of the NC increased by 47-fold in water and 4.8-fold in simulated intestinal fluid compared to the pure active compound. Finally, dissolution tests showed less than 10% release in acidic conditions and significant improvement in simulated intestinal conditions, promising enhanced drug solubility and bioavailability. This addresses a long-standing pharmaceutical challenge in a cost-effective and scalable manner.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
- Pharmaceutical Technology Research and Development Unit (UNITEFA) - CONICET, Córdoba, Argentina
| | - Pedro Parodi
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
- Center for Research in Biological Chemistry of Cordoba (CIQUIBIC) - CONICET, Córdoba, Argentina
| | - Maribel Romanela Actis
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
| | - Nahuel Camacho
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
- Pharmaceutical Technology Research and Development Unit (UNITEFA) - CONICET, Córdoba, Argentina
| | - Daniel Andrés Real
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
- Pharmaceutical Technology Research and Development Unit (UNITEFA) - CONICET, Córdoba, Argentina
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Fernando José Irazoqui
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
- Center for Research in Biological Chemistry of Cordoba (CIQUIBIC) - CONICET, Córdoba, Argentina
| | - Juan Pablo Real
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina
- Pharmaceutical Technology Research and Development Unit (UNITEFA) - CONICET, Córdoba, Argentina
| | - Santiago Daniel Palma
- Faculty of Chemical Sciences, National University of Córdoba (FCQ-UNC), Haya de la torre y Medina Allende, X5000XHUA, Córdoba, Argentina.
- Pharmaceutical Technology Research and Development Unit (UNITEFA) - CONICET, Córdoba, Argentina.
| |
Collapse
|
25
|
Mochizuki K, Mitova V, Makino K, Terada H, Takeuchi I, Troev K. pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers. Int J Mol Sci 2024; 25:4518. [PMID: 38674103 PMCID: PMC11049995 DOI: 10.3390/ijms25084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers.
Collapse
Affiliation(s)
- Kasumi Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Faculty of Pharmaceutical Science, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kolio Troev
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
26
|
Youssef SH, Ganesan R, Amirmostofian M, Kim S, Polara R, Afinjuomo F, Song Y, Chereda B, Singhal N, Robinson N, Garg S. Printing a cure: A tailored solution for localized drug delivery in liver cancer treatment. Int J Pharm 2024; 651:123790. [PMID: 38190951 DOI: 10.1016/j.ijpharm.2024.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Adjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively. The relevant characterization tests were performed, and the drug content of films was 0.68, 0.50, and 0.50 mg of 5FU and 0.39, 0.80, and 0.34 mg of Cis for films A, B, and C, respectively. Cis release was affected by the alterations to the film design, where films A, B, and C showed complete release at 12, 14, and 23 days, respectively. However, 5FU was released over 24 h for all films. The films were stable for up to two weeks after storage at 25 °C/65% relative humidity and four weeks at 4 °C where drug content, tensile strength, FTIR, and thermal analysis results demonstrated negligible alterations. The cytotoxicity of the films was assessed by MTS assays using HepG2 cell lines demonstrating up to 81% reduction in cell viability compared to blank films. Moreover, apoptosis was confirmed by Western Blots and the determination of mitochondrial cell potential, highlighting the potential of these films as a promising approach in adjuvant chemotherapy.
Collapse
Affiliation(s)
- Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Bradley Chereda
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Nimit Singhal
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia; Dept of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia; Discipline of Medicine and the Faculty of Health Science, University of Adelaide, Adelaide, SA, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
27
|
Malektaj H, Drozdov AD, Fini E, Christiansen JDC. The Effect of pH on the Viscoelastic Response of Alginate-Montmorillonite Nanocomposite Hydrogels. Molecules 2024; 29:244. [PMID: 38202826 PMCID: PMC10780325 DOI: 10.3390/molecules29010244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Ionically cross-linked alginate hydrogels are used in a wide range of applications, such as drug delivery, tissue engineering, and food packaging. A shortcoming of these gels is that they lose their strength and degrade at low pH values. To develop gels able to preserve their integrity in a wide range of pH values, Ca-alginate-montmorillonite nanocomposite gels are prepared, and their chemical structure, morphology, and mechanical response are analyzed. As the uniformity of nanocomposite gels is strongly affected by concentrations of MMT and CaCl2, it is revealed that homogeneous gels can be prepared with 4 wt.% MMT and 0.5 M CaCl2 at the highest. The viscoelastic behavior of nanocomposite gels in aqueous solutions with pH = 7 and pH = 2 is investigated by means of small-amplitude compressive oscillatory tests. It is shown that Ca-alginate-MMT nanocomposite gels preserve their integrity while being swollen at pH = 2. The experimental data are fitted by a model with only two material parameters, which shows that the elastic moduli increase linearly with a concentration of MMT at all pH values under investigation due to formation of physical bonds between alginate chains and MMT platelets. The presence of these bonds is confirmed by ATR-FTIR spectroscopy. The morphology of nanocomposite gels is studied by means of wide-angle X-ray diffraction, which reveals that intercalation of polymer chains between clay platelets increases the interlayer gallery spacing.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark; (A.D.D.); (J.d.C.C.)
| | - Aleksey D. Drozdov
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark; (A.D.D.); (J.d.C.C.)
| | - Elham Fini
- School of Sustainable Engineering and Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA;
| | | |
Collapse
|
28
|
Yánez Arcos DL, Thirumuruganandham SP. Structural and pKa Estimation of the Amphipathic HR1 in SARS-CoV-2: Insights from Constant pH MD, Linear vs. Nonlinear Normal Mode Analysis. Int J Mol Sci 2023; 24:16190. [PMID: 38003380 PMCID: PMC10671649 DOI: 10.3390/ijms242216190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
A comprehensive understanding of molecular interactions and functions is imperative for unraveling the intricacies of viral protein behavior and conformational dynamics during cellular entry. Focusing on the SARS-CoV-2 spike protein (SARS-CoV-2 sp), a Principal Component Analysis (PCA) on a subset comprising 131 A-chain structures in presence of various inhibitors was conducted. Our analyses unveiled a compelling correlation between PCA modes and Anisotropic Network Model (ANM) modes, underscoring the reliability and functional significance of low-frequency modes in adapting to diverse inhibitor binding scenarios. The role of HR1 in viral processing, both linear Normal Mode Analysis (NMA) and Nonlinear NMA were implemented. Linear NMA exhibited substantial inter-structure variability, as evident from a higher Root Mean Square Deviation (RMSD) range (7.30 Å), nonlinear NMA show stability throughout the simulations (RMSD 4.85 Å). Frequency analysis further emphasized that the energy requirements for conformational changes in nonlinear modes are notably lower compared to their linear counterparts. Using simulations of molecular dynamics at constant pH (cpH-MD), we successfully predicted the pKa order of the interconnected residues within the HR1 mutations at lower pH values, suggesting a transition to a post-fusion structure. The pKa determination study illustrates the profound effects of pH variations on protein structure. Key results include pKa values of 9.5179 for lys-921 in the D936H mutant, 9.50 for the D950N mutant, and a slightly higher value of 10.49 for the D936Y variant. To further understand the behavior and physicochemical characteristics of the protein in a biologically relevant setting, we also examine hydrophobic regions in the prefused states of the HR1 protein mutants D950N, D936Y, and D936H in our study. This analysis was conducted to ascertain the hydrophobic moment of the protein within a lipid environment, shedding light on its behavior and physicochemical properties in a biologically relevant context.
Collapse
|
29
|
Mercante LA, Teodoro KBR, dos Santos DM, dos Santos FV, Ballesteros CAS, Ju T, Williams GR, Correa DS. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers (Basel) 2023; 15:4299. [PMID: 37959981 PMCID: PMC10647808 DOI: 10.3390/polym15214299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Electrospun nanofibrous membranes have garnered significant attention in antimicrobial applications, owing to their intricate three-dimensional network that confers an interconnected porous structure, high specific surface area, and tunable physicochemical properties, as well as their notable capacity for loading and sustained release of antimicrobial agents. Tailoring polymer or hybrid-based nanofibrous membranes with stimuli-responsive characteristics further enhances their versatility, enabling them to exhibit broad-spectrum or specific activity against diverse microorganisms. In this review, we elucidate the pivotal advancements achieved in the realm of stimuli-responsive antimicrobial electrospun nanofibers operating by light, temperature, pH, humidity, and electric field, among others. We provide a concise introduction to the strategies employed to design smart electrospun nanofibers with antimicrobial properties. The core section of our review spotlights recent progress in electrospun nanofiber-based systems triggered by single- and multi-stimuli. Within each stimulus category, we explore recent examples of nanofibers based on different polymers and antimicrobial agents. Finally, we delve into the constraints and future directions of stimuli-responsive nanofibrous materials, paving the way for their wider application spectrum and catalyzing progress toward industrial utilization.
Collapse
Affiliation(s)
- Luiza A. Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), Salvador 40170-280, BA, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Danilo M. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
| | - Francisco V. dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| | - Camilo A. S. Ballesteros
- Bachelor in Natural Sciences and Environmental Education, Pedagogical and Technological University of Colombia (UPTC), Tunja 150003, Colombia;
| | - Tian Ju
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (T.J.); (G.R.W.)
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos 13560-970, SP, Brazil; (K.B.R.T.); (D.M.d.S.); (F.V.d.S.)
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
30
|
Borcan F, Vlase T, Vlase G, Popescu R, Soica CM. The Influence of an Isocyanate Structure on a Polyurethane Delivery System for 2'-Deoxycytidine-5'-monophosphate. J Funct Biomater 2023; 14:526. [PMID: 37888191 PMCID: PMC10607123 DOI: 10.3390/jfb14100526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The delivery of nucleosides represents an interesting research trend in recent years due to their application in various viral infections. The main aims of this study were to develop and to characterize polyurethane particles that are intended to be used for the transport of nucleosides. Three samples have been prepared using aliphatic diisocyanates, a mixture of polyethylene glycol, polycaprolactone, and diols, respectively. The samples were characterized through refractivity measurements, drug loading efficacy, release and penetration rate investigations, FTIR and Raman spectroscopy, thermal analyses, Zetasizer, SEM, HDFa cells viability, and irritation tests on mice skin. The results indicate the obtaining of particles with sizes between 132 and 190 nm, positive Zeta potential values (28.3-31.5 mV), and a refractivity index around 1.60. A good thermal stability was found, and SEM images show a medium tendency to agglomerate. The samples' color, pH, and electrical conductivity have changed only to a small extent over time, and the evaluations indicate an almost 70% encapsulation efficacy, a prolonged release, and that around 70% of particles have penetrated an artificial membrane in the first 24 h. The synthesized products should be tested in further clinical trials, and the current tests on cell cultures and mice skin revealed no side effects.
Collapse
Affiliation(s)
- Florin Borcan
- Department I, Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timisoara, Romania
| | - Titus Vlase
- Research Center “Thermal Analysis in Environmental Problems”, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi Str., 300115 Timisoara, Romania; (T.V.); (G.V.)
| | - Gabriela Vlase
- Research Center “Thermal Analysis in Environmental Problems”, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi Str., 300115 Timisoara, Romania; (T.V.); (G.V.)
| | - Roxana Popescu
- Department II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 14A T. Vladimirescu Str., 300041 Timisoara, Romania;
| | - Codruta M. Soica
- Department II, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
31
|
Ren X, Su D, Shi D, Xiang X. The improving strategies and applications of nanotechnology-based drugs in hepatocellular carcinoma treatment. Front Bioeng Biotechnol 2023; 11:1272850. [PMID: 37811369 PMCID: PMC10557528 DOI: 10.3389/fbioe.2023.1272850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-related death worldwide. Conventional treatments for HCC include drugs, radiation, and surgery. Despite the unremitting efforts of researchers, the curative effect of HCC has been greatly improved, but because HCC is often found in the middle and late stages, the curative effect is still not satisfactory, and the 5-year survival rate is still low. Nanomedicine is a potential subject, which has been applied to the treatment of HCC and has achieved promising results. Here, we summarized the factors affecting the efficacy of drugs in HCC treatment and the strategies for improving the efficacy of nanotechnology-based drugs in HCC, reviewed the recent applications' progress on nanotechnology-based drugs in HCC treatment, and discussed the future perspectives and challenges of nanotechnology-based drugs in HCC treatment.
Collapse
Affiliation(s)
- Xiangyang Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- The Ninth Hospital of Xi’an, Xi’an, Shaanxi, China
| | - Xiaohong Xiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Miri AH, Kamankesh M, Rad-Malekshahi M, Yadegar A, Banar M, Hamblin MR, Haririan I, Aghdaei HA, Zali MR. Factors associated with treatment failure, and possible applications of probiotic bacteria in the arsenal against Helicobacter pylori. Expert Rev Anti Infect Ther 2023; 21:617-639. [PMID: 37171213 DOI: 10.1080/14787210.2023.2203382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Helicobacter pylori is a widespread helical Gram-negative bacterium, which causes a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. This microbe frequently colonizes the mucosal layer of the human stomach and survives in the inhospitable microenvironment, by adapting to this hostile milieu. AREAS COVERED In this extensive review, we describe conventional antibiotic treatment regimens used against H. pylori including, empirical, tailored, and salvage therapies. Then, we present state-of-the-art information about reasons for treatment failure against H. pylori. Afterward, the latest advances in the use of probiotic bacteria against H. pylori infection are discussed. Finally, we propose a polymeric bio-platform to provide efficient delivery of probiotics for H. pylori infection. EXPERT OPINION For effective probiotic delivery systems, it is necessary to avoid the early release of probiotics at the acidic stomach pH, to protect them against enzymes and antimicrobials, and precisely target H. pylori bacteria which have colonized the antrum area of the stomach (basic pH).
Collapse
Affiliation(s)
- Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg Doornfontein, Johannesburg, South Africa
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|